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Thin films and nanostructures

Ultra-thin films are of interest in physics, chemistry, and materials
science.

Examples of applications include:
• lasers, optical detectors, nanoscale photonics;
• semiconductor nanostructures, quantum confined systems,

nanoscale electronics;
• recording heads, nanoscale magnetic devices.

Thin films are often constructed via deposition of particles (adatoms)
on a substrate, either using vapour or cathodic sputtering, and
surface binding may be chemical (chemisorption) or physical
(physisorption). Under certain conditions (Volmer–Weber dynamics),
surface adatoms can diffuse until local binding conditions are such
that nucleation occurs.
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Thin films and nanostructures

At early stages of deposition, structures may look like:
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FIG. 1. STM images, 100X100 nm, of single-layer Fe is-
lands (white) on the Fe(001) surface (black). Sample tempera-
tures during growth are (a) 20 C, (b) 108 C, (c) 163'C, (d)
256'C, (e) 301 C, and (f) 356 C. Fe was deposited for a Sxed
time for all measurements with a flux of 1.4+0.3 X 10'
atomscm s ', yielding a coverage of 0.07+0.016 ML (1
ML=1.214X10"atoms cm ).

low-coverage limit for isotropic diffusion, the total densi-
ty of islands N varies as '

N —ri(B)(r/v)~exp[y(E&+E, /i )Iks T),
where g(8)-8'~'+ ', and y=i/(i+2). The difi'usion
constant is given by D =Doexp( Ed—Iks T), where Ed is
the activation energy for diffusion. E; is the binding en-
ergy for critical islands of size i. The diffusion rate is re-
lated to the number of jumps an atom makes per second,
the hopping rate h by D =ha, where a is the lattice con-
stant, and Do=va, where v is the attempt frequency.
An analysis of the island density for temperatures below
250'C, shown in the inset in Fig. 3(b) below, was recently
reported with the assumption of a critical size of 1; an
activation energy of Ed=0.45+0.04 eV, ' and a prefac-
tor, DO=7. 2X10 cm s ' was obtained. Above 250'C
one observes a change in slope in the temperature depen-
dence of the island density. For the temperature range
corresponding to the images in Fig. 1, the ratio of hop-
ping to deposition rate, h/r, varies over four orders of
magnitude from 1.2X10 to 1.7X10' .

The self-similarity of the island size distributions seen
in Fig. 1 is demonstrated more quantitatively by analyz-
ing the size distributions obtained from the STM images.
Figure 2 shows four island size distributions for tempera-
tures ranging from 20 to 356'C. The island size distribu-
tion varies greatly with temperature due to the tendency
towards enhanced growth with increasing temperature.
This results in the peak of the distributions moving to
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FIG. 2. Fe island size distributions corresponding to the
STM images as in Fig. 1. The island density per lattice site
(0.28X0.28 nm2) N, is plotted vs the number of atoms (size) s
per island for various growth temperatures indicated. The lines
are a smooth spline to the data points.

larger island sizes with increasing temperature. Bartelt
and Evans have developed a scaling theory for the island
size distribution and propose the scaling relation for large
h/r as9

N, -B,s,
„

f;(sIs,„), (2)

where N, is the density of islands per lattice site of size s
atoms, and f, is the scaling function corresponding to a
critical nucleus size i. 8„=+,&,sN, is the coverage as-
sociated with stable islands and the average island size is
defined as s,„=8,/g, &,N, . For a smaH critical size,
such as i=1, 8,=8, and s,„=B,I(N+N, )=BIN,
since the relative number of monomers N& is small com-
pared to the total number of islands N (s & 2).

Figure 3 shows the scaled island size distribution
[which corresponds to the scaling function f in Eq. (2)]
for the temperature range of 20-356'C, where the ratio
of hopping rate to deposition rate ranges from 10 to
10' . For temperatures below 250'C [see Fig. 3(a)] one
observes a collapse of the island size distributions onto a
single curve, in excellent agreement with the relation
given by Eq. (2). The resulting scaling function closely
resembles the prediction for a critical size of 1, as can be
seen by comparing to the simulation results of Bartelt
and Evans, ' which are reproduced in the inset in Fig.
3(a). This implies that clusters of two or more atoms are
stable in this temperature range.

