Geometry III/IV

Exercises: Week 11, Jan 2013

Part A

Problem 1. A circle $C_{A, r}$ of radius r centered at A is a set of points on distance r from A.

Show that any spherical circle on a sphere $S=\left\{(x, y, z) \in \mathbb{R}^{3} \mid x^{2}+y^{2}+z^{2}=1\right\}$ is represented by a Euclidean circle.
Problem 2. Given ASA congruence law for spherical triangles, derive the SAS law. Hint: use the polar triangle.
Problem 3.
(a) Find the area of a spherical triangle with angles $\frac{\pi}{2}, \frac{\pi}{3}$ and $\frac{\pi}{3}$. Which part of the area of the whole sphere does it make?
(b) The same question for the triangle with angles $\frac{\pi}{2}, \frac{\pi}{3}$ and $\frac{\pi}{4}$.

Problem 4. (a) Find the area of a spherical quadrilateral with angles $\alpha, \beta, \gamma, \delta$. (b) Given angles of a spherical n-gone, find its area.

Problem 5. For a spherical triangle with angles $\frac{\pi}{2}, \frac{\pi}{4}, \frac{2 \pi}{3}$ on the unit sphere find the length of the side opposite to the angle $\frac{2 \pi}{3}$.

Part B

Problem 6. Let X be an infinitely long cylinder $X=(\varphi, z) / \sim$ where $(\varphi, z) \in \mathbb{R}^{2}$ and $\varphi_{1} \sim \varphi_{2}$ if and only if $\varphi_{1}-\varphi_{2} \in 2 \pi k, k \in \mathbb{Z}$. Given the Euclidean metric on \mathbb{R}^{2}, this factorisation defines a Euclidean metric on the cylinder X (in other words, any small piece of X is Euclidean).
(a) Find a closed geodesic on X;
(b) Find an open geodesic on X.

Problem 7. A self-polar triangle is a triangle polar to itself.
(a) Show that a self-polar triangle does exist.
(b) Show that all self-polar triangles are congruent.
(Hint: use the definition of polar triangles).

Part C

Problem 8. (for students that are enrolled in MATH4141, Geometry IV.)
Compare the notion of polarity for sphere with the notion of polarity you know from extra reading material.

