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Introduction: Spatial networks

• In real-world networks, nodes often carry spatial information relevant
to network structure and/or properties, e.g., communications,
transport, and geographical networks. The “space” can also be
abstract rather than physical, e.g., social networks, etc.

• It is natural to study simple models of random spatial networks, for
inference or prediction, for insight into typical behaviour, or for
assessing performance of algorithms or processes that take place on
networks.

• In this talk I will survey some results on some networks constructed
on random points in Euclidean space with a connectivity rule that
incorporates proximity and some ordering constraint.
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Total length asymptotics over uniform random points

• In this talk I will consider graphs with n vertices, labelled 1, 2, . . . , n,
each associated with a random spatial location in the d-dimensional
unit cube [0, 1]d .

• Vertex i has location Ui ∈ [0, 1]d . The random variables
U1,U2, . . . ,Un are independent and uniformly distributed on the
cube.

• There will be some rule for inserting (directed) edges. Edge from
vertex i to j has an associated (Euclidean) length ‖Ui − Uj‖.

• The main quantity of interest (here) is the total edge length of the
graph: Ln :=

∑
edges (i,j) ‖Ui − Uj‖ (a random variable, whose

distribution depends on n and whatever the rule for edges is).

• More generally, α-weighted total length:
∑

edges (i,j) ‖Ui − Uj‖α, for
a fixed parameter α > 0.

• Main question: What can we say about the (asymptotic)
distribution of Ln in the large sample limit n→∞?
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Nearest-neighbour graph
Vertices 1, . . . , n are given independent, uniformly random locations
U1, . . . ,Un in the unit d-cube [0, 1]d . For every vertex, insert a (directed)
edge from that vertex to its nearest neighbour, i.e., the closest (Euclidean
distance) other vertex. (Ties have probability 0.) Here is a picture for
d = 2, n = 6:

10

1

0

Points are distributed uniformly at random.
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Nearest-neighbour graph

Simulations of nearest-neighbour graph (NNG) in [0, 1]2, on n = 100
points (left) and n = 1000 points (right).



Nearest-neighbour graph

Nearest-neighbour graphs and distances have numerous applications in
statistics, machine learning, computational geometry, ecology (1950s–),
etc., for example in classification and clustering (1970s–).

We consider the total power-weighted edge length

N d,α
n :=

n∑
i=1

min
1≤j≤n, j 6=i

‖Uj − Ui‖α,

where α > 0 (e.g., α = 1 is the total edge length).

The limit theory of N d,α
n was considered by Bickel & Breiman

(1983), Avram & Bertsimas (1993), and Penrose & Yukich
(2001), among others.
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Nearest-neighbour graph: Heuristics

10

1

0

Ui

r

Br (Ui )

What is the n-dependence in N d,α
n ? Say in

EN d,α
n ?

Consider vertex i ∈ {1, . . . , n} at Ui ∈ [0, 1]d .

What is the distribution of its nearest-neighbour
distance Dn,i := minj 6=i ‖Uj − Ui‖?

Observe that Dn,i > r if and only if all of Uj , j 6= i , lie in [0, 1]d \ Br (Ui ),
where Br (x) := {y ∈ Rd : ‖y − x‖ ≤ r}.

So, at least for r < 1/2, say,

P (Dn,i > r) �
(
1− crd

)n
.

From here it is not hard to see that med(Dn,i ) � n−1/d , and indeed

EDα
n,i � n−α/d , and VarDα

n,i � n−2α/d .
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Nearest-neighbour graph: Heuristics

We claimed EDα
n,i � n−α/d , and VarDα

n,i � n−2α/d .

The total α-weighted length is N d,α
n =

∑n
i=1 D

α
n,i .

However, the Dn,i are not independent, so this is not a sum of
i.i.d. random variables. The dependence is in some sense only local: Dn,i

and Dn,j are close to independent if Ui and Uj are far apart.

An appropriate formulation of this local dependence allows one to obtain
laws of large numbers and central limit theorems, involving scale factors
EN d,α

n � n1−(α/d) and VarN d,α
n � n1−(2α/d).

