
Geometry III/IV
Distance in the hyperboloid model: proofs

Remark: this is an optional handout for those who are interested in proofs. You
will NOT be required to reproduce it in the exam. Also, you will NOT be required
to use/reproduce/remember the formulas from this handout!

Recall that given u = (u1, u2, u3), v = (v1, v2, v3) the pseudo-scalar product of u and
v is

(u, v) = u1v1 + u2v2 − u3v3.

The points of H
2 are represented by vectors v satisfying (v, v) < −1, v3 > 0 (or by

arbitrary vector (v, v) < 0 considered up to proportionality v ∼ v for λ ∈ R \ 0).

The point of the absolute is represented by a vector v satisfying (v, v) = 0 (considered
up to proportionality).

The lines are intersections of the hyperboloid with planes passing through the origin.
An equation for a plain is

a1x1 + a2x2 − a3x3 = 0.

The line given by this equation will be represented by a vector a = (a1, a2, a3). Then
a point x lie on a line a if and only if (x, a) = 0.

Theorem 1. For two points u and v in H
2 one has

cosh2 d(u, v) = |
(u, v)2

(u, u)(v, v)
|.

Proof. By transitivity of isometry group on H
2 we may assume u = (0, 0, 1). Ap-

plying a rotation around this point (in 3-dimensional space it is represented by
a rotation around the third coordinate axes) we may assume that v = (v1, 0, v3),
v2
1 − v2

3 = 1. We find d(u, v) by definition, as a cross-ratio of four lines.
The line (plane in the model) through u and v has equation x2 = 0, i.e. it is

represented by the vector (0, 1, 0). This line intersects the absolute in the points
(x, x) = 0, x2 = 0, i.e. in x2

1 − x2
3 = 0 which gives two solutions for x3 > 0:

X = (−1, 0, 1) and Y = (1, 0, 1) (see Fig. 1 for the projection of the pattern to the
plane x3 = 1). To find the distance d(u, v) we need to find a cross-ratio of four lines
spanned by u, v, X and Y .

To find the cross-ratio of four lines we need to intersect all four lines by some
line l (and the result does not depend on the choice of l!). Choose l the horizontal
line through (0, 0, 1) (it is given by equations x3 = 1, x2 = 0). Renormalizing
v = (v1, 0, v3) so that it belongs to the plane x3 = 1 we get v′ = (v1

v3

, 0, 1). So, using
the line x3 = 1,x2 = 0 we get

|[u, v, X, Y ]| = |[0,
v1

v3

,−1, 1]| = |
v1/v3 + 1

v1/v3 − 1
:

0 + 1

0 − 1
| = aaaaaaaaaaaaaa

aaaaaaaaaaaaaa =
v1 + v3

v1 − v3

=
(v1 + v3)

2

v2
1 − v2

3

=
(v1 + v3)

2

1
= (v1 + v3)

2,

so that

d(u, v) =
1

2
ln|[u, v, X, Y ]| =

1

2
ln(v1 + v3)

2 = ln(v1 + v3).
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Since v2
3 − v2

1 = 1, we have v3 = cosh t, v1 = sinh t (for t = arccoshv3), which
implies

et = cosh t + sinh t = v1 + v3.

At the same time, ed(u,v) = eln(v1+v3) = v1 + v3, which implies t = d(u, v) and

cosh d(u, v) = cosh t = v3.

On the other hand,
(u, v)2

(u, u)(v, v)
=

v2
3

(−1)(−1)
= v2

3 .

Thus,

cosh2 d(u, v) = |
(u, v)2

(u, u)(v, v)
|.

�
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Figure 1

The distance d(u, l) from the point u to the line l is the minimal distance d(u, v) for
between u and a point v ∈ l.

Exercise: show that this minimum do exist.

Lemma 1. Let u be a point and l be a line represented by a vectors v. Let t ∈ l be

a point such that the line ut is perpendicular to l. Then d(u, l) = d(u, t).

Proof. Suppose that d(u, l) = d(u, x) for some x ∈ l and the line ux is not orthogonal
to l. consider an orthogonal projection h of x on the line l (i.e. a point h ∈ l such
that xh is orthogonal to l). Then d(u, x) > d(u, h) since ux is a hypotenuse of a
right-angle triangle uxh, which contradicts to the choice of x. The contradiction
shows that ux is orthogonal to l.

�

Theorem 2. Let u be a point and lv be a line represented by a vectors v. Then

sinh2 d(u, lv) = |
(u, v)2

(u, u)(v, v)
|.

Proof. Let t ∈ lv be an orthogonal projection of u to lv, i.e. the line tu is perpen-
dicular to lv. By Lemma 1 d(u, lv) = d(u, t).

Without loss of generality we may assume that u = (0, 0, 1) and t = (t1, 0, t3),
t21 − t23 = −1 (see Fig. 2 for the projection to the plain x3 = 1). By Theorem 1

cosh2 d(u, lv) = cosh2d(u, t) = |
t23

(−1)(−1)
| = t23.

