
Anna Felikson, Durham University Geometry, 7.11.2022

Solutions 3-4

3.1 Let ABC be a triangle and let f be an isometry. Prove that the points C and D lie on the same
side with respect to the line AB if and only if the points f(C) and f(D) lie on the same side
with respect to the line f(A)f(B).

Solution: Suppose that C and D lie on the same side with respect to the line AB but f(C)
and f(D) lie on different sides with respect to the line f(AB). Then the segment CD does not
intersect the line AB while the segment f(C)f(D) does intersect the line f(AB). In particular,

0 < min
x∈AB, y∈[CD]

d(x, y) = min
x′∈f(AB), y′∈f([C,D])

d(x′, y′) = 0,

which is impossible.

Similarly, one can show the impossibility of the assumption that C and D lie on different sides
with respect to AC, while f(C) and f(D) lies on the same side with respect to f(AB).

3.2 Let f, g ∈ Isom(E2). Show that g(x) ∈ Fixgfg−1 ⇔ x ∈ Fixf for all x ∈ E2.

Solution: Suppose first that x ∈ Fixf , i.e. f(x) = x. Then g ◦ f ◦ g−1(g(x)) = g ◦ f(x) = g(x),
i.e. g(x) ∈ Fixgfg−1 .

Similarly, if g(x) ∈ Fixgfg−1 then g(x) = gfg−1(g(x)). Also gfg−1(g(x)) = g(f(x)). So, we get
that g(x) = g(f(x)). As g is a bijection, this implies x = f(x).

3.3 (*) Show that the map
f(x) = Ax, A ∈ GL2(R),

is an isometry if and only if A ∈ O2(R) (i.e. A ∈ GL2(R), ATA = I).

Solution: Suppose that f = Ax is isometry, A ∈ GL2(R), A =

(
a b
c d

)
. Then

√
x21 + x22 = d(x,0) = d(f(x), f(0)) =

√
(ax1 + bx2)2 + (cx1 + dx2)2 =

=
√

(a2 + c2)x21 + (c2 + d2)x22 + 2(ab+ cd)x1x2

should hold for any choice of x = (x1, x2). In particular, the choice (x1, x2) = (1, 0) gives
a2 + c2 = 1, the pair (0, 1) gives b2 +d2 = 1, and the pair (1, 1) gives ab+ cd = 0. This is exactly
the condition that AtA = I:(

a c
b d

)(
a b
c d

)
=

(
a2 + c2 ab+ cd
ab+ cd b2 + d2

)
.

So, if f(x) = Ax is an isometry then A ∈ O2(R).

Suppose now that A ∈ O2(R). We need to show that f(x) = Ax preserves the distance from x
to any point y. For the point y = (0, 0) the equality d(x,y) = d(f(x), f(y)) is exactly the above
computation (read backwards). For arbitrary point y = (y1, y2) it is the same computation with
x1 substituted by (x1 − y1) and x2 substituted by (x2 − y2).

3.4 Let f : z 7→ 2z, z ∈ C. Let G be a group of transformations of E2 generated by f .

(a) Does G act discretely on C? Justify your answer.

(b) Show that G acts discretely on C∗ = C \ {0}.
(c) Find a fundamental domain for the action G : C∗.
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Solution: (a) G does not act descretely on C as the point 0 is an accumalation point for each
orbit (for example, the orbit of the point z = 1 consists of all points 2n ∈ C, n ∈ Z, in particular,
the sequence 1/2n tends to 0).

(b) An orbit of a point z ∈ C consists of all points 2nz ∈ C, this set has no accumulation points
in C \ {0} (for each point of the orbit one can find a ball neighbourhood containing no other
points of the same orbit - what could be the radius of such a ball?)

(c) one possible answer is to take an annulus {z ∈ C | 1 < |z| < 2}. Then it is easy to see that
the G-images of this annulus tile C∗ without intersections. Can a fundamental domain be of
some other shape?

3.5 (*) Let P be a regular hexagon on E2.

(a) Find a group H acting on E2 discretely and such that P is a fundamental domain for the
action H : E2. (Describe the group in terms of its generators).

(b) Let G be a group generated by reflections with respect to the sides of P . Show that G is
discrete.

(c) Find a fundamental domain for G.

(d) Is H a subgroup of G? If yes, find its index [G : H].

(e) describe the orbit space of the action H : E2.
Hint: if you were not too creative in part (a) you will probably get some space we already
met in the course.

Solution: (a) The easiest way is to define the group as a group generated by two translations.
More precisely, consider a tiling of the plane by regular hexagons. Let u and v be the vectors
from the center of P to the centers of two its neighbours and such that u 6= v. Then we can
take the group generated by the translations Tu and Tv by these two vectors.

Notice that both Tu and Tv preserve the hexagonal tiling of the plane, so each element preserves
it. Also, all elements of the group are isometries.

We need to check that each point p ∈ E2 has a neighbourhood containing at most finitely many
points of each orbit. Notice that

- there are finitely many isometries of E2 taking a regular hexagon to itself.
- there are finitely many hexagons gP , g ∈ G intersecting any given disc on E2.

So, every disc contains finitely many points of each orbit, and hence, H acts discretely on E2.

Now, we need to prove that P is the fundamental domain of the action. It is easy to see that
the hexangond hP , h ∈ H cover the whole plane. Moreover, there is exactly one element of H
taking P to any other hexagon of the hexagonal tiling (translation by the vector connecting the
centres), so each hexagon of the tiling only contains one point of each orbit. Finally, every point
on a boundary of the hexagon P belongs to at most 3 hexagons. So, P is a fundamental domain
for the action H : E2.

(b) All generators of the group G preserve the hexagonal tiling of the plane, so, all elements
of G do preserve it. Hence, by the same reason as above in (a) we conclude that G is acting
discretely on E2.

