Hints 3-4

3.1 If C and D lie on different sides with respect to $A B$ then the segment $C D$ intersects the line $A B$.
$3.3\left(^{*}\right)$ This is a direct computation based on the definition of isometry.
3.4 This is just to apply the definition of a discrete action and of an orbit space.
$3.5{ }^{(*)}$ There are many ways to choose the group H for this question. Go for the easiest one: it will be helpful for later parts of this question.
(d) If F is a fundamental domain for G and H is a subgroup of G, then F tiles the fundamental domain for H (why?). The index [G:H] may be found as the number of the tiles.
4.1 The geodesics on X come from geodesics on \mathbb{E}^{2} - just find the good ones.
4.2 Use lines of rational/irrational slopes on \mathbb{E}^{2}.
4.3 A couple of perpendicular bisectors will do the job.
$4.4\left(^{*}\right)$ Try to project something somewhere.

