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Thin films and nanostructures

Ultra-thin films are of interest in physics, chemistry, and materials
science.
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e semiconductor nanostructures, quantum confined systems,
nanoscale electronics;
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Thin films and nanostructures

Ultra-thin films are of interest in physics, chemistry, and materials
science.

Examples of applications include:
* |asers, optical detectors, nanoscale photonics;

e semiconductor nanostructures, quantum confined systems,
nanoscale electronics;

¢ recording heads, nanoscale magnetic devices.

Thin films are often constructed via deposition of particles (adatoms)
on a substrate, either using vapour or cathodic sputtering, and
surface binding may be chemical (chemisorption) or physical
(physisorption). Under certain conditions (Volmer—Weber dynamics),
surface adatoms can diffuse until local binding conditions are such
that nucleation occurs.



Thin films and nanostructures

At early stages of deposition, structures may look like:

‘Islands’ after deposition, seen under an electron microscope:
silver (left) and iron (right)
HARTIG et al. (1978); STROSCIO & PIERCE et al. (1994)

Mathematical modelling of deposition and nucleation is important for
understanding and design of nanomaterials.
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Thin film growth dynamics

Three basic elements: deposition, diffusion, nucleation.

Particles are deposited onto a substrate and undergo diffusion until
sufficiently many particles come close together, when they nucleate
to form a static island. Islands act as absorbing barriers for
subsequent particles.

In the early stages, it is reasonable to ignore the spatial extent of
islands. As time goes on, more islands form by nucleation, and
islands grow by the accumulation of captured particles. Eventually,
growing islands will coalesce into larger structures.

Here we discuss a one-dimensional model for the early-stage
dynamics, with binary nucleation and point islands.



Thin film growth dynamics

Formulating microscopic stochastic models for submonalyer
deposition and growth processes goes back several decades in the
applied literature, see especially:

® A. MICHAELS, G. POUND & F. ABRAHAM (1974),
e M. BARTELT & J. EVANS (1992),
e J. BLACKMAN & P. MULHERAN (1996).

Various approaches for analysis of these models, including Monte
Carlo, as well as several different theoretical approaches, e.g.

e M. GRINFELD, W. LAMB, K. O’NEILL & P. MULHERAN (2012),
¢ J. BLACKMAN, M. GRINFELD & P. MULHERAN (2015),

but no previous work in the probability literature, as far as we are
aware.
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Our model

We study a continuous-time interacting particle model on [0, 1]. Initial
islands are at 0 and 1.

Particles are either active or else are captured in islands. The
dynamics are as follows.

Deposition. Active particles are deposited on [0, 1] according to a
space-time Poisson process on [0, 1] x R, with intensity A > 0.

l.e., Independent Exp(\) times between deposition events; locations
are independent Unif[0, 1].

Diffusion and nucleation. Each active particle performs independent
Brownian motion until either (i) it is captured by an existing island, or
(i) it meets another active particle, in which case the two colliding
particles nucleate to create a new island. In either case, the particle
is no longer active.
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Initially: Islands at 0 and 1, no active particles.
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After an Exp()\) random time, first active particle arrives
at a uniform random location.
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If two active particles meet before either is captured by an existing
island, they nucleate to form a new island.
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Question: How does the partition of the interval evolve?

This is a continuum analogue of a model considered in the applied
literature by BARTELT & EVANS (1992) and BLACKMAN & MULHERAN
(1996).
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Overview of results

Let v, denote the time of the nth nucleation. Let Z, denote the vector
of island locations, listed left to right, at time vp,.

Note that Z, is not Markov, because there may still be active particles
in the system at time v, that are not described by Z,.

We have two main resulis:

(1) Sparse deposition. In the A — 0 limit, the process Z, converges to
a certain Markovian interval-splitting process.

Why asymptotically Markov? When \ — 0, most of the time there are
very few active particles in the system.

(2) Fixed \. For fixed X but large times (t — o) the gap statistics are
governed by the A\ — 0 limit process from (1).
Why? For large times, there are many islands and so gaps are small.

This increases the relative rate of capture by existing islands, and has
a similar effect as driving A — 0.
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Interval-splitting process

Two parameters:
splitting exponent « and splitting distribution ¢ on [0, 1].

Consider a discrete-time, Markovian process that starts from the full
unit interval [0, 1] and iteratively splits intervals as follows.

At each step:

e Choose randomly one of the current intervals, with an interval of
length ¢ chosen with probability proportional to /.