Now an extensive theory of stabilization to obtain such results for spatial
random graphs with local dependence: Aldous & Steele (1992),
Avram & Bertsimas (1993), Kesten & Lee (1996), Penrose &
Yukich (2001–), many others.
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Nearest-neighbour graph: Limit theory

Theorem (Bickel & Breiman 1983, Avram & Bertsimas
1993, Penrose & Yukich 2001, etc.)
For d ∈ N and α > 0, as n→∞,

n(α/d)−1N d,α
n → cd,α := π−α/2Γ(1 + α

d )Γ(1 + d
2 )α/d , in L1.

Moreover, as n→∞,

n(α/d)−(1/2)
(
N d,α − EN d,α

) d−→ Z ,

where Z has a mean zero, finite variance∗ normal distribution.

Example. When d = 2, α = 1, we have that the total edge length of the
nearest-neighbour graph on [0, 1]2 satisfies

EN 2,1 ∼
√
n

2
, and N 2,1 − EN 2,1 d−→ non-degenerate normal.

∗ Variance depends on d and α; explicit values known only for d = 1 (Penrose &
Wade, 2008).
x
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On-line nearest-neighbour graph

Vertices 1, . . . , n arrive sequentially, with independent, uniformly random
locations U1, . . . ,Un in the unit d-cube [0, 1]d . Each vertex after the first
is joined by an edge to its nearest predecessor (Euclidean distance). Here
is a picture for d = 2:

10

1

0

n = 0: empty graph!
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locations U1, . . . ,Un in the unit d-cube [0, 1]d . Each vertex after the first
is joined by an edge to its nearest predecessor (Euclidean distance). Here
is a picture for d = 2:
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n = 1: first vertex arrives at a uniform random location.
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Vertices 1, . . . , n arrive sequentially, with independent, uniformly random
locations U1, . . . ,Un in the unit d-cube [0, 1]d . Each vertex after the first
is joined by an edge to its nearest predecessor (Euclidean distance). Here
is a picture for d = 2:
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n = 1: first vertex has no neighbours, so no edge.
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Vertices 1, . . . , n arrive sequentially, with independent, uniformly random
locations U1, . . . ,Un in the unit d-cube [0, 1]d . Each vertex after the first
is joined by an edge to its nearest predecessor (Euclidean distance). Here
is a picture for d = 2:

10

1

0

n = 2: next vertex arrives.
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n = 2: new vertex joins to nearest existing vertex.
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NB. Graph is a tree; different order will give different graph.



On-line nearest-neighbour graph

Simulations of on-line nearest-neighbour graph (ONG) in [0, 1]2, on
n = 100 points (left) and n = 1000 points (right).

Note the ONG is more inhomogeneous than the ordinary NNG: Old
vertices tend to be more highly connected; old edges tend to be longer.
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On-line nearest-neighbour graph

Although it is a natural model of a time-evolving spatial network, the
earliest appearance of the on-line nearest-neighbour graph (ONG) that I
am aware of is in Steele (1989). It also appears as a limiting case of
network models of Fabrikant et al. (2002), Manna & Sen (2002)
and Flaxman et al. (2006). The name “on-line nearest-neighbour
graph” is due to Penrose (2005).

Some graph-theoretic properties of the ONG were studied by Berger et
al. (2007) and Jordan & Wade (2015).

We consider the total power-weighted edge length

Od,α
n :=

n∑
i=2

min
1≤j<i

‖Uj − Ui‖α,

as studied by Penrose (2005), Penrose & Wade (2008), and Wade
(2007–9).
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On-line nearest-neighbour graph

Consider the total power-weighted edge length

Od,α
n :=

n∑
i=2

min
1≤j<i

‖Uj − Ui‖α =
n∑

i=2

Dα
i,i ,

where, as before, Di,i = distance from Ui to nearest {U1, . . . ,Ui−1}.

As in the heuristic for the nearest-neighbour graph, EDα
i,i � i−α/d and

VarDα
i,i � i−2α/d , so

EOd,α
n


→ const. if α > d ,

� log n if α = d ,

� n1−(α/d) if α < d .