Therefore,
sinh2 d(u, lv) = cosh2 d(u, lv) − 1 = t23 − 1 = t21.
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Now, let us find the equation for the line lv. The line tu corresponds to the
plane given by the equation x2 = 0. The whole pattern (i.e. hyperboloid, the
point u, the line lv the line tu) is symmetric with respect to this plane. Hence,
the vector v defining the line lv has zero second coordinate v2 = 0, which implies
v = (v1, 0, v3). Since the line lv contains the point t = (t1, 0, t3), we have (v, t) = 0,
i.e. v1t1 − v3t3 = 0. This implies v = λ(t3, 0, t1), or simply v = (t3, 0, t1) after
rescaling (v, v) = 1. Hence,

|
(u, v)2

(u, u)(v, v)
| = |

t21
(−1) · 1

| = t21,

which coincides with the value of sinh2 d(u, lv).
�
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Figure 2

By a distance between two lines l1 and l2 we mean the minimal d(t1, t2) for points
t1 ∈ l1 and t2 ∈ l2.

Lemma 2. Let l1 and l2 be two ultra-parallel lines in the hyperbolic plane. Let h be

a line orthogonal to both l1 and l2. Let t1 = h∩ l1 and t2 = h∩ l2 be the intersection

point. Then d(l1, l2) = d(t1, t2).

Proof. Suppose that d(l1, l2) = d(p, q) , p ∈ l1, q ∈ l2. Suppose that the line pq is
not orthogonal to l1. Let qx be a line orthogonal to l1, x ∈ l1. Then d(q, x) < d(p, q)
(”the cathetus is shorter than the hypotenuse in the right-angles triangle pqx”).
This contradicts to the choice of p and q. Hence, pq is orthogonal to l1. By the
similar reason it is orthogonal to l2.

�

Theorem 3. Let lu and lv be two ultra-parallel lines represented by vectors u and v
respectively. Then

cosh2 d(lu, lv) = |
(u, v)2

(u, u)(v, v)
|.

Proof. Let h be a line orthogonal to both lu and lv. Let hu = h∩ lu and hv = h∩ lv
be the intersection points. By Lemma 2 d(lu, lv) = d(hu, hv).

Without loss of generality we may assume hu = (0, 0, 1) and hv = (t1, 0, t3),
t21 − t23 = 1 (so that h corresponds to the plane x2 = 0), see Fig. 3 for the projection
to the plain x3 = 1. Then lu and lv are represented by the vectors u = (1, 0, 0) and
v = (t3, 0, t1) (since (hv, v) = 0 and v2 = 0). This implies that

cosh2 d(hu, hv) = |
(hu, hv)

2

(hu, hu)(hv, hv)
| =

t3
|t21 − t23|

= |
(u, v)2

(u, u)(v, v)
|,
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This proves the theorem since d(lu, lv) = d(hu, hv).
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Figure 3

Theorem 4. Let lu and lv be two intersecting lines represented by vectors u and v
respectively. Let φ be an angle formed by these lines. Then

cos2 φ = |
(u, v)2

(u, u)(v, v)
|.

Proof. Applying an isometry, we may assume that the point of intersection of lu
and lv is (0, 0, 1). Then the planes through the origin representing the lines lu and
lv are vertical planes (passing through the third coordinate axis), these planes are
represented by vectors (u1, u2, 0), (v1, v2, 0) (to see that notice, that the vertical
planes are symmetric with respect to the plane x3 = 0). Furthermore, due to the
rotational symmetry, the angles at the point (0, 0, 1) are Euclidean angles, i.e. φ
(or π − φ) coincides with the angle between (u1, u2, 0) and (v1, v2, 0). By Euclidean
formula for computation of angles we get

cos φ = ±
(u, v)

√

(u, u)(v, v)

(we may use pseudo-scalar product (·, ·) in a Euclidean formula since the third
coordinate is zero).

�

Theorem 5. Let lu and lv be two distinct lines represented by vectors u and v

respectively, u 6= v. Then the equality
(u,v)2

(u,u)(v,v)
= 1 holds if and only if the lines are

parallel.

Proof. Denote Q := (u,v)2

(u,u)(v,v)
. It follows from Theorem 4 that in the case of inter-

secting lines Q < 1. Similarly, in by theorem 3 Q > 1 in the case of ultra-parallel
lines. So, Q = 1 implies that the lines are parallel.

To prove the other side notice, that a pair of parallel lines may be obtained as a
limit of a pair of intersecting lines, which implies Q ≤ 1. On the other hand the
same pair of parallel lines may be obtained as a limit of a pair of ultra-parallel lines,
which implies Q ≥ 1. Hence, if lu is parallel to lv then Q = 1.

�


