Solutions 1-2

$2.1\left(^{*}\right)$ Let $\operatorname{Isom}^{+}\left(\mathbb{E}^{2}\right) \subset \operatorname{Isom}\left(\mathbb{E}^{2}\right)$ be a group of orientation-preserving isometries of \mathbb{E}^{2}. Show that $\operatorname{Isom}^{+}\left(\mathbb{E}^{2}\right)$ is generated by rotations.

Solution. By Corollary 1.10 every isometry of \mathbb{E}^{2} is a composition of at most 3 reflections. Since reflection changes the orientation, the subgroup $\operatorname{Isom}^{+}\left(\mathbb{E}^{2}\right)$ only contains compositions of 2 reflections and the identity map (composition of 0 reflections). Let $f=r_{2} \circ r_{1}$ be a composition of reflections with respect to the lines l_{1} and l_{2}. If l_{1} is parallel to l_{2} then f is a translation, otherwise f is a rotation.
So, we only need to prove that every translation is a composition of rotations. To do that we will use reflections again! Let f be a translation along the line l, then there are two lines l_{1} and l_{2}, both orthogonal to l and such that $f=r_{2} \circ r_{1}$ (where r_{i} is the reflection with respect to l_{i}). Let r be the reflection with respect to the line l. Then the elements $r_{2} \circ r$ and $r \circ r_{1}$ are rotations (by π) and f may be obtained by their composition:

$$
\left(r_{2} \circ r\right) \circ\left(r \circ r_{1}\right)=r_{2} \circ r_{1}=f .
$$

Remark. Another solution may be obtained even without using the classification theorem: one could prove that an orientation-preserving isometry is a composition of at most two rotations - in exactly the same way as we proved that a general isometry is a composition of atmost 3 reflections.
2.2 Show that a composition of a rotation and a translation is a rotation by the same angle. How to find the centre of the new rotation?

Solution. Let R be a rotation around O by an angle α and let T be a translation. We need to investigate $T \circ R$.
Let l be the line parallel to the direction of the translation T. Let l_{1} be the line through O perpendicular to l and let l_{2} be the line through O such that $R=r_{1} \circ r_{2}$, where r_{i} is reflection with respect to l_{i} (clearly, l_{2} makes the angle $\alpha / 2$ with l_{1}). Then the translation T may be seen as a composition of r_{1} and some other reflection r_{3} (with respect to the line l_{3} parallel to l_{2} and orthogonal to l): $T=r_{3} \circ r_{1}$. So, we have

$$
T \circ R=\left(r_{3} \circ r_{1}\right) \circ\left(r_{1} \circ r_{2}\right)=r_{3} \circ r_{2} .
$$

As l_{3} is parallel to l_{1}, they make the same angle with l_{2}, so the rotation $r_{3} \circ r_{2}$ is exactly by the same angle as $r_{1} \circ r_{2}$. The centre of the rotation is the intersection of the lines l_{2} and l_{3}.
2.3 A glide reflection is a composition of a reflection with respect to a line and a translation along the same line. Show that every composition of 3 different reflections in \mathbb{E}^{2} is a glide reflection. What if some of the three reflections conincide?

Solution. Let $f=r_{3} \circ r_{2} \circ r_{1}$ be a composition of reflections with respect to the line l_{1}, l_{2}, l_{3}.
Notice that if $l_{1} \| l_{2}$ and $l_{2} \perp l_{3}$ then f is a glide reflection by definition (as $r_{2} \circ r_{1}$ is a translation along the line parallel to l_{3}). Similarly, we get a glide reflection if $l_{2} \| l_{3}$ and $l_{2} \perp l_{1}$. We will use this in the reasoning below.
We will consider several possibilities:

1. If all three lines are intersecting in one point O, then f is a reflection. Indeed, in this case $r_{2} \circ r_{1}$ is a rotation, so it may be represented as $r_{3} \circ r_{1}^{\prime}$ for some reflection with respect to a line l_{1}^{\prime} forming the same angle with l_{3} as l_{1} is forming with l_{2}. Hence, in this case

$$
f=r_{3} \circ r_{2} \circ r_{1}=r_{3} \circ r_{3} \circ r_{1}^{\prime}=r_{1} .
$$

2. Now, suppose that $O=l_{1} \cap l_{2}$ and $O \notin l_{3}$. Consider a pair of lines $l_{1}^{\prime}, l_{2}^{\prime}$ through O forming the same angle as l_{1} and such that $l_{2}^{\prime} \perp l_{3}$. Then $r_{2} \circ r_{1}=r_{2}^{\prime} \circ r_{1}^{\prime}$. Now, let $M=l_{2}^{\prime} \cap l_{3}$. Consider a pair of mutually orthogonal lines $l_{2}^{\prime \prime}$ and $l_{3}^{\prime \prime}$ through M such that $l_{2}^{\prime \prime}| | l_{1}^{\prime}$. Then $r_{3} \circ r_{2}^{\prime}=r_{3}^{\prime \prime} \circ r_{2}^{\prime \prime}$ and we have

$$
f=r_{3} \circ r_{2} \circ r_{1}=r_{3} \circ r_{2}^{\prime} \circ r_{1}^{\prime}=r_{3}^{\prime \prime} \circ r_{2}^{\prime \prime} \circ r_{1}^{\prime} .
$$

Notice that $l_{2}^{\prime \prime}| | r_{1}^{\prime}$ and $l_{2}^{\prime \prime} \perp l_{3}^{\prime \prime}$, which implies that f is a glide reflection.
3. The case when the lines l_{2} and l_{3} do intersect and their intersection point does not lie on l_{1} is considered similarly to the case 2 ..
4. If all three lines are parallel to each other, then the translation $r_{2} \circ r_{1}$ may be written as $r_{3} \circ r_{1}^{\prime}$ for some line $l_{1}^{\prime} \| l_{1}$. Hence,

$$
f=r_{3} \circ r_{2} \circ r_{1}=r_{3} \circ r_{3} \circ r_{1}^{\prime}=r_{1}^{\prime}
$$

and f is a reflection.
$2.4\left(^{*}\right)$ List all finite order elements of the group $\operatorname{Isom}\left(\mathbb{E}^{2}\right)$.
Solution.Each isometry of \mathbb{E}^{2} is a composition of at most 3 reflections.

- 0 reflections: identity is of finite order 1.
- 1 reflection: reflection is of order 2 .
- 2 reflections: either translation or rotation. The former is of infinite order as it acts as $z+a$ on the complex plane - and $z+k a \neq z$ for $a \neq 0$. The rotation by angle α is of finte order if and only if $k \alpha=n \cdot 2 \pi$. Hence, a rotation by angle α is of finite order if and only if $\alpha=a \pi$ where $a \in \mathbb{Q}$.
- 3 reflections: by Problem 4, it is a glide reflection, isometry of infinite order (to see that the glide reflection $f=T_{t} \circ r_{l}$ is of infinite order consider the restriction of f to the line l).

So, isometry of the Euclidean plane is of finite order if it is a reflection or a rotation by $a \pi$, $a \in \mathbb{Q}$ (we don't need to mention identity separately as identity is a rotation by 0).
2.5 Let t_{a} be a translation by the vector a and let $R_{\alpha, z}$ be a rotation by angle α around $z \in \mathbb{C}$. What can you say about the isometry $f=R_{\alpha, z} \circ t_{a} \circ R_{-\alpha, z}$?

Solution. First, as f is conjugate to t_{a} it is a translation. To find the vector of the translation, we represent both $R_{\alpha, z}$ and t_{a} as a composition of two reflections.
Let l_{1} be a line through z orthogonal to the vector a, let l_{2} be the line parallel to l_{1} and lying on the distance $|a| / 2$, so that $r_{2} \circ r_{1}=t_{a}$ (as usually, r_{i} is a reflection with respect to l_{i}). Let l_{3} be a line through z such that $R_{\alpha, z}=r_{3} \circ r_{1}$ (it makes angle $\alpha / 2$ with l_{1}). Then

$$
f=\left(r_{3} \circ r_{1}\right) \circ\left(r_{2} \circ r_{1}\right) \circ\left(r_{1} \circ r_{3}\right)=r_{3} \circ r_{1} \circ r_{2} \circ r_{3}=r_{3} \circ\left(r_{1} \circ r_{2}\right) \circ r_{3} .
$$

So, f is conjugate to t_{-a} by r_{3}. It is easy to check now that f translates by the vector $b=r_{3}(-a)$.
2.6 Give an example of an isometry $f: \mathbb{E}^{2} \rightarrow \mathbb{E}^{2}$ and a set $A \subset \mathbb{E}^{2}$ for which
(a) $f(A) \subset A, f(A) \neq A$;
(b) A is a bounded set, $f(A) \subset A, f(A) \neq A$.