Moreover, assuming local dependence, one might guess

VarOd,α
n


→ const. if α > d/2,

� log n if α = d/2,

� n1−(2α/d) if α < d/2.
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On-line nearest-neighbour graph: Law of large numbers

Theorem (Wade 2007, Penrose & Wade 2008)
Let d ∈ N and α > 0. Then, as n→∞,

n(α/d)−1Od,α
n → c ′d,α, in L1, if 0 < α < d .

On the other hand for α = d we have
EOd,d

n ∼ π−d/2Γ(1 + (d/2)) log n, and, for α > d we have
Od,α

n →W d,α in L2, where W d,α is an R+-valued random
variable with finite variance (not Gaussian).

Here

c ′d,α :=
d

d − α
cd,α for α ∈ (0, d).

For example, c ′2,1 = 2c2,1 = 1.
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Let d ∈ N and α > 0. Then, as n→∞,

n(α/d)−1Od,α
n → c ′d,α, in L1, if 0 < α < d .

On the other hand for α = d we have
EOd,d

n ∼ π−d/2Γ(1 + (d/2)) log n, and, for α > d we have
Od,α

n →W d,α in L2, where W d,α is an R+-valued random
variable with finite variance (not Gaussian).

Intuition: Increasing α increases the relative importance of long (≈ early)
edges. For example, if α > d/2 then the very first edge contributes a
positive fraction of the total variance (order 1).x

x



On-line nearest-neighbour graph: Large α

Theorem (Penrose & Wade 2008, Wade 2009)
Let d ∈ N and α > d/2. Then, as n→∞,

Od,α
n − EOd,α

n → Qd,α, in L2,

where Qd,α is a mean-0 random variable.

• Note if α ∈ (d/2, d ] one has EOd,α
n →∞, so the centering is

non-trivial.

• We know Qd,α is non-Gaussian for d = 1, α > 1/2 (when it is
characterized by a distributional fixed-point equation), and when
d ≥ 2, α > d (when Qd,α = Wd,α − EWd,α from above).
Conjecture is that Qd,α is non-Gaussian for all α > d/2.
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On-line nearest-neighbour graph: Small α

Conjecture (Penrose 2005, Wade 2009)
Let d ∈ N and α ∈ (0, d/2). Then, as n→∞,

n(α/d)−(1/2)
(
Od,α

n − EOd,α
n

) d−→ non-degenerate normal.

Theorem (Penrose 2005)
This conjecture holds for α ∈ (0, d/4).

Example. For the case of the total length (α = 1) we have that the
central limit theorem holds for d ≥ 5; it is conjectured for d ≥ 3. When
d = 1, we have O1,1

n − EO1,1
n → Q1,1, non-Gaussian distribution

characterized by a fixed point. In the critical case α = d/2 one also
anticipates a central limit theorem, with a logarithmic variance scaling.
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Minimal directed spanning tree

Vertices 1, . . . , n have uniform random locations U1, . . . ,Un in [0, 1]d .
For every vertex, insert a (directed) edge from that vertex to its directed
nearest neighbour, i.e., the closest vertex with strictly smaller dth
coordinate. (The vertex with minimal dth coordinate does not emit an
edge.) Here is a picture for d = 2, n = 6:
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Points are distributed uniformly at random.
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Minimal directed spanning tree

Simulations of minimal directed spanning tree (MDST) in [0, 1]2, on
n = 100 points (left) and n = 1000 points (right).

Note again some inhomogeneity, this time due to spatial boundary effects
near the base of the d-cube, where edges are typically much longer than
the edges in the bulk.
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Minimal directed spanning tree

Model is a variant of the minimal directed spanning tree introduced by
Bhatt & Roy (2004); also a limiting case of Nandi & Manna
(2007). Motivation is from the modelling of drainage or river networks.

We consider the total power-weighted edge length

Md,α
n :=

n∑
i=1

min
1≤j≤n, j 6=i

‖Uj − Ui‖α,

where α > 0 (e.g., α = 1 is the total edge length).

The limit theory of Md,α
n was considered by Penrose & Wade (2010).

Distinguishing feature: Unlike the ordinary nearest-neighbour graph, one
gets some long edges near to the bottom boundary. These boundary
effects may disrupt the Gaussian limit law, and can be described in terms
of the on-line nearest-neighbour graph in one lower dimension.

