Hints 13-14

13.3. Do the same as in Euclidean or spherical case.
13.4. Look at the angle sum of some quadrilateral.
13.5. Look at the angle sum.
13.6. Look at the angle sum of some polygon.
14.1. Fix one point and the rays from it, then move continuously another point along the ray.
14.2. Again, use continuous deformation.
14.3. Use isometry group, to have a nice symmetric picture.
14.4. Use isometry group to reformulate the problem (i.e. map the fixpoints somewhere...).
14.5. Do the same as in Euclidean or spherical case.
14.6. Use isometry group, to have a nice symmetric picture. Then use continuity.
14.7. (a) and (b): similar to Euclidean/spherical case.
(c) use Poincaré disc model and compare to Euclidean case.

