Geometry III/IV

Time: Monday 11am MCS2068

 $\begin{array}{ccc} {\rm Tuesday~(weeks~3,5,7,9)} & {\rm 4pm} & {\rm TLC117} \\ {\rm Thursday} & {\rm 10am} & {\rm MCS2068} \end{array}$

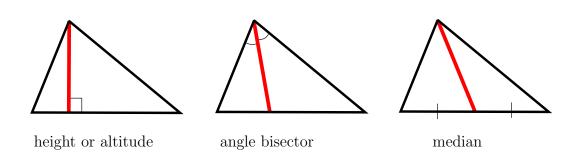
Lecturer: Anna Felikson

e-mail: anna.felikson@durham.ac.uk

Office hours: Thursday 11:30-12:30 MCS3006

Course webpage: http://www.maths.dur.ac.uk/users/anna.felikson/Geometry/Geometry22/index22.html

Some terminology:



Euclidean Geometry

EUCLID'S POSTULATES (5)

- 1. For every point A and for every point B not equal to A there exists a unique line that passes through A and B.
- 2. For every segment AB and for every segment CD there exists a unique point E such that B is between A and E and such that segment CD is congruent to segment BE.
- 3. For every point O and every point A not equal to O, there exists a circle with center O and radius OA.
- 4. All right angles are congruent to each other.
- 5. (Euclid's Parallel Postulate) For every line l and for every point P that does not lie on l, there exists a unique line m passing through P that is parallel to l.

HILBERT'S AXIOMS (5 groups)

Undefined notions: point, line, incidence, betweenness, and congruence.

1. Incidence Axioms (IA)

- IA 1. Given 2 distinct points there is a unique line incident with them.
- IA 2. Given a line there exist at least 2 distinct points incident with it.
- IA 3. There exist 3 distinct points not incident with the same line.

2. Betweenness Axioms (BA)

- BA 1. If A * B * C then also C * B * A and A, B, C are distinct collinear points.
- BA 2. Given 2 points P and Q there exist 3 points A, B, C such that P*B*Q and P*Q*C and A*P*Q.
- BA 3. Given 3 collinear points, only one of them can be between the other two.
- BA 4. (Plane Separation) For every line l and for every 3 points A, B, C not on l,
 - (a) If A, B are on the same side of l and B, C are on the same side of l, then A, C are on the same side of l.
 - (b) If A, B are on the opposite sides of l and B, C are on the opposite sides of l, then A, C are on the same side of l.

3. Congruence Axioms (CA)

- CA 1. Given segment AB and any ray with vertex C, there is a unique point D on this ray such that $AB \approx CD$.
- CA 2. If $AB \approx CD$ and $AB \approx EF$ then $CD \approx EF$.
- CA 3. Given A*B*C and A'*B'*C', if $AB \approx A'B'$ and $BC \approx B'C'$ then $AC \approx A'C'$.
- CA 4. Given $\angle D$ and any ray AB there is a unique ray AC on each half-plane of the line AB such that $\angle BAC \approx \angle D$.
- CA 5. If $\angle A \approx \angle B$ and $\angle A \approx \angle C$ then $\angle B \approx \angle C$.
- CA 6. (SAS Criterion) If 2 sides and the included angle of a triangle are congruent to those of another triangle, respectively, then the two triangles are congruent.

4. Continuity Axioms (CtA)

- CtA 1. (Circular Continuity Principle) If a circle has one point inside and one point outside another circle, then the two circles intersect in two points.
- CtA 2. (Archimedes' Axiom) Given segment CD and any ray AB there is a number n and a point E on this ray such that $n \times CD \approx AE \geq AB$.

5. Parallelism Axiom (PA)

PA 1. (Hilbert's Parallel Axiom) Given a line l and a point P not on l, there is at most one line through P which is parallel to l.

(SOME) THEOREMS of EUCLIDEAN GEOMETRY (E)

