Groups in Geometries

Geometry	Group G	Generators of G	G preserves...	Transitivity*	Uniqueness**	Classification ${ }^{* * *}$	Fixpoints
\mathbb{E}^{2}	$\begin{aligned} & \mathbf{x} \mapsto A \mathbf{x}+\mathbf{b} \\ & A \in O(2, \mathbb{R}) \end{aligned}$	reflections	distance angles	on flags	3 non-collinear pts	reflection rotation translation glide reflection	line 1 point
S^{2}	$O(3, \mathbb{R})$	reflections	distance angles	on flags	3 non-collinear pts	reflection rotation glide reflection	line 2 (antipodal) points
Aff	$\begin{aligned} & \mathbf{x} \mapsto A \mathbf{x}+\mathbf{b} \\ & A \in G L(2, \mathbb{R}) \end{aligned}$	$\operatorname{Isom}\left(E^{2}\right)$ and $\left(\begin{array}{ll}\alpha & 0 \\ 0 & 1\end{array}\right), \alpha \in \mathbb{R} \backslash\{0\}$	collinearity \Rightarrow parallelism ratios of lengths on a line concurrence of lines ratios of areas	on triangles	3 non-collinear pts		
$\mathbb{R P}^{1}$	$P G L(2, \mathbb{R})$	projections of lines to lines	cross-ratio	on triples of points	3 points	$\begin{array}{ll} \frac{a x+b}{c x+d}, & a, b, c, d \in \mathbb{R} \\ & a d-b c \neq 0 \end{array}$	
$\mathbb{R} \mathbb{P}^{2}$	$P G L(3, \mathbb{R})$	projections of planes to planes	cross-ratio of 4 collinear points	on quadrilaterals (4pts, no 3 collinear)	4 points (no 3 on a line)		
Möb	$\operatorname{PGL}(2, \mathbb{C})$	$\begin{aligned} & a z, \quad z+1, \quad 1 / z \\ & (a \in \mathbb{C}) \end{aligned}$	cross-ratio angles	on triples of pts	3 points		1 point 2 points no atractors/repellers attractor \& repeller attractor \& repeller
\mathbb{H}^{2}	$G^{+}=P G L(2, \mathbb{R})$	reflections	distance angles	on flags on ideal triangles	3 non-collinear pts 3 pts on absolute	reflection rotation parabolic translation hyperbolic translation glide reflection	line 1 point 1 point on absolute 2 points on absolute 2 points on absolute

*Transitivity $=$ " G acts transitively on ..."
${ }^{* *}$ Uniqueness $=" g \in G$ is uniquely determined by the images of ..."
${ }^{* * *}$ Classification $=$ "types of elements of $G "$
$P G L(n, k)=G L(n, k) / \pm I$
$n=$ dimension, $k=\mathbb{R}, \mathbb{C}$
$G^{+}=$or.preserving subgroup of G