At higher growth temperatures, deviation from the
scaling function in Fig. 3(a) is observed, as shown by the
diamonds for the 301'C growth in Fig. 3(b). However,
we observe that at yet higher growth temperatures (i.e.,
the data shown by the circles for 350'C growth) the is-
land distributions still collapse onto the same curve, albeit
a different scaling function curve than observed for the
low-temperature growth. In contrast to the lower-
temperature scaling function, this higher-temperature
scaling function is signi6cantly narrower and has a max-
imum greater than one. While coarsening due to
Ostwald ripening would tend to narrow the size distribu-
tion, we expect little effect on the measured size distribu-
tions based on other coarsening measurements and given
the time and temperature scales in the present experi-
ment. Therefore, we may attribute this distribution to a

‘Islands’ after deposition, seen under an electron microscope:
silver (left) and iron (right)

HARTIG et al. (1978); STROSCIO & PIERCE et al. (1994)

Mathematical modelling of deposition and nucleation is important for
understanding and design of nanomaterials.



Thin film growth dynamics

Three basic elements: deposition, diffusion, nucleation.

Particles are deposited onto a substrate and undergo diffusion until
sufficiently many particles come close together, when they nucleate
to form a static island. Islands act as absorbing barriers for
subsequent particles.

In the early stages, it is reasonable to ignore the spatial extent of
islands. As time goes on, more islands form by nucleation, and
islands grow by the accumulation of captured particles. Eventually,
growing islands will coalesce into larger structures.

Here we discuss a one-dimensional model for the early-stage
dynamics, with binary nucleation and point islands.
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Thin film growth dynamics

Formulating microscopic stochastic models for submonalyer
deposition and growth processes goes back several decades in the
applied literature, see especially:
• A. MICHAELS, G. POUND & F. ABRAHAM (1974),
• M. BARTELT & J. EVANS (1992),
• J. BLACKMAN & P. MULHERAN (1996).

Various approaches for analysis of these models, including Monte
Carlo, as well as several different theoretical approaches, e.g.

• M. GRINFELD, W. LAMB, K. O’NEILL & P. MULHERAN (2012),
• J. BLACKMAN, M. GRINFELD & P. MULHERAN (2015),

but no previous work in the probability literature, as far as we are
aware.
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Our model

We study a continuous-time interacting particle model on [0,1]. Initial
islands are at 0 and 1.

Particles are either active or else are captured in islands. The
dynamics are as follows.

Deposition. Active particles are deposited on [0,1] according to a
space-time Poisson process on [0,1]× R+ with intensity λ > 0.
I.e., Independent Exp(λ) times between deposition events; locations
are independent Unif[0,1].

Diffusion and nucleation. Each active particle performs independent
Brownian motion until either (i) it is captured by an existing island, or
(ii) it meets another active particle, in which case the two colliding
particles nucleate to create a new island. In either case, the particle
is no longer active.
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Initially: Islands at 0 and 1, no active particles.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model
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λ

After an Exp(λ) random time, first active particle arrives
at a uniform random location.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model

10

λ

Active particle performs Brownian motion.
If it hits an existing island, it is captured.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Our model
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If two active particles meet before either is captured by an existing
island, they nucleate to form a new island.

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).
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Question: How does the partition of the interval evolve?

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).



Overview of results

Let νn denote the time of the nth nucleation.

Let Zn denote the vector
of island locations, listed left to right, at time νn.
Note that Zn is not Markov, because there may still be active particles
in the system at time νn that are not described by Zn.

We have two main results:

1 Sparse deposition. In the λ→ 0 limit, the process Zn converges to
a certain Markovian interval-splitting process.
Why asymptotically Markov? When λ→ 0, most of the time there are
very few active particles in the system.

