Feedback 17-18

For all questions:

As usually: please, please support your solutions with diagrams!!!.

- Question 17.4:

- Most solutions of the question started with something like "let's use the classification of isometries" - which is the best strategy here. However, later many students fall into different traps:
- One should remember there are orientation-preserving isometries and orientation-reversing ones;
- There are two types of "translations" in \mathbb{H}^{2} : the parabolic and the hyperbolic ones!
- All orientation-preserving isometries in \mathbb{H}^{2} have a fixed point in \mathbb{H}^{2} or on the absolute. But only the elliptic one have fixed points inside \mathbb{H}^{2}. (Fixed points on the boundary do not help to conclude f is identity, as distances are only defined for two points lying inside \mathbb{H}^{2}).

- Question 17.5:

- While computing in the hyperboloid model, remember
- to use the pseudo-scalar product $(\mathbf{u}, \mathbf{v})=u_{1} v_{1}+u_{2} v_{2}-u_{3} v_{3}$.
- to square (u, v) in the numerator of $Q=\frac{(\mathbf{u}, \mathbf{v})^{2}}{(\mathbf{u}, \mathbf{u})(\mathbf{v}, \mathbf{v})}$
- Also, remember that when computing in the vector model, it is not necessary to have $\langle a, a\rangle=1$ (as soon as you do not forget about the denominator in Q). So, you can use the vector which is more convenient for computations (i.e. for example $(1,1,0)$ rather than something with $\sqrt{2}$).
- Remember, if l_{1} and l_{2} are two intersecting lines forming an angle θ then the composition of reflections in these lines is a rotation by the angle 2θ !

- Question 18.2:

- When working with circles, horocycles of equidistant curves, remember:

> they are not straight lines!

In particular, congruence of triangles applies to triangles formed of straight lines, the same holds for any statements about sum of angles.

