Geometry III/IV

Exercises: Week 18, March 2013
This is a marked assignment! Due to Friday, March 15.

Problem 1. Let a and b be two vectors in the hyperboloid model such that $(a, a)>0$ and $(b, b)>0$. Let l_{a} and l_{b} be the lines determined by equations $(x, a)=0$ and $(x, b)=0$ respectively. And let r_{a} and r_{b} be reflections with respect to l_{a} and l_{b}.
(a) For $a=(0,1,0)$ and $b=(1,0,0)$ write down r_{a} and r_{b}.

Find $r_{b} \circ r_{a}(v)$, where $v=(0,1,2)$.
(b) What type is the isometry $\phi=r_{b} \circ r_{a}$ for $a=(1,1,1)$ and $b=(1,1,-1)$? (Hint: you don't need to compute r_{a} and r_{b}).
(c) Find an example of a and b such that $\phi=r_{b} \circ r_{a}$ is a rotation by $\pi / 2$.

Problem 2. Draw two horocycles h_{1} and h_{2} centred at the same point and such that $d\left(h_{1}, h_{2}\right)=1\left(\right.$ where $\left.d(p, q)=\min _{P \in p, Q \in q} d(P, Q)\right)$.

Problem 3. Let $X Y Z$ be an ideal triangle (i.e. a triangle with $X Y Z \in \partial \mathbb{H}^{2}$). Let H_{x}, H_{y} and H_{z} be the foots of its altitudes. Find $d\left(H_{x}, H_{y}\right)$.