2 Fixed λ. For fixed λ but large times (t → ∞) the gap statistics are
governed by the λ→ 0 limit process from 1 .
Why? For large times, there are many islands and so gaps are small.
This increases the relative rate of capture by existing islands, and has
a similar effect as driving λ→ 0.
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Interval-splitting process

Two parameters:
splitting exponent α and splitting distribution Φ on [0,1].

Consider a discrete-time, Markovian process that starts from the full
unit interval [0,1] and iteratively splits intervals as follows.

At each step:

• Choose randomly one of the current intervals, with an interval of
length ℓ chosen with probability proportional to ℓα.

• Split the chosen interval into two new intervals by inserting a
point at a relative location drawn from distribution Φ.
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Interval-splitting process

Two parameters:
splitting exponent α and splitting distribution Φ on [0,1].

10 ℓ

A configuration of intervals.

Models of this type were studied by BRENNAN & DURRETT (1986–7).
The case where Φ is uniform is uniform splitting, which if α = 1 gives
a Dirichlet process and α→ ∞ gives the Kakutani process.
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Interval-splitting process

Two parameters:
splitting exponent α and splitting distribution Φ on [0,1].

The process that’s going to be relevant for our nucleation process has
α = 4 and Φ = Φ0 where

Φ0(B) =
1
µ

∫
B
ψ(z)dz,

with
ψ(z) :=

24
π4

∑
n odd

(
4
n4 tanh

(nπ
2

)
− π

n3

)
sin(nπz),

and
µ :=

∫ 1

0
ψ(z)dz =

48
π5

∑
n odd

sech2( nπ
2 )

n4 ≈ 0.07826895.



Result: Sparse deposition

Recall that Zn is the vector of island locations, listed left to right, at
the time νn of the n nucleation.

Theorem
As λ→ 0, the process Zn converges, in the sense of
total-variation convergence of finite-dimensional distributions,
to an interval-splitting process with parameters α = 4 and
Φ = Φ0.



Result: Sparse deposition

0 1

1.827

0

Plot of Φ0 with simulation

Remarks: It turns out that ψ is
twice continuously differentiable,
and ψ(z) ∼ 3z2 as z → 0.

The Fourier series for ψ
converges slowly; a different
representation related to the
Clausen function yields better
numerical approximation.

Earlier work argued for a
Beta(3,3) splitting distribution.
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Result: Fixed deposition

Heuristic: For fixed λ, consider large time. Then gaps are small,
which is, effectively, the same as sending λ→ 0. Smaller gaps =
faster capture by existing islands = lower density of active particles.
(A precise version of this statement is given via a scaling relation later
on.)

So for fixed λ, nevertheless the λ→ 0 limit drives the long-time
asymptotics.

One can make a formal coupling statement. Roughly, for any ε > 0
we can find n0 sufficiently large so that one can successfully couple,
with probability at least 1− ε, the fixed-λ process run from n ≥ n0 with
the Φ0 Markovian interval-splitting process, started from the same
initial configuration.

One implication of this result is that certain long-time statistics of the
fixed-λ process can be described purely via the Φ0 Markovian
interval-splitting process.
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Result: Fixed deposition

Let (Ln,1, . . . ,Ln,n+1) be the gap lengths at the time νn of the nth
nucleation. For Un uniform on {1,2, . . . ,n + 1}, set

L̃n =
Ln,Un

ELn,Un

= (n + 1)Ln,Un ,

the length of a randomly-chosen gap, normalized to mean 1.

Theorem
Let λ > 0. There exists a continuous density g0 on R+ such
that

lim
n→∞

P (L̃n ≤ x) =
∫ x

0
g0(y)dy , x ∈ R+.

Moreover, for constants c0, c∞, θ ∈ (0,∞),

g0(x) ∼ c0x2 (x → 0), g0(x) ∼
c∞
x2 exp(−θx4) (x → ∞).
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Sparse deposition: proof outline
Key idea: regeneration.

