Geometry III/IV

Exercises: Week 16, Feb 2013

Part A

Problem 1. Let $A B C$ be a triangle. Let $B_{1} \in A B$ and $C_{1} \in A C$ be two points such that $A B_{1} C_{1}=\angle A B C$. Show that $\angle A C_{1} B_{1}>\angle A C B$.

Problem 2. Show that there is no "rectangle" in hyperbolic geometry (i.e. no quadrilateral has four right angles).

Part B

Problem 3. Given α, β, γ such that $\alpha+\beta+\gamma<\pi$ show that there exists a hyperbolic triangle with angles α, β, γ.

Problem 4. Let l_{1} and l_{2} be two hyperbolic lines. Show that exactly one of the following three possibilities hold:

- either l_{1} intersect l_{2},
- or l_{1} is parallel to l_{2},
- or there exists a unique line l orthogonal to both of l_{1} and l_{2}.

Problem 5. Show that there exists a hyperbolic pentagon with five right angles.
Problem 6. An ideal triangle is a hyperbolic triangle with all three vertices an the absolute.
(a) Show that all ideal triangles are congruent.
(b) Show that three altitudes of an ideal triangle intersect in one point. (An altitude is a straight line passing through a vertex and orthogonal to the opposite side).
(c) Let O be a point of intersection of altitudes of an ideal triangle $X Y Z$. Let P be a foot of the altitude $X P(P \in Y Z, X P \perp Y Z)$. Find the angles of the triangle $Y O P$. Find the area of $Y O P$. Find $d(O, P)$.
(d) Show that an ideal triangle has an inscribed circle. Find its radius.
(e) Let c be a circle inscribed in a triangle $A B C$. Show that the radius of c does not exceed $\frac{2}{\sqrt{3}}$.

