Geometry III/IV

Time and place: Fr 13:00, 15:00 CG60

Course webpage: http://www.maths.dur.ac.uk/users/anna.felikson/Geometry/

Instructor: Anna Felikson e-mail: anna.felikson@durham.ac.uk Office: CM235; Phone: 334-4158 Office hours: Mon 12:00-13:00

Spherical geometry – outline

- 1. Distance and geodesics.
 - $d(A, B) = R \angle AOB$ (for a sphere of radius R centred at O).
 - Geodesics are great circles.
- 2. Polar correspondence.
 - Equator \rightarrow union of two poles; any pole \rightarrow corresponding equator.
 - If $A \in l$ then $Pol(l) \in Pol(A)$ (where A is a point and l is a line).
 - Polar triangle: A'B'C' is polar for ABC if A' is polar to the line \overline{BC} containing the side BC (chosen so that \overline{BC} does not separate A from A') and similar properties hold for B' and C'.
 - Bipolar theorem: if A'B'C' = Pol(ABC) then Pol(A'B'C') = ABC.
 - Angles and sidelengths of polar triangles:

 $(\alpha', \beta', \gamma') = (\pi - a, \pi - b, \pi - c), \quad (a', b', c') = (\pi - \alpha, \pi - \beta, \pi - \gamma).$

- 3. Spherical triangles.
 - a. Four theorems of congruence of spherical triangles: ASA, SAS, SSS, AAA.
 - b. Area of a spherical triangle: $S_{ABC} = (\alpha + \beta + \gamma \pi)R^2$ where R is the radius of the sphere.
 - In particular, $\alpha + \beta + \gamma > \pi$.
 - c. Sine and cosine theorems:
 - sine theorem $\frac{\sin a}{\sin \alpha} = \frac{\sin b}{\sin \beta} = \frac{\sin c}{\sin \gamma}$
 - cosine thm: $\cos a = \cos b \cos c + \sin b \sin c \cos \alpha$
 - second cosine thm: $\cos \alpha = -\cos \beta \cos \gamma + \sin \beta \sin \gamma \cos a$
- 4. Isometries of the sphere:
 - Any isometry of the sphere is uniquely determined by images of three points.
 - Isometries act transitively on the sphere.
 - Isometry group of the sphere is generated by reflections.
 - Any isometry is a product of at most three reflections.
 - Any orientation preserving isometry is a rotation (a product of two reflections).
 - Any orientaion reversing isometry is either a reflection or a product of three reflections.