Let At be the number of active particles in the
system at (continuous) time t . Set η0 := 0 and for k ∈ N,

σk := inf{t > ηk−1 : At = 1}, ηk := inf{t > σk : At = 0}.

t

0 1

σk

ν1

ηk

σk

ν1

ηk

t

At
0 1 2 3

Call time interval [σk , ηk ] the k th cycle.
Up until the first nucleation, cycles are i.i.d.
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Sparse deposition: proof outline

Generalize the model to an interval [0, ℓ]. For B ⊆ [0,1], let

ν(ℓ, λ;B) = P
(

nucleation occurs on first cycle
and at a point in set ℓB

)
.

The proof of the λ→ 0 result needs two further elements:
• Scaling: ν(ℓ, λ;B) = ν(1, ℓ3λ;B).
• Single-interval asymptotics:

ν(1, λ;B) ∼ λµΦ0(B), as λ→ 0.

These two combine to give the many-interval asymptotics.
Consider a configuration like this, with some islands (blue) but no
active particles.

10 ℓ
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Sparse deposition: proof outline

10 ℓ

Probability of nucleation occurring in the indicated interval during the
first cycle at relative location in B is

ℓ · ν(ℓ, λ;B) + error term,

where the main term comes from the first arrival being in the desired
interval, and the error term from nucleation occurring in an interval
other than that containing the first arrival.

By scaling and single-interval asymptotics, this is about

ℓ · ν(1, ℓ3λ;B) ∼ ℓ4λµΦ0(B), as λ→ 0.

Regeneration implies that the probability of the next nucleation
occurring here is proportional to the first-cycle probability.
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Scaling

Recall that for the model started from empty interval [0, ℓ],

ν(ℓ, λ;B) = P
(

nucleation occurs on first cycle
and at a point in set ℓB

)
.

Lemma
We have ν(ℓ, λ;B) = ν(1, ℓ3λ;B).

Proof.
Follows from the scaling/mapping properties of the Poisson process
and Brownian motion.

λ

0 ℓBM rate 1 x 7→ x/ℓ

ℓλ

0 1BM rate 1/ℓ2
t 7→ t/ℓ2

ℓ3λ

0 1BM rate 1



Single-interval asymptotics

On interval [0,1],

ν(1, λ;B) = P
(

nucleation occurs on first cycle
and at a point in set B

)
.

Lemma
ν(1, λ;B) ∼ λµΦ0(B), as λ→ 0.

Proof.
Claim that the following mechanism has probability of order λ:

• The first particle arrives at a uniform random location x .
• The second particle arrives at an exponential random time t at a uniform

random location z.
• The first particle has not been captured by time t , and at time t is at

location y .
• The two particles started from y and z collide in B before either hits the

boundary.
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Single-interval asymptotics

Proof (cont.)
The following mechanism has
probability of order λ:

• first particle arrives at x ;

• second particle arrives time t
later at location z;

• first particle survives and at time
t is at location y ;

• particles started from y and z
collide in B before capture.

t

0 1

σ1

σ1 + t

ν1

zx y



Single-interval asymptotics

Proof (cont.)
For bt BM on [0, 1] set

τ = inf
{

t ∈ R+ : bt ∈ {0, 1}
}
,

and for x , y ∈ [0, 1] and t ∈ R+ the
defective density qt(x , y) =

Px(τ > t , bt ∈ [y , y + dy ])
dy

.

For y , z ∈ [0, 1] set H(y , z;B) =

P
(

BMs started at y , z meet
in B before either hits {0, 1}

)
.

t

0 1

σ1

σ1 + t

ν1

zx y

Then, the probability of nucleation happening as described is∫ 1

0
dx

∫ 1

0
dz

∫ ∞

0
dt

∫ 1

0
λe−λtqt(x , y)H(y , z;B)dy .



