Geometry III/IV

Möbius transformations - outline

A Möbius transformation (or a linear-fractional transformation) is a map $f: \mathbb{C} \cup\{\infty\} \rightarrow \mathbb{C} \cup\{\infty\}$ of the form $f(z)=\frac{a z+b}{c z+d}$, where $a, b, c, d \in \mathbb{C}$ and $a d-b c \neq 0$.

- Möbius transformations form a group generated by $a z, z+b$ and $1 / z$.
- The group of Möbius transformations acts on $\mathbb{C} \cup\{\infty\}$ triply transitively.
- Möbius transformations take lines and circles to lines and circles.
- Möbius transformations preserve angles.
- Möbius transformations preserve the orientation.
- Any Möbius transformation is a composition of even number of inversions and reflections.
Types of Möbius transformations
A Möbius transformation have either one or two fixed points ($p=1$ or $p=2$).
- if $p=1$ the transformation is called parabolic and is conjugate to $z+b$.
- any non-parabolic Möbius transformation f is conjugate to $a z$;
- if $|a|=1$ then f is called elliptic ($a z$ is a rotation);
- if $|a| \neq 1, a \in \mathbb{R}$ then f is called hyperbolic ($a z$ is a dilation/contraction);
- if $|a| \neq 1, a \notin \mathbb{R}$ then f is called loxodromic.

Inversions
An inversion I_{C} with respect to a circle C or radius r centred at O takes a point A to the point A^{\prime} lying on the ray $O A$ and satisfying $|O A| \cdot\left|O A^{\prime}\right|=r^{2}$.

- $I_{C}^{2}=I d$
- $I_{C}(C)=C$
- Inversions take lines and circles to lines and circles.
- Inversions preserve angles.
- Inversion is conjugate to a reflection by another inversion.

Cross-ratio

$$
\left[z_{1}, z_{2}, z_{3}, z_{4}\right]=\frac{z_{1}-z_{3}}{z_{1}-z_{4}}: \frac{z_{2}-z_{3}}{z_{2}-z_{4}}
$$

- Cross-ratio is preserved by inversions and Möbius transformations.
- Cross-ratio is real if and only if the points $z_{1}, z_{2}, z_{3}, z_{4}$ lie on one line or circle. Stereographic projection
A stereographic projection is a projection from the North pole of the sphere to the horizontal plane.
- The stereographic projection transform circles to circles and lines;
- it preserves the angles;
- it preserves the cross-ratio.

