## Geometry III/IV

## Facts of hyperbolic geometry - outline

## Points and lines

- For any two points in $\overline{\mathbb{H}}^{2}=\mathbb{H}^{2} \cup \partial \mathbb{H}^{2}$ there exists a line through these two points.
- For any point $A \in \overline{\mathbb{H}}^{2}$ and any line $l$ there exists a unique line orthogonal to $l$ and passing through $A$.
- For any line $l$ and a point $A \notin l, A \in \overline{\mathbb{H}}^{2}$ there exists infinitely many lines $l^{\prime}$ through $A$ such that $l \cap l^{\prime}=\emptyset$.


## Isometries

- There exists an isometry of $\mathbb{H}^{2}$ which takes
- any three points of the absolute to any other three points of the absolute; - any point of $\mathbb{H}^{2}$ to any other point of $\mathbb{H}^{2}$.
- An isometry of $\mathbb{H}^{2}$ preserving three points of $\partial \mathbb{H}^{2}$ is identity.
- The orientation preserving isometries of $\mathbb{H}^{2}$ in the Poincaré disk model are linear-fractional maps preserving the disk.
- Any isometry of $\mathbb{H}^{2}$ in the upper half-plane model has either the form $z \mapsto \frac{a z+b}{c z+d}$ or the form $z \mapsto \frac{a \bar{z}+b}{c \bar{z}+d} \quad$ where $a, b, c, d \in \mathbb{R}, a d-b c>0$.


## Parallel lines

Two lines are parallel if they have a common point in $\partial \mathbb{H}^{2}$.
Angle of parallelism for a line $l$ and a point $A \notin l$ is a half of the angle between two rays with vertex $A$ parallel to $l$.

- Let $A H$ be a line perpendicular to $l,(H \in l)$. Then a ray $A X$ intersects $l$ iff $\angle X A H<\varphi$, where $\varphi$ is the angle of parallelism.
- If $d(A, l)=a$ then the angle of parallelism $\varphi$ satisfies $\cosh a=\frac{1}{\sin \varphi}$ (here $d(A, l)=\min _{B \in l}(d(A, B))=d(A, H)$ is the distance from $A$ to $l$ ).


## Ultraparallel lines

- Two lines which are neither parallel nor intersecting are called ultraparallel.
- Any pair of ultraparallel lines have a unique common perpendicular.


## Hyperbolic trigonometry

$\begin{array}{ll}\text { - } \cosh x=\frac{e^{x}+e^{-x}}{2} \\ \text { - } \cosh ^{2} x-\sinh ^{2} x=1 & \sinh x=\frac{e^{x}-e^{-x}}{2}\end{array} \quad \tanh x=\frac{\sinh x}{\cosh x}$

## Triangles

Let $\alpha, \beta, \gamma$ be angles opposite to the sides $a, b, c$ respectively.

- $\alpha+\beta+\gamma<\pi$.
- Four laws of congruence of hyperbolic triangles: SSS, SAS, ASA, AAA.
- The base angles of isosceles triangles are equal.
- Pythagorean thm: if $\gamma=\pi / 2$ then $\cosh c=\cosh a \cosh b$.
- Law of $\operatorname{sines}: \frac{\sinh a}{\sin \alpha}=\frac{\sinh b}{\sin \beta}=\frac{\sinh c}{\sin \gamma}$.
- Law of cosines: $\cosh a=\cosh b \cosh c-\sinh b \sinh c \cos \alpha$.
- Area of a triangle: $S_{A B C}=\pi-(\alpha+\beta+\gamma)$.


## Types of isometries

A reflection with respect to a line $l$ is an orientation-reversing isometry preserving $l$ pointwise and swapping the half-planes into which $l$ divides $\mathbb{H}^{2}$.

- Any isometry is a composition of at most 3 reflections.
- A non-trivial orientation-preserving isometry $f$ is a composition of 2 reflections.
The fixed lines $l_{1}$ and $l_{2}$ of these two reflections may be intersecting, parallel or ultraparallel which results in three types of isometries (elliptic, parabolic, hyperbolic).
- The types may be determined by
- the fixed points or
- the value $|a+d|$, where $f(z)=\frac{a z+b}{c z+d}, a d-b c=1$ is the expression of $f$ in the upper half-plane model.
- Types of orientation-preserving isometries:

| type | elliptic | parabolic | hyperbolic |
| :---: | :---: | :---: | :---: |
| fixed points $\left(l_{1}, l_{2}\right)$ | 1 fix pt $O$ in $\mathbb{H}^{2}$ intersecting $O=l_{1} \cap l_{2}$ | 1 fixed pt $X$ in $\partial \mathbb{H}^{2}$ parallel $X=l_{1} \cap l_{2}$ | 2 fix pt $X, Y$ in $\partial \mathbb{H}^{2}$ <br> ultraparallel <br> $X, Y$ are endpoints of $l$, where $l \perp l_{1}$ and $l \perp l_{2}$ |
| $\|a+d\|$ | $<2$ | 2 | $>2$ |
| orthogonal curves | circles <br> (centred at $O$ ) | horocycles (centred at $X$ ) | equidistant curves (to the line $l$ ) |
| $f$ is conjugate to | rotation | $z+b$ | $a z$ |

## Circles, horocycles and equidistant curves

- A circle centred at $O \in \mathbb{H}^{2}$ is a set of points on the same distance from $O$. It is orthogonal to all lines through $O$.
- A horocycle centred at $X \in \partial \mathbb{H}^{2}$ is a limit of of a circle whose center $O$ tends to $\overline{X \in \partial \mathbb{H}^{2}}$. It is orthogonal to all lines through $X$.
A distance from a horocycle to its center is infinite, however, the distance between two horocycles $h_{1}$ and $h_{2}$ centred at the same point is finite (and equal to the distance from each point of $h_{1}$ to $h_{2}$ ).
- An equidistant curve for a line $l$ is a set of points on the same distance from $l$. It is orthogonal to each line $l_{1}$ such that $l \perp l_{1}$.