Single-interval asymptotics

Proof (cont.)
The probability of nucleation happening as described is∫ 1

0
dx

∫ 1

0
dz

∫ ∞

0
dt

∫ 1

0
λe−λtqt(x , y)H(y , z;B)dy

∼ λ

∫ 1

0
dx

∫ 1

0
dz

∫ ∞

0
dt

∫ 1

0
qt(x , y)H(y , z;B)dy

=: λΦ1(B).

All other mechanisms require two arrivals after the first, giving o(λ)
contributions.

Final step: must show Φ1(B) = µΦ0(B).
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Exit from a triangle

Recall we want to compute

Φ1(B) =

∫ 1

0
dx

∫ 1

0
dz

∫ ∞

0
dt

∫ 1

0
qt(x , y)H(y , z;B)dy ,

where (e.g. BORODIN & SALMINEN, 2002)

qt(x , y) = 2
∑
m∈N

exp

(
−m2π2t

2

)
sin(mπx) sin(mπy),

and
H(y , z;B)

= P (BMs started at y , z meet in B before either hits {0,1})
= P (Planar BM exits right-angle triangle via diagonal in B × B).



Exit from a triangle

H(y , z;B)

= P (BMs started at y , z meet in B before either hits {0,1})
= P (Planar BM exits right-angle triangle via diagonal in B × B).

0 1
0

1

y

z

B



Exit from a triangle

Theorem
WLOG suppose u > v. Then

H(u, v ;B) =

∫
B

h
(

u + v
2

,
u − v

2
,w

)
dw ,

where

h(x , y , z) =
∑
n∈N

2 sin(nπ(1 − z))
sinh nπ

(
sn(x , y) + sn(1 − x , 1 − y)

− sn(y , x)− sn(1 − y , 1 − x)
)
,

and sn(x , y) = sin(nπx) sinh(nπy).

Extends SMITH & WATSON (1967).

Proof.
Method of images for the Dirichlet problem.



Sparse deposition: proof conclusion

We have

Φ1(B) =

∫ 1

0
dx

∫ 1

0
dz

∫ ∞

0
dt

∫ 1

0
qt(x , y)H(y , z;B)dy ,

where we know the explicit infinite-series formulae for qt(x , y) and
H(y , z;B).

After some work. . . we get Φ1(B) = µΦ0(B), where, as claimed
earlier,

Φ0(B) =
1
µ

∫
B
ψ(z)dz,

with ψ the defective density

ψ(z) :=
24
π4

∑
n odd

(
4
n4 tanh

(nπ
2

)
− π

n3

)
sin(nπz)

having total mass µ.
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Fixed deposition: proof comments

We’ve presented the outline of the proof as λ→ 0.

For fixed λ, note that for large times, gaps are small.
The scaling relation shows that small gaps has the same effect as
small λ.

Idea: For large times, the fixed-λ process should be
well-approximated by the λ→ 0 interval-splitting process. So
large-time statistics of the nucleation process should be described by
the large-time statistics of the interval-splitting process.

To follow through this idea needs (i) more work on the preceding
estimates, to get more quantitative bounds; and (ii) extension of work
of BRENNAN & DURRETT on interval-splitting processes to get good
asymptotics for the limiting normalized gap distribution.
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Fixed deposition: proof comments

One element in the proof is to extend work of BRENNAN & DURRETT
on limiting gap statistics for interval-splitting processes.

Consider a general interval-splitting process with splitting exponent
α > 0 and splitting distribution Φ with a symmetric density ϕ on [0,1]
satisfying ϕ(x) ∼ bxβ as x → 0, for β ≥ 0.

BRENNAN & DURRETT obtained a characterization of the limiting
distribution of a randomly selected gap via a distributional fixed-point
equation. Building on this analysis, we obtain asymptotics for the
limiting gap distribution.
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Fixed deposition: proof comments

Splitting exponent α > 0 and splitting distribution Φ with a symmetric
density ϕ on [0,1] satisfying ϕ(x) ∼ bxβ as x → 0, for β ≥ 0.

Theorem
The distribution of a randomly selected gap, normalized to have unit
mean, in the interval-splitting process converges to a distribution on
R+ with density g.