Increasing α increases relative importance of long edges, and leads to a
Gaussian/non-Gaussian phase transition. Small α: only bulk contributes
(Gaussian), large α only boundary contributes (non-Gaussian).
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Minimal directed spanning tree: Limit theory

Theorem (Penrose & Wade∗ 2010)
• If 0 < α < d/2, then, as n→∞,

n(α/d)−(1/2)
(
Md,α

n − EMd,α
n

) d−→ Z ,

where Z is non-degenerate normal.

• If α > d/2, then, as n→∞,

Md,α
n − EMd,α

n
d−→ Qd−1,α,

where Qd−1,α is the limit law for the α-weighted length of
the (d − 1)-dimensional on-line nearest-neighbour graph.

• If α = d/2, then, as n→∞,

Md,d/2
n − EMd,d/2

n
d−→ Z + Qd−1,d/2,

where Z is non-degenerate normal, independent of Qd−1,d/2.

∗ Caveat: Penrose & Wade actually prove this for the Poissonized version.
x
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d−→ Z + Qd−1,d/2,

where Z is non-degenerate normal, independent of Qd−1,d/2.

∗ Caveat: Penrose & Wade actually prove this for the Poissonized version.
x



Minimal directed spanning tree: Heuristics

Define εn = n−β for β ≈ 1/2.
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from edges very close to the boundary, i.e., ver-
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Similarly to the ordinary nearest-neighbour graph, local dependence and
roughly homogeneous edge lengths imply

n(α/d)−(1/2)
(
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n − EMd,α:bulk
n

) d−→ Z .

In particular, if α = d/2, there’s no scaling, while if α > d/2, then
Md,α:bulk

n − EMd,α:bulk
n → 0 in probability.
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main, vertices in [0, 1]d−1 × [εn, 1].

The ONG component (when present) arises
from edges very close to the boundary, i.e., ver-
tices in [0, 1]d−1 × [0, εn].

Md,α
n =Md,α:bulk

n +Md,α:bndry
n .

On the other hand, we claim Md,α:bndry
n ≈ Od−1,α

Nn
for Nn →∞. If

α ≥ d/2, then α > (d − 1)/2, and, by limit theorem for the ONG,

Md,α:bndry
n − EMd,α:bndry d−→ Qd−1,α. If α < d/2, then

n(α/d)−(1/2)
(
Md,α:bndry

n − EMd,α:bndry
n

)
→ 0,

in probability.



Minimal directed spanning tree: Heuristics

Why the approximation by the ONG near the boundary?

Couple MDST
on [0, 1]d to an ONG on [0, 1]d−1 by projecting points onto the first
d − 1 coordinates, and use dth coordinate order for the time in the ONG.
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Minimal directed spanning tree: Heuristics

Couple MDST on [0, 1]d to an ONG on [0, 1]d−1 by projecting points
onto the first d − 1 coordinates, and use dth coordinate order for the
time in the ONG.

Errors are of two types: (i) “same” edge present in both graphs, but
different lengths; (ii) different edges in different graphs.

In general both types of error can occur and can be significant (as in
previous picture).

But, if we consider only the boundary zone, all vertical distances are very
small, so errors of type (i) are minimized in magnitude. A similar
argument shows that errors of type (ii) either rarely occur, or, if they do,
give only a small discrepancy in the two edge lenghts.

Thus one obtains that the MDST length in the boundary zone is well
approximated by the ONG in (d − 1) dimensions.
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Closing remarks

Some other directions:

• Rates of convergence: Avram, Bertsimas, Penrose, Yukich,
Schulte, Eichelsbacher, Thäle, Lachièze-Rey, Peccati,
Yang, Bhattacharjee (2022), . . .

• MDST can be defined with other directional relations, e.g., in terms
of cones: Georgiou, Tawhari (talk later today).

• Can combine geometric connectivity rule with some version of
preferential attachment. Various hybrid models of this type, e.g.,
Manna & Sen (2002), Fabrikant et al. (2002), Flaxman et
al. (2006), Jordan & Wade (2015), . . .
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