Geometry III/IV

Time and place: Fr 13:00, 15:00 CG60
Course webpage: http://www.maths.dur.ac.uk/users/anna.felikson/Geometry/

Instructor: Anna Felikson
e-mail: anna.felikson@durham.ac.uk

Office: CM235; Phone: 334-4158
Office hours: Mon 12:00-13:00

Spherical geometry - outline

1. Distance and geodesics.

- $d(A, B)=R \angle A O B$ (for a sphere of radius R centred at O).
- Geodesics are great circles.

2. Polar correspondence.

- Equator \rightarrow union of two poles; any pole \rightarrow corresponding equator.
- If $A \in l$ then $\operatorname{Pol}(l) \in \operatorname{Pol}(A) \quad$ (where A is a point and l is a line).
- Polar triangle: $A^{\prime} B^{\prime} C^{\prime}$ is polar for $A B C$ if A^{\prime} is polar to the line $\overline{B C}$ containing the side $B C$ (chosen so that $\overline{B C}$ does not separate A from A^{\prime}) and similar properties hold for B^{\prime} and C^{\prime}.
- Bipolar theorem: if $A^{\prime} B^{\prime} C^{\prime}=\operatorname{Pol}(A B C)$ then $\operatorname{Pol}\left(A^{\prime} B^{\prime} C^{\prime}\right)=A B C$.
- Angles and sidelengths of polar triangles: $\left(\alpha^{\prime}, \beta^{\prime}, \gamma^{\prime}\right)=(\pi-a, \pi-b, \pi-c), \quad\left(a^{\prime}, b^{\prime}, c^{\prime}\right)=(\pi-\alpha, \pi-\beta, \pi-\gamma)$.

3. Spherical triangles.
a. Four theorems of congruence of spherical triangles: ASA, SAS, SSS, AAA.
b. Area of a spherical triangle: $S_{A B C}=(\alpha+\beta+\gamma-\pi) R^{2}$
where R is the radius of the sphere.
In particular, $\alpha+\beta+\gamma>\pi$.
c. Sine and cosine theorems:

- sine theorem $\frac{\sin a}{\sin \alpha}=\frac{\sin b}{\sin \beta}=\frac{\sin c}{\sin \gamma}$
- cosine thm: $\cos a=\cos b \cos c+\sin b \sin c \cos \alpha$
- second cosine thm: $\cos \alpha=-\cos \beta \cos \gamma+\sin \beta \sin \gamma \cos a$

4. Isometries of the sphere:

- Any isometry of the sphere is uniquely determined by images of three points.
- Isometries act transitively on the sphere.
- Isometry group of the sphere is generated by reflections.
- Any isometry is a product of at most three reflections.
- Any orientation preserving isometry is a rotation (a product of two reflections).
- Any orientaion reversing isometry is either a reflection or a product of three reflections.