There exist c0, c∞, θ > 0 such that g(x) ∼ c0xβ , (x → 0), and, as
x → ∞,

g(x) ∼

{
c∞x2b−2 exp(−θxα) if β = 0;
c∞x−2 exp(−θxα) if β > 0.

For the interval-splitting processes associated with our nucleation
process, α = 4 and β = 2.
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A few remarks on the splitting density

A key character in our results is Φ0(B) = 1
µ

∫
B ψ(z)dz, where

ψ(z) :=
24
π4

∑
n odd

(
4
n4 tanh

(nπ
2

)
− π

n3

)
sin(nπz);

µ :=

∫ 1

0
ψ(z)dz =

48
π5

∑
n odd

sech2( nπ
2 )

n4 ≈ 0.07826895.

The second equality here is a consequence of the identity

4
∑
n odd

tanh (nπ/2)
n5 =

π5

96
+ π

∑
n odd

sech2 (nπ/2)
n4 .

The first few moments of Φ0 are m1 = 1/2, m2 = 1
2 − 1

60µ ,

m3 =
1
2
− 1

40µ
, and m4 =

1
2
− 11

280µ
+

576
µπ8

∑
n odd

sech2 (nπ/2)
n8 .



A few remarks on the splitting density

A key character in our results is Φ0(B) = 1
µ

∫
B ψ(z)dz, where

ψ(z) :=
24
π4

∑
n odd

(
4
n4 tanh

(nπ
2

)
− π

n3

)
sin(nπz);

µ :=

∫ 1

0
ψ(z)dz =

48
π5

∑
n odd

sech2( nπ
2 )

n4 ≈ 0.07826895.

The second equality here is a consequence of the identity

4
∑
n odd

tanh (nπ/2)
n5 =

π5

96
+ π

∑
n odd

sech2 (nπ/2)
n4 .

The first few moments of Φ0 are m1 = 1/2, m2 = 1
2 − 1

60µ ,

m3 =
1
2
− 1

40µ
, and m4 =

1
2
− 11

280µ
+

576
µπ8

∑
n odd

sech2 (nπ/2)
n8 .



A few remarks on the splitting density

A key character in our results is Φ0(B) = 1
µ

∫
B ψ(z)dz, where

ψ(z) :=
24
π4

∑
n odd

(
4
n4 tanh

(nπ
2

)
− π

n3

)
sin(nπz);

µ :=

∫ 1

0
ψ(z)dz =

48
π5

∑
n odd

sech2( nπ
2 )

n4 ≈ 0.07826895.

The second equality here is a consequence of the identity

4
∑
n odd

tanh (nπ/2)
n5 =

π5

96
+ π

∑
n odd

sech2 (nπ/2)
n4 .

The first few moments of Φ0 are m1 = 1/2, m2 = 1
2 − 1

60µ ,

m3 =
1
2
− 1

40µ
, and m4 =

1
2
− 11

280µ
+

576
µπ8

∑
n odd

sech2 (nπ/2)
n8 .



A few remarks on the splitting density
An alternative series representation for ψ, better for numerical
calculation, is

ψ(x) =
84
π3 xζ(3) +

8
π

x3 log(πx)− 8
π

(
11
6

+ log 2
)

x3 − 3x(1 − x)

+ 48πx5
∞∑

n=0

|B(2n + 2)|
(
22n+1 − 1

)
(n + 1)(2n + 5)!

π2nx2n

− 96
π4

∑
n odd

dn

n4 sin nπx , (0 ≤ x < 1),

where dn = 1 − tanh nπ
2 has 0 < dn < 2e−nπ, and B(2ℓ) are the

Bernoulli numbers.

This comes from classical series expansions for the Clausen function
and its relatives, such as∑

n∈N

sinnx
nk , and

∑
n∈N

cosnx
nk .
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Further challenges

• Nucleation threshold
3,4, . . .?

• May need to introduce
interaction radius/size
effects.

• Higher dimensions?
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