Solution. (a) For example, one could choose A to be a half-plane $x>0$ and f to be a translation by $(1,0)$.
(b) One possibility to construct the example is the following.

Let R be a rotation around $(0,0)$ by some angle $\alpha \pi$, where $\alpha \in \mathbb{R}$ is any irrational number, say
$\sqrt{2}$. We will define A to be a countable set of points on the unit circle:

$$
a_{1}=(1,0) \quad \text { and } \quad a_{i+1}=R\left(a_{i}\right) .
$$

Then it is clear that A is bounded and that $f(A) \subset A$. Irrationality of α implies that $a_{1} \notin f(A)$.
$2.7\left(^{*}\right)$ Let $x=\left(x_{1}, x_{2}\right)$ be a point in \mathbb{E}^{2} and $a=\left(a_{1}, a_{2}\right)$ be a vector. Consider the line given by the equation $\langle x, a\rangle=0$, i.e. the set of points $\left\{\left(x_{1}, x_{2}\right) \mid a_{1} x_{1}+a_{2} x_{2}=0\right\}$.
Show that the transformation

$$
f: x \mapsto x-2 \frac{\langle x, a\rangle}{\langle a, a\rangle} a
$$

(a) is an isometry;
(b) preserves the line $\langle x, a\rangle=0$ pointwise;
(c) is a reflection with respect the the line $\langle x, a\rangle=0$.
(d) What is the geometric meaning of $\frac{\langle x, a\rangle}{\langle a, a\rangle} a$?
(It should help you see that f is the reflection without any computations).
Solution. (a) We need to check that given two points $x=\left(x_{1}, x_{2}\right)$ and $y=\left(y_{1}, y_{2}\right)$, the distance between x and y is the same as the distance between $f(x)$ and $f(y)$. In other words, we need to prove $\langle x-y, x-y\rangle=\langle f(x)-f(y), f(x)-f(y)\rangle$. This is a straightforward computation:

$$
f(x)-f(y)=\left(x-2 \frac{\langle x, a\rangle}{\langle a, a\rangle} a\right)-\left(y-2 \frac{\langle y, a\rangle}{\langle a, a\rangle} a\right)=(x-y)-2 \frac{\langle x-y, a\rangle}{\langle a, a\rangle} a
$$

so,
$\langle f(x)-f(y), f(x)-f(y)\rangle=\langle x-y, x-y\rangle-4 \frac{\langle x-y, a\rangle}{\langle a, a\rangle}\langle a, x-y\rangle+4 \frac{\langle x-y, a\rangle^{2}}{\langle a, a\rangle^{2}}\langle a, a\rangle=\langle x-y, x-y\rangle$.
(b) If $\langle x, a\rangle=0$ then $f(x)=x+0=x$.
(c) An isometry of \mathbb{E}^{2} preserving a line pointwise is either identity or reflection. It is clear that f is not an identity (it moves non-trivially every point not lying in the line $\langle x, a\rangle=0$), so, it is a reflection.
(d) The vector $x-\frac{\langle x, a\rangle}{\langle a, a\rangle} a$ is orthogonal to a (check by taking the scalar product!), so $v=\frac{\langle x, a\rangle}{\langle a, a\rangle} a$ is exactly the component of x orthogonal to the line $\langle x, a\rangle=0$ (the absolute value would clearly work correctly if both x and a where of length 1 ; now, by linearity this value is proportional to the length of x and does not depend on the length of a a $\langle a, a\rangle=\|a\|^{2}$. So, $x-v$ is the orthogonal projection to the line and $x-2 v$ is the reflection image of x.
2.8 (Mirror on the wall)

Assume you are 2 m tall and looking at the wall mirror from 1 m away. How long the mirror should be so that you could see both your toes and your head? How the answer depend on your hight? on the distance to the mirror?

Solution. See "Mirror on the wall" entry on cut-the-knot (you will find both the solution and the applet to play with).

