Models of hyperbolic geometry

model	Poincaré disk	Upper half-plane	Klein disk	two-sheet hyperboloid
\mathbb{H}^2	$\{z\in\mathbb{C}\mid z <1\}$	$\{z\in\mathbb{C}\ \ Imz>0\}$	$\{z\in\mathbb{C}\mid z <1\}$	$\{v \in \mathbb{R}^{2,1} \mid (v,v) = -1, \ v_3 > 0\}$ where $(v,u) = v_1 u_1 + v_2 u_2 - v_3 u_3$
$\partial \mathbb{H}^2$ (absolute)	$\{z\in\mathbb{C}\ \ z =1\}$	$\{z\in\mathbb{C}\ \ Imz=0\}$	$\{z\in\mathbb{C}\ \ z =1\}$	$\{v \in \mathbb{R}^{2,1} \mid (v,v) = 0, v_3 > 0\}$ $v \sim \lambda v$
lines	Y A B X	B A Y	Y A B X	$ \{v (v,a) = 0\} $ where $(a,a) > 0$
distance	d(A,B) = ln[A,B,X,Y] X,Y are the "endpoints" of the line AB		$d(A,B) = \frac{1}{2} ln[A,B,X,Y] $	$d(A,B) = \frac{1}{2} ln[A,B,X,Y] $ cross-ratio of four lines*
formulas		$ \cosh d(u, v) = 1 + \frac{ u - v ^2}{2Im(u)Im(v)} $		$Q = \left \frac{(u,v)^2}{(u,u)(v,v)} \right $ if $(u,u) < 0$, $(v,v) < 0$ $Q = \cosh^2 d(pt,pt)$ if $(u,u) < 0$, $(v,v) > 0$ $Q = \sinh^2 d(pt,line)$ if $(u,u) > 0$, $(v,v) > 0$ $Q < 1$, intersecting lines $Q = \cos^2 \alpha$ $Q = 1$, parallel lines $Q > 1$, ultraparallel lines $Q = \cosh^2 d(line,line)$
isometries**	Möbius transformations		Projective tr	Linear transformations of $\mathbb{R}^{2,1}$
orientation- preserving isometries		$\frac{az+b}{cz+d}$ $a,b,c,d \in \mathbb{R}, ad-bc=1$		
orientation- reversing isometries:		$\frac{a\bar{z}+b}{c\bar{z}+d}$ $a,b,c,d \in \mathbb{R}, ad-bc=1$		
reflections	Euclidean inversions or reflections			$r_a(v) = v - 2\frac{(v,a)}{(a,a)}a$
circles	Euclidean circles (with shifted centres!)		ellipses	plane sections of the hyperboloid
angles	angles=Euclidean angles		distorted angles good for right angles**	

^{*} Cross-ratio of four lines lying in one plane and passing through one point is the cross-ratio of four points at which thiese lines are intersected by an arbitrary line l (it does not depend on l!).

^{**}We only list the type of the transformations not specifying that they preserve the model.

^{***} See the backside.

***Right angles in the Klein model.

Let l be a hyperbolic line.

Let \bar{l} be a Euclidean line containing the segment which represents l in the Klein model.

Let $X_1(l)$ and $X_2(l)$ be the endpoints of l (intersections of \bar{l} with the unit circle).

Let $t_1(l)$ and $t_2(l)$ be tangent lines to the unit circle at the points $X_1(l)$ and $X_2(l)$.

Let $T(l) = t_1(l) \cap t_2(l)$ (if $t_1||t_2$, i.e. l is represented by a diameter, then T(l) is a point at infinity).

Thm. l' is orthogonal to l if and only if $T(l) \in l'$.

In particular, if l is represented by a **diameter**, then $l' \perp l$ if and only if $\bar{l'} \perp \bar{l}$ (in Euclidean sinse).