¢ Split the chosen interval into two new intervals by inserting a
point at a relative location drawn from distribution ®.
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Two parameters:
splitting exponent « and splitting distribution ¢ on [0, 1].
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A configuration of intervals.



Interval-splitting process

Two parameters:
splitting exponent « and splitting distribution ¢ on [0, 1].
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X X+/ 1

Select the next interval to split
with probability proportional to ¢* (¢ = length).
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Interval-splitting process

Two parameters:
splitting exponent « and splitting distribution ¢ on [0, 1].

+—0—0—0—+

0 1

Choose the point to split at relative location V ~ ¢
in the chosen interval.

Models of this type were studied by BRENNAN & DURRETT (1986-7).
The case where ¢ is uniform is uniform splitting, which if « = 1 gives
a Dirichlet process and o — oo gives the Kakutani process.



Interval-splitting process

Two parameters:
splitting exponent a and splitting distribution ¢ on [0, 1].

The process that’s going to be relevant for our nucleation process has
a =4 and ¢ = &y where

o0(B) = [ (202

I
with
24 4 nm T\ .
'L/)(Z) = F ([’]4 tanh (?> — ns) Sln(nﬂ'z),
n odd
and
sech2(7’7)
o= / Y(2)dz Z 2~ ~0.07826895.

n odd



Result: Sparse deposition

Recall that Z, is the vector of island locations, listed left to right, at
the time v, of the n nucleation.

Theorem
As X\ — 0, the process Z, converges, in the sense of
total-variation convergence of finite-dimensional distributions,

to an interval-splitting process with parameters o = 4 and
b = by




Result: Sparse deposition

1827 4 . Remarks: It turns out that ¢ is
/ \\ twice continuously differentiable,
/ \ and ¢(z) ~ 322 as z — 0.

0

0
Plot of ®q with simulation

-



Result: Sparse deposition

1827 4 . Remarks: It turns out that v is
/ \\ twice continuously differentiable,
/ \ and ¢(z) ~ 322 as z — 0.

7Z \ The Fourier series for ¢
ZZ \ converges slowly; a different
representation related to the
Clausen function yields better
numerical approximation.

0

0
Plot of ®q with simulation

-



Result: Sparse deposition

1827 4 . Remarks: It turns out that ¢ is
/ \\ twice continuously differentiable,
/ \ and ¢(z) ~ 322 as z — 0.

7Z \ The Fourier series for ¢
ZZ \ converges slowly; a different
representation related to the
Clausen function yields better
numerical approximation.

Earlier work argued for a
Beta(3, 3) splitting distribution.

0

0
Plot of ®q with simulation

-
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Heuristic: For fixed A, consider large time. Then gaps are small,
which is, effectively, the same as sending A — 0. Smaller gaps =
faster capture by existing islands = lower density of active particles.
(A precise version of this statement is given via a scaling relation later
on.)
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Result: Fixed deposition

Heuristic: For fixed A, consider large time. Then gaps are small,
which is, effectively, the same as sending A — 0. Smaller gaps =
faster capture by existing islands = lower density of active particles.
(A precise version of this statement is given via a scaling relation later
on.)

So for fixed A, nevertheless the A — 0 limit drives the long-time
asymptotics.

One can make a formal coupling statement. Roughly, forany ¢ > 0
we can find ng sufficiently large so that one can successfully couple,
with probability at least 1 — ¢, the fixed-\ process run from n > ngy with
the &y Markovian interval-splitting process, started from the same
initial configuration.

One implication of this result is that certain long-time statistics of the
fixed-\ process can be described purely via the 3 Markovian
interval-splitting process.



Result: Fixed deposition

Let (Ln1,- .., Lnnt1) be the gap lengths at the time v, of the nth
nucleation. For U, uniformon {1,2,...,n+ 1}, set

7 Ln,Un o

bn = Elny, (n+ Dl

the length of a randomly-chosen gap, normalized to mean 1.

