Feedback 7-8

- Question 7.2:

- Everybody got it right that we need to map the triangle to a regular one (by affine map).
- Then many works claimed that the hexagon is mapped to a regular hexagon - which is wrong: the regular hexagon have 3 pairs of parallel sides, while the corresponding sides of the initial hexagon intersect. As parallelism is preserved by affine maps, this means that the image cannot be regular.
- Luckily, this does not affects the proof too much, as the hexagon still has 3 reflection symmetries with respect to the diagonals (what is looses comparing to the regular one, are 3 symmetries with respect to side perpendicular bisectors, but we are not using these symmetries anyway).

- Question 7.4:

- This question is nicely done in many works by similarity in Euclidean case and by sine law in spherical one.
- Of course, one could use the sine law also for the Euclidean case.
- One can not use similarity on $S^{2}!!!$

There are no similar triangles and no parallel lines on the sphere!

- Question 7.8:

- In this question the only tricky part was to find $1-\lambda$ in (b) (and I have no real advise how to do it if you are stuck...)

- Question 8.3:

- In this question one needs to find a cross-ratio of 4 (collinear) points in $\mathbb{R} P^{2}$, or, equivalently, a cross-ratio of 4 (co-planar) lines in \mathbb{R}^{3}. To do this, one should cross the 4 lines by some other line l^{\prime}, and compute the cross-ratio for intersection points.
- The danger in the question was that three of the four points already were lying on a line. Then many students decided to call that line l^{\prime} and to say the last point is not lying there, so it will get coordinate ∞ on l^{\prime}. This is wrong! You still need to draw a line l_{4} through that last point and the origin and to find the intersection point $l^{\prime} \cap l_{4}$. You will only give the coordinate ∞ to that point if your line l_{4} is parallel to l^{\prime}.