(c) Let as subdivide each hexagon in the tesselation into 6 regular triangles. Then every generator
of G preserves the tiling of the plane by the triangles. In principle, there are many isometries
taking a regular triangle to itself, however inside the group G we have some constrains:

(α) every element of G maps the centre of a hexagon to a centre of (another) hexagon;
(β) we can color the triangles in the alternating way black and white. Then every reflection

takes all black triangles to white ones and all white triangles to the black one. This implies that
if T is white triangle and gT = T for some g ∈ G then g is orientation-preserving. Combining
this with observation (α) above we see that g = Id (it is orientation preserving isometry, taking
T to itself and taking one vertex of T to itself).

As the copies gT , g ∈ T cover the plane, we conclude that a regular triangle T is a fundamental
domain of G : E2.

(d) Yes, H is a subgroup of G. To see that we need to show that both translations generating
H lie in G. We will show it just for one translation u - the other one is similar.
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First, we prove that G contains reflections with respect to all sides of all hexagons in the tiling.
It is sufficient to see that for the sides of one tile adjacent to P (then we can move to any given
tile in several steps). Let r1, . . . , r6 be the reflections with respect to the sides of P . and let
r1(P ) be the adjacent tile. Then the reflections with respect to the sides of r1(P ) may be written
as r1, r1r2r1, r1r3r1, . . . , r1r6r1 (check it!).

Now, let Tu is the translation by u and suppose that Tu(P ) coincide with r1(T ). Then Tu is
a composition of two reflections with respect to two parallel lines, namely r1 and a reflection
with respect to the diagonal of the hexagon. Both reflections lie in G as we have seen in the
paragraph above.

The index [G : H] is the number of (left) cosets of H in G, which may be found as the number
of fundamental domains of the group G in one fundamental domain of the subgroup H (here,
it is 6 triangles in a hexagon). This counts how many different elements of G are there modulo
action of H.

(e) The orbit space of H : E2 is a torus (the corresponding latice is generated by the translations
by u and v). One can also see it by following cutting and pasting procedure: let Q be a
quadrilateral with one vertex in the center of the hexagon, one in a vertex and two vertices in
the midpoints of its sides (six copies of q tile the hexagon). Then the six quadrilaterals may be
rearranged into a parallelogram is in the following figure:
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Remark. The quadrilateral Q is not a fundamental domain for G : E2 as there is a reflection
in G which takes Q to itself.

4.1 Let G : E2 be a cyclic group generated by a translation T . Let X be an orbit space of G : E2.

(a) Show that X is an infinitely long cylinder which admits a Euclidean metric (i.e. each point
on X has a neighbourhood isometric to a domain in E2).

(b) Find a closed geodesic on X;

(c) Find an open geodesic on X.

Solution: (a) Let F be a fundamental domain for the action G : E2 which looks like an infinite
strip (in particular, we can take a Dirichlet domain). Then X is an infinite strip F with opposite
sides identified. It is clear that each “inner” point for the strip has a good neighbourhood. For a
“boundary point” of the strip we glue the disc neibourhood from two semi-disks. So, X inherits
Euclidean structure from E2.

(b) Let x ∈ E2 be any point and let Tx be its image under the translation. Consider the line l

through x and Tx. Then l̂ = l/G (the set of points of l modulo action of G) is a closed geodesic.

(c) Let l1 be a line orthogonal to the direction of translation. Then l1 is contained entirely in

F , so l̂1 = l1/G is again a line. Then l̂ is an open geodesic in X.

4.2 Let X be a torus obtained by identification of opposite sides of the Euclidean square.
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(a) Are there closed geodesics on X?;

(b) Are there open ones?

Solution: (a) Let the square be a square with side 1, with the vertices lying in the integer
lattice L = {(x1, x2)|x1, x2 ∈ Z} and sides parallel to the coordinate axes. Let l ∈ E2 be a line

passing through two distinct points of the lattice L and let l̂ = l/G where G is a group generated

by unit translations along the coordinate axes (so that X = E2/G). Then l̂ is a closed geodesic
on X (it closes when it first comes to an integer point).

(b) Let l be a line through O = (0, 0) which makes with the axis Ox an angle θ with irrational

tanθ. Then l never passes through any integer point (x1, x2) ∈ L except for (0, 0). Let l̂ = l/G.

Then no points of l will be identified, so l̂ is an open geodesic on X.

4.3 (*) Given ruler and compass and a circle C on the plane, construct the centre of the circle. You
can use without proofs and further descriptions the construction of perpendicular bisector for a
given segment.

Solution: Let A and B be two points on the circle C. Let lAB be the perpendicular bisector
for AB. Then the centre O of the circle lies on lAB (as it lies on the same distance from A and
B). Similarly, for a point D ∈ C we can also look at the segment AD, its perpendicular bisector
lAD also contains O. So, O = lAB ∩ lAD.

4.4 (*) Does there exist a map of a domain on the sphere onto a domain on the Euclidean plane
that takes the segments of spherical lines into segments of Euclidean lines?

Solution: Yes! Below we construct such a map as a projection of a triangle on the sphere
to a plane. Let ABC be a spherical triangle. Consider a Euclidean plane in E3 through the
points A,B,C. Consider a projection ϕ of the sperical triangle ABC from the center O of
the sphere to the plane ABC. It will take the sperical triangle ABC to the Euclidean triangle
ABC. Furthermore, a part of a greate circle through MN on the sphere will be mapped to the
intersection of the plane ABC with the plane OMN , which is a line on the plane.

Note, that we actually don’t need this triangle ABC here at all: we could do the same for an
open half-sphere (projecting it to the whole plane).
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