Theorem

Let A > 0. There exists a continuous density go on R such
that

X
im P(L, < x) :/ g(y)dy, x eR,.
— 00 0

Moreover, for constants ¢y, C, 6 € (0, ),

Go(X) ~ X® (x = 0), go(x) ~ 5 exp(—0x*) (x - o).
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Key idea: regeneration. Let A; be the number of active particles in the
system at (continuous) time t. Set 79 := 0 and for k € N,

ok = inf{t > ne_1 : Ay =1}, i :=inf{t > o) : Ay =0}.

t t

Tk Mk
vy »’% 4] i I
Tk Ok K

0 1 0 1 2 3

At

Call time interval [0k, nx] the kth cycle.
Up until the first nucleation, cycles are i.i.d.
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Sparse deposition: proof outline

Generalize the model to an interval [0, ¢]. For B C [0, 1], let

v(l,\; B) =P (

nucleation occurs on first cycle
and at a point in set /B

The proof of the A — 0 result needs two further elements:
e Scaling: v(¢,\; B) = 1/(1,63)\; B).
e Single-interval asymptotics:
v(1,; B) ~ Audo(B), as A — 0.

These two combine to give the many-interval asymptotics.

Consider a configuration like this, with some islands (blue) but no
active particles.
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where the main term comes from the first arrival being in the desired
interval, and the error term from nucleation occurring in an interval
other than that containing the first arrival.
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0 4 1

Probability of nucleation occurring in the indicated interval during the
first cycle at relative location in B is

¢-v(¢,\; B) + error term,

where the main term comes from the first arrival being in the desired
interval, and the error term from nucleation occurring in an interval
other than that containing the first arrival.

By scaling and single-interval asymptotics, this is about

C-v(1,03); B) ~ 1*\udo(B), as A — 0.

Regeneration implies that the probability of the next nucleation
occurring here is proportional to the first-cycle probability.



Scaling

Recall that for the model started from empty interval [0, 4],

oy nucleation occurs on first cycle
v((, N B) =P ( and at a point in set (B )

Lemma
We have v(¢, \; B) = v(1,£3); B).

Proof.
Follows from the scaling/mapping properties of the Poisson process
and Brownian motion.

o y =y

—_

0 BM rate 1 ——— 0 BM rate 1/¢2 1 tote 0 BM rate 1 1

O
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On interval [0, 1],

oy nucleation occurs on first cycle
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Single-interval asymptotics

On interval [0, 1],

oy nucleation occurs on first cycle
v(1,XB) =P ( and at a point in set B )

Lemma
v(1, A B) ~ Audo(B), as A — 0.

Proof.
Claim that the following mechanism has probability of order A:
® The first particle arrives at a uniform random location x.
® The second particle arrives at an exponential random time t at a uniform
random location z.
® The first particle has not been captured by time ¢, and at time t is at
location y.
® The two particles started from y and z collide in B before either hits the
boundary.



Single-interval asymptotics

Proof (cont.)
The following mechanism has
probability of order A:

e first particle arrives at x;

® second particle arrives time ¢
later at location z;

e first particle survives and at time
tis at location y;

® particles started from y and z
collide in B before capture.

vy

o1+t

o1

xy



Single-interval asymptotics

Proof (cont.)

For b BM on [0, 1] set t
r=inf{t € Ry : by € {0,1}},

2

and for x,y € [0,1] and t € R, the
defective density g:(x, y) =

Pu(r >t b ey, y +dy])
dy

. o1+t

Fory,z € [0,1] set H(y,z; B) =

[

( BMs started at y, z meet )

in B before either hits {0, 1} 0 xy

Then, the probability of nucleation happening as described is

1 1 0o 1
/de/o dz/0 dl‘/0 xe Magi(x,y)H(y, z; B)dy.



Single-interval asymptotics

Proof (cont.)
The probability of nucleation happening as described is

1 1 oo 1
/ dx/ dz/ dt/ xe May(x,y)H(y, z; B)dy
NA/dx/dz/ dt/q,xy (y,z; B)dy

=: (B

All other mechanisms require two arrivals after the first, giving o(\)
contributions.

Final step: must show ®4(B) = u®(B).
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Exit from a triangle

Recall we want to compute

1 1 0o 1
¢1(B):/0 dx/0 dz/0 dt/0 gi(x,y)H(y, z; B)dy,

where (e.g. BORODIN & SALMINEN, 2002)

ax.y) =23 ep (— ’"2” t) sin(mmx) sin(mmy),

meN

and
H(y,z B)

= P (BMs started at y, z meet in B before either hits {0,1})
= P(Planar BM exits right-angle triangle via diagonal in B x B).



Exit from a triangle

H(y,z: B)
= P(BMs started at y, z meet in B before either hits {0,1})
= P (Planar BM exits right-angle triangle via diagonal in B x B).

