Geometry III/IV

Exercises: Week 17, Feb 2013.

Part A

Problem 1. In the Klein disk model draw two parallel lines, two ultraparallel lines, an ideal triangle, a triangle with angles $(0, \frac{\pi}{2}, \frac{\pi}{3})$.

Problem 2. Consider the two-sheet hyperboloid model

 $\{u = (u_1, u_2, u_3) \in \mathbb{R}^{2,1} \mid (u, u) = -1 \ u_3 > 0\}, \text{ where } (u, u) = u_1^2 + u_2^2 - u_3^2.$

(a) For the vectors

 $v_1 = (2, 1, 2)$ $v_2 = (0, 1, 2)$ $v_3 = (3, 4, 5)$ $v_4 = (1, 0, 0)$ $v_5 = (0, 1, 0)$ $v_6 = (1, 1, 2)$

decide if v_i corresponds to a point in \mathbb{H}^2 , or a point in the absolute, or a line in \mathbb{H}^2 . (Hint: you will find two points, one point of ∂H^2 and three lines).

- (b) Find the distance between the two points of \mathbb{H}^2 described in (a).
- (c) Which pair the lines in (a) is intersecting? Which lines are parallel? Which are ultraparallel?
- (d) Find the distance between the pair of ultraparallel lines in (a).
- (e) Does any of the points in (a) lie on any of the three lines?
- (f) Find the angle between the pair of intersecting lines.

Part B

Problem 3. In the Klein model draw a pentagon with five right angles.

Problem 4. Show that three altitudes of a hyperbolic triangle either have a common point or are pairwise parallel or there is a unique line orthogonal to all three altitudes.

(Hint: place a triangle ABC in the Klein model so, that the altitudes of ABC were represented by (Euclidean) altitudes of the corresponding Euclidean triangle, then use the following statement: "Three altitudes of Euclidean triangle have a common point").