Geometry III/IV

Lecturer:	Anna Felikson
e-mail:	anna.felikson@durham.ac.uk
Office:	MCS3006

Course webpage: http://www.maths.dur.ac.uk/users/anna.felikson/Geometry/Geometry21/index21.html

Some terminology:

midpoint

height or altitude

angle bisector

median

Euclidean Geometry

EUCLID'S POSTULATES (5)

1. For every point A and for every point B not equal to A there exists a unique line that passes through A and B.
2. For every segment $A B$ and for every segment $C D$ there exists a unique point E such that B is between A and E and such that segment $C D$ is congruent to segment $B E$.
3. For every point O and every point A not equal to O, there exists a circle with center O and radius $O A$.
4. All right angles are congruent to each other.
5. (Euclid's Parallel Postulate) For every line l and for every point P that does not lie on l, there exists a unique line m passing through P that is parallel to l.

HILBERT'S AXIOMS (5 groups)

Undefined notions: point, line, incidence, betweenness, and congruence.

1. Incidence Axioms (IA)

IA 1. Given 2 distinct points there is a unique line incident with them.
IA 2. Given a line there exist at least 2 distinct points incident with it.
IA 3. There exist 3 distinct points not incident with the same line.

2. Betweenness Axioms (BA)

BA 1. If $A * B * C$ then also $C * B * A$ and A, B, C are distinct collinear points.
BA 2. Given 2 points P and Q there exist 3 points A, B, C such that $P * B * Q$ and $P * Q * C$ and $A * P * Q$.
BA 3. Given 3 collinear points, only one of them can be between the other two.
BA 4. (Plane Separation) For every line l and for every 3 points A, B, C not on l,
(a) If A, B are on the same side of l and B, C are on the same side of l, then A, C are on the same side of l.
(b) If A, B are on the opposite sides of l and B, C are on the opposite sides of l, then A, C are on the same side of l.

3. Congruence Axioms (CA)

CA 1. Given segment $A B$ and any ray with vertex C, there is a unique point D on this ray such that $A B \approx C D$.
CA 2. If $A B \approx C D$ and $A B \approx E F$ then $C D \approx E F$.
CA 3. Given $A * B * C$ and $A^{\prime} * B^{\prime} * C^{\prime}$, if $A B \approx A^{\prime} B^{\prime}$ and $B C \approx B^{\prime} C^{\prime}$ then $A C \approx A^{\prime} C^{\prime}$.
CA 4. Given $\angle D$ and any ray $A B$ there is a unique ray $A C$ on each half-plane of the line $A B$ such that $\angle B A C \approx \angle D$.
CA 5. If $\angle A \approx \angle B$ and $\angle A \approx \angle C$ then $\angle B \approx \angle C$.
CA 6. (SAS Criterion) If 2 sides and the included angle of a triangle are congruent to those of another triangle, respectively, then the two triangles are congruent.

4. Continuity Axioms (CtA)

CtA 1. (Circular Continuity Principle) If a circle has one point inside and one point outside another circle, then the two circles intersect in two points.
CtA 2. (Archimedes' Axiom) Given segment $C D$ and any ray $A B$ there is a number n and a point E on this ray such that $n \times C D \approx A E \geq A B$.

5. Parallelism Axiom (PA)

PA 1. (Hilbert's Parallel Axiom) Given a line l and a point P not on l, there is at most one line through P which is parallel to l.
(SOME) THEOREMS of EUCLIDEAN GEOMETRY (E)

	Similarity:					
E18	In a parallelogram opposite sides are equal.	$\begin{aligned} & \text { E12, } \\ & \text { E5 (ASA) } \end{aligned}$	4.1	+		
E19	Let $\angle B O A$ be an angle, let $A_{1}, A_{2}, A_{3} \in O A, B_{1}, B_{2}, B_{3} \in O B$ be points satisfying $A_{1} B_{1}\left\\|A_{2} B_{2}\right\\| A_{3} B_{3}$. If $A_{1} A_{2}=A_{2} A_{3}$ then $B_{1} B_{2}=B_{2} B_{3}$.	E18, E5 (ASA)		+		
E20	If $A B C$ is a triangle and D, E are points on $A B, A C$ s.t. $D E \\| B C$ then $A D: A B=A E: A C$. Converse thm also holds: if $A D: A B=A E: A C$ then $D E \\| B C$.	E19	5	+		
E21	The medians of a triangle are concurrent (at a point G called centroid) and $A G=\frac{2}{3} A M$ for a median $A M$ of $\triangle A B C$.	E19	12	+		
E22	Triangles $A_{1} A_{2} A_{3}$ and $B_{1} B_{2} B_{3}$ are similar (i.e. $\angle A_{i}=\angle B_{i}$) if and only if then they are proportional (i.e. $\frac{A_{1} A_{2}}{B_{1} B_{2}}=\frac{A_{2} A_{3}}{B_{2} B_{3}}=\frac{A_{1} A_{3}}{B_{1} B_{3}}$).	E20	6	+		
E23	Let $C D$ be an altitude of a right triangle $A B C\left(\angle C=\frac{\pi}{2}\right)$ then $A D \cdot D B=C D^{2}$.	E22		+		
E24	(Pythagoras's thm) In a right triangle $A B C\left(\angle C=\frac{\pi}{2}\right)$ holds $A B^{2}=A C^{2}+B C^{2}$.	E23	7	+		
E25	(Triangle inequality) $A B+B C \geq A C$.	E24		+		
	Angles in a circle:					
E26	(Angles in a semicircle) Let $A B$ be a diameter of a circle \mathcal{C}, and let $P \in \mathcal{C}$ be point $(P \neq A, B)$. Then $\angle A P B=\frac{\pi}{2}$.	E8, E13		+		
E27	(Angle at centre) Let $A B$ be an arc of a circle \mathcal{C}, centre O, and let $P \in \mathcal{C}$ be a point contained in the same halfplane as O with respect to the line $A B$. Then $\angle A O B=2 \angle A P B$.	E7, E13		+		
E28	(Angle in the same segment are equal) Let $A B$ be an arc of a circle \mathcal{C}, and let $P_{1}, P_{2} \in \mathcal{C}$ be two points in the same halfplane as O with resp. to $A B$. Then $\angle A P_{1} B=\angle A P_{2} B$.	E27		+		
E29	(Opposite angles of a cyclic quadrilateral add to π) If $A B C D$ is a quadrilateral with vertices on a circle then $\angle A B C+\angle C D A=\pi$.	E27, E13		+		
	Sine and cosine rules:					
E30	$\text { (Sine rule) } \quad \frac{a}{\sin \alpha}=\frac{b}{\sin \beta}=\frac{c}{\sin \gamma}$	Def. of sin		+		
E31	(Cosine rule) $\quad c^{2}=a^{2}+b^{2}-2 a b \cos \gamma$	E24		+		

Remarks:

1. A. D. Gardiner, C.J. Bradley, Plane Euclidean Geometry, UKMT, Leeds 2012.
2. References are given to http://www.unitedthc.com/TUT/Geometry/geometry.htm
3. The third column contains hints to (one of the many possible!) proofs.
(In many cases we choose proofs different from ones in the references.
4. Last column indicates use of the parallel axiom (PA) in the proof.

Some statement marked "+" are still valid in the absence of PA!
5. For the detailed treatment of axiomatic fundations of Euclidean geometry see
M. J. Greenberg, Euclidean and Non-Euclidean Geometries, San Francisco: W. H. Freeman, 2008.

