Geometry III/IV

Exercises: Week 16, Feb 2013

Part A

Problem 1. Let ABC be a triangle. Let $B_1 \in AB$ and $C_1 \in AC$ be two points such that $AB_1C_1 = \angle ABC$. Show that $\angle AC_1B_1 > \angle ACB$.

Problem 2. Show that there is no "rectangle" in hyperbolic geometry (i.e. no quadrilateral has four right angles).

Part B

Problem 3. Given α , β , γ such that $\alpha + \beta + \gamma < \pi$ show that there exists a hyperbolic triangle with angles α , β , γ .

Problem 4. Let l_1 and l_2 be two hyperbolic lines. Show that exactly one of the following three possibilities hold:

- either l_1 intersect l_2 ,
- or l_1 is parallel to l_2 ,
- or there exists a unique line l orthogonal to both of l_1 and l_2 .

Problem 5. Show that there exists a hyperbolic pentagon with five right angles.

Problem 6. An *ideal* triangle is a hyperbolic triangle with all three vertices an the absolute.

- (a) Show that all ideal triangles are congruent.
- (b) Show that three altitudes of an ideal triangle intersect in one point. (An *altitude* is a straight line passing through a vertex and orthogonal to the opposite side).
- (c) Let O be a point of intersection of altitudes of an ideal triangle XYZ. Let P be a foot of the altitude XP ($P \in YZ$, $XP \perp YZ$). Find the angles of the triangle YOP. Find the area of YOP. Find d(O, P).
- (d) Show that an ideal triangle has an inscribed circle. Find its radius.
- (e) Let c be a circle inscribed in a triangle ABC. Show that the radius of c does not exceed $\frac{2}{\sqrt{3}}$.