Hints 17-18

17.1. Use the upper half-plane model (guess, where to place the common point of two lines on the absolute?).
17.2. Use the upper half-plane model.
17.3. Show that an orientation-reversing isometry always preserve two points of the absolute (you don't need to compute for that!).
17.4. Use the classification of isometries.
17.5. (a) Directly compute with the formula of the reflection.
(b) Use Q.
(c) Find the example using two lines intersecting at the centre of the model $(0,0,1)$.
18.1. (a),(b) Use the upper half-plane model.
(c),(d) Use the orthogonal projections of the points A, B, C to l (you probably don't need any model for these parts).
18.2. (a) Consider the reflection with respect to h.
(b) Consider some symmetry again.
(c) This is a "not-a-question" question, to collect a couple of things which you already know.
(d) You may want to use (c) and 17.2 here.

Here are the diagrams showing what can happen in (c) and (d):