1

B




Exit from a triangle

Theorem
WLOG suppose u > v. Then
H(u,v;B) = / h <u+2— V, u;V,w) aw,
B
where
2sin(nm(1 —
hxy2) =3 25O 22D (g y) 5ot~ 31— y)

nen
—Sn(y,X)—Sn(1 _yv1 _X))7
and su(x,y) = sin(nmx)sinh(nmy).

Extends SMITH & WATSON (1967).

Proof.
Method of images for the Dirichlet problem.
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where we know the explicit infinite-series formulae for g:(x, y) and
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Sparse deposition: proof conclusion

We have

1 1 0o 1
B) :/ dx/ dz/ dt/ gi(x,y)H(y, z; B)dy,
0 0 0 0

where we know the explicit infinite-series formulae for g:(x, y) and
H(y,z: B).

After some work. .. we get ®1(B) = udo(B), where, as claimed
with « the defective density

earlier,
/ (z
24

P(z) = o <:4 tanh (%r) - ;) sin(nrz)
n odd

having total mass p.
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the large-time statistics of the interval-splitting process.



Fixed deposition: proof comments

We’ve presented the outline of the proof as A — 0.

For fixed A, note that for large times, gaps are small.

The scaling relation shows that small gaps has the same effect as
small \.

Idea: For large times, the fixed-A process should be
well-approximated by the A — 0 interval-splitting process. So
large-time statistics of the nucleation process should be described by
the large-time statistics of the interval-splitting process.

To follow through this idea needs (i) more work on the preceding
estimates, to get more quantitative bounds; and (ii) extension of work
of BRENNAN & DURRETT on interval-splitting processes to get good
asymptotics for the limiting normalized gap distribution.
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Fixed deposition: proof comments

One element in the proof is to extend work of BRENNAN & DURRETT
on limiting gap statistics for interval-splitting processes.

Consider a general interval-splitting process with splitting exponent
a > 0 and splitting distribution ® with a symmetric density ¢ on [0, 1]
satisfying ¢(x) ~ bx® as x — 0, for 3 > 0.

BRENNAN & DURRETT obtained a characterization of the limiting
distribution of a randomly selected gap via a distributional fixed-point
equation. Building on this analysis, we obtain asymptotics for the
limiting gap distribution.
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Splitting exponent o > 0 and splitting distribution ® with a symmetric
density ¢ on [0, 1] satisfying ¢(x) ~ bx” as x — 0, for 3 > 0.

Theorem

The distribution of a randomly selected gap, normalized to have unit
mean, in the interval-splitting process converges to a distribution on
R, with density g.

There exist ¢y, Coo, 8 > 0 such that g(x) ~ cox”, (x — 0), and, as

X — 00, b2
CooXP“exp(—6x%) if3=0;
9(x) ~ - p( ’ ) 8
CooX “exp(—0x®)  if3>0.

For the interval-splitting processes associated with our nucleation
process, o« =4 and 5 = 2.
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W(2) = 2:‘ 3 < tanh (mr) _ :3) sin(nrz);

n odd

h2(nz
. / $(2)dz = i5 e nf 2) . 0.07826895.
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A few remarks on the splitting density

A key character in our results is ¢¢(B) = %fB Y(z)dz, where

P(z) = i—j (:4 tanh (’721) n3) sin(nrz);

‘IT

! h
= isz (7). 0.07826895.
0 odd

The second equality here is a consequence of the identity

4 Z tanh (I;7r/2) _ 15 o Z sech? (mr/2).

n4
nodd 96 nodd

The first few moments of & are my = 1/2, my = 1 — 6(1)7

mo= - qorandmy = 1 - i 90 sech? (/2)
3 — 2 40/,147 4 — 2 280/}, 8 Odd n8 .



A few remarks on the splitting density

An alternative series representation for 1, better for numerical
calculation, is

P(x) = ﬁxC(3) + 8X log(mx) — % (% + Iog2> x® —3x(1 — x)

5 IB(2n+2) (22" —1) 4, 5,
+48mx 2:; (n+NHents) "~

—% %sinmrx, (0<x <),

nodd

where d, =1 —tanh I has 0 < d, < 2e~"", and B(2/) are the
Bernoulli numbers.

This comes from classical series expansions for the Clausen function
and its relatives, such as

&nnX COS”X
D pand > =

neN neN
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Further challenges

® Nucleation threshold
3,4,...7

* May need to introduce
interaction radius/size
effects.

® Higher dimensions?

Thank you!
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