Hints 5-6

5.2. One can reuse the same proof as for Euclidean case (considering perpendicular bisector and angle bisector as loci of something...).
5.3. Use polar correspondence.
5.6. Both sine and cosine laws will be useful.
6.2. Triangulate the polygon.
6.4. Use reflections.
6.5. This question is a bit more involved then the others. The main idea is to find a projection p of the spherical triangle to some plane, so that p will take a spherical triangle to a Euclidean one and a spherical median/altitude to a Euclidean one.
6.6 Use the first cosine rule to compute MN and BC .