	Statement	Pf based on	reference	PA
	Basic facts:			
E 1	Given a triangle $\triangle ABC$ and a line l s.t. $A, B, C \notin l$, if l intersects AB then l intersects either AC or BC .	BA4		-
E2	An angle and its supplement add to π . Corollary: Supplements of congruent angles are congruent.			-
E3	Vertical angles are equal.	E2		-
	Congruence of triangles, isosceles trianges:			
E4	(SAS) If $AB = A'B'$, $AC = A'C'$ and $\angle BAC = \angle B'A'C'$ then $\triangle ABC$ is congruent to $\triangle A'B'C'$.	=CA6	2.2	-
E 5	(ASA) If $AB = A'B'$, $\angle BAC = \angle B'A'C'$ and $\angle ABC = \angle A'B'C'$ then $\triangle ABC$ is congruent to $\triangle A'B'C'$.	CA1, CA4	2.1	-
E6	(Thales's thm) If $AB = BC$ then $\angle BAC = \angle BCA$.	E4 (SAS)	3	-
E7	If $\angle BAC = \angle BCA$ then $AB = BC$.	E5 (ASA)		-
E8	If $AB = BC$ and M is a midpoint of AC then BM bisects $\angle ABC$ and is orthogonal to AC . ("in isosceles triangle a median is an altitude and an angle bisector").	E4 (SAS)	3.3	-
E9	Given a line l and a point A there exists a unique line l' perpendicular to l and containing A .	CA4, Cor. E2		-
E10	(SSS) If $AB = A'B'$, $AC = A'C'$ and $BC = B'C'$ then $\triangle ABC$ is congruent to $\triangle A'B'C'$.	E9, E4 (SAS) ,E8	2.3	-
	Parallel lines:			
E11	For lines a, b, c , if $a b$ and $b c$ then $a c$.	PA		+
E12	Distinct lines l and l' are parallel iff some transversal line creates included interior angles adding to exactly π . Corollary: $l l' $ iff alternate interior angles are equal.	BA4, E5 (ASA), E2		+
E13	Angle sum of any triangle equals to π .	E12, BA3, BA4		+
	<u>Lines in triangles :</u>			
E14	The locus of points on the same distance from A and B is a line, this line coincides with the perpendicular bisector to AB .	E8, E4 (SAS)		-
E15	The perpendicular bisectors of the sides of a triangle are concurrent. Corollary: Each triangle has a circumscribed circle.	E14	8	-
E16	The angle bisectors in a triangle are concurrent. Corollary: Each triangle has an inscribed circle.	E5 (ASA)	11	-
E17	(Orthocentre property) The altitudes in a triangle are concurrent.	E12, E15	13	+

	Similarity:			
E18	In a parallelogram opposite sides are equal.	E12, E5 (ASA)	4.1	+
E19	Let $\angle BOA$ be an angle, let $A_1, A_2, A_3 \in OA$, $B_1, B_2, B_3 \in OB$ be points satisfying $A_1B_1 A_2B_2 A_3B_3$. If $A_1A_2 = A_2A_3$ then $B_1B_2 = B_2B_3$.	E18, E5 (ASA)		+
E20	If ABC is a triangle and D, E are points on AB, AC s.t. $DE BC$ then $AD : AB = AE : AC$. Converse thm also holds: if $AD : AB = AE : AC$ then $DE BC$.	E19	5	+
E21	The medians of a triangle are concurrent (at a point G called centroid) and $AG = \frac{2}{3}AM$ for a median AM of $\triangle ABC$.	E19	12	+
E22	Triangles $A_1A_2A_3$ and $B_1B_2B_3$ are similar (i.e. $\angle A_i = \angle B_i$) if and only if then they are proportional (i.e. $\frac{A_1A_2}{B_1B_2} = \frac{A_2A_3}{B_2B_3} = \frac{A_1A_3}{B_1B_3}$).	E20	6	+
E23	Let CD be an altitude of a right triangle ABC ($\angle C = \frac{\pi}{2}$) then $AD \cdot DB = CD^2$.	E22		+
E24	(Pythagoras's thm) In a right triangle ABC ($\angle C = \frac{\pi}{2}$) holds $AB^2 = AC^2 + BC^2$.	E23	7	+
E25	(Triangle inequality) $AB + BC \ge AC$.	E24		+
	Angles in a circle:			
E26	(Angles in a semicircle) Let AB be a diameter of a circle \mathcal{C} , and let $P \in \mathcal{C}$ be point $(P \neq A, B)$. Then $\angle APB = \frac{\pi}{2}$.	E8, E13		+
E27	(Angle at centre) Let AB be an arc of a circle \mathcal{C} , centre O , and let $P \in \mathcal{C}$ be a point contained in the same halfplane as O with respect to the line AB . Then $\angle AOB = 2\angle APB$.	E7, E13		+
E28	(Angle in the same segment are equal) Let AB be an arc of a circle C , and let $P_1, P_2 \in C$ be two points in the same halfplane as O with resp. to AB . Then $\angle AP_1B = \angle AP_2B$.	E27		+
E29	(Opposite angles of a cyclic quadrilateral add to π) If $ABCD$ is a quadrilateral with vertices on a circle then $\angle ABC + \angle CDA = \pi$.	E27, E13		+
	Sine and cosine rules:			
E30	(Sine rule) $\frac{a}{\sin \alpha} = \frac{b}{\sin \beta} = \frac{c}{\sin \gamma}$	Def. of sin		+
E31	(Cosine rule) $c^2 = a^2 + b^2 - 2ab\cos\gamma$	E24		+

Remarks

- 1. A. D. Gardiner, C.J. Bradley, Plane Euclidean Geometry, UKMT, Leeds 2012.
- 2. References are given to http://www.unitedthc.com/TUT/Geometry/geometry.htm
- 3. The third column contains hints to (one of the many possible!) proofs. (In many cases we choose proofs different from ones in the references.
- 4. Last column indicates use of the parallel axiom (PA) in the proof. Some statement marked "+" are still valid in the absence of PA!
- 5. For the detailed treatment of axiomatic fundations of Euclidean geometry see M. J. Greenberg, *Euclidean and Non-Euclidean Geometries*, San Francisco: W. H. Freeman, 2008.