Questions for Problems classes

Here are some questions which will be probably discussed in the Problems Class (subject to change!)

1 Reflections on the plane, Geometric constructions

Problems Class 1 (17 October, 2023)

1. Let $R_{A, \varphi}$ and $R_{B, \psi}$ be rotations with $0<\varphi, \psi \leq \pi / 2$. Find the type of the composition $f=R_{B, \psi} \circ R_{A, \varphi}$.
Hint: This is an example of using reflections to study compositions of isometries (write everything as a composition of reflections, make you choice so that some of them cancel!).
2. Let A and B be two given points in one half-plane with respect to a line l. How to find a shortest path, which starts at A then travels to l and returns to B ? (How to find the point where this path will reach the line l ?)
3. Ruler and compass constructions: perpendicular bisector, perpendicular from a point to a line, midpoint of a segment, angle bisector, inscribed and circumscribed circles for a triangle.

2 Group actions on \mathbb{E}^{2}

Problems Class 2 (31 October, 2023)
0. Let g_{1}, \ldots, g_{n} be isometries of \mathbb{E}^{2}. Let $G=\left\langle g_{1}, \ldots, g_{n}\right\rangle$ be the group generated by g_{1}, \ldots, g_{n} (i.e. the minimal group containing all of g_{1}, \ldots, g_{n}). Show that the group G acts on \mathbb{E}^{2}.

1. Let G be a group generated by two reflections on \mathbb{E}^{2}. When G is discrete?
2. Let T be a triangle with angles $\frac{\pi}{2}, \frac{\pi}{4}, \frac{\pi}{4}$. Let r_{1}, r_{2}, r_{3} be the reflection with respect to the sides of T, and let G be the group generated by r_{1}, r_{2}, r_{3}. In the lecture we have checked that $G: \mathbb{E}^{2}$ discretely. Find the fundamental domain of this action.
3. Find the orbit-space for the action introduced in Question 2.
4. Let X be a regular triangle on \mathbb{E}^{2}. Let r_{1} and r_{2} be two distinct reflections taking X to itself. Find the fundamental domain of the action $G: X$. Find also the orbit-space.
5. Let G be a group generated by rotation through angle $\frac{2 \pi}{3}$ on the plane. Find the orbit-space of the action $G: \mathbb{E}^{2}$. Are there closed geodesics in this orbit-space? Are there bi-infinite open geodesics?

3 Spherical Geometry

Problems Class 3 (14 November, 2023)

1. Let $G: S^{2}$ be an action. G acts discretely if and only if $|G|<\infty$.
2. Let $G: X$ be an action and suppose that F is its fundamental domain. Then one can show that the action $G: X$ is discrete.
3. Let g be a reflection, $h \in \operatorname{Isom}\left(S^{2}\right)$. h is a reflection if and only if there exists $f \in \operatorname{Isom}\left(S^{2}\right)$ such that $f g f^{-1}=h$.
4. Let S^{2} be a sphere of radius 1 . Show that the length of a circle or(spherical) radius r equals to $2 \pi \sin r$.
Remark: for the sphere of radius R, the length of the circle of radius r will be $2 \pi R \sin \left(\frac{r}{R}\right)$. When $R \rightarrow \infty$ we see that $\frac{r}{R} \rightarrow 0$ and, hence, $2 \pi R \sin \left(\frac{r}{R}\right) \rightarrow 2 \pi r$.
5. Let S^{2} be a sphere of radius R. Let α and β be two parallel planes crossing S^{2}. Find the area of the part of S^{2} lying between the planes α and β.
6. One can also discuss ruler and compass constructions, as in \mathbb{E}^{2}.

4 Projective geometry

Problems Class 4 (28 November, 2023)

1. Find a projective transformation f which takes

$$
\begin{aligned}
& A=(1: 0: 0) \text { to }(0: 0: 1) \\
& B=(0: 1: 0) \text { to }(0: 1: 1) \\
& C=(0: 0: 1) \text { to }(1: 0: 1) \\
& D=(1: 1: 1) \text { to }(1: 1: 1)
\end{aligned}
$$

Find the image of $X=A D \cap B C$ under this transformation.
2. Find $[A, B, C, D]$ for the points above. (Does it exist?)

For $E=(1: 1: 0), F=(1: 2: 0)$ find $[A, B, E, F]$.
3. Check explicitly, that the transformation f from Question 1 preserves the value of $[A, B, E, F]$.
4. Let $A_{1}, A_{2}, A_{3}, A_{4}$ be points on a line a, let $B_{1}, B_{2}, B_{3}, B_{4}$ be points on a line b. Denote by p_{i} the line through A_{i} and B_{i}. Show that if the lines $p_{1}, p_{2}, p_{3}, p_{4}$ are concurrent, then the points $A_{i+1} B_{i} \cap A_{i} B_{i+1}(i=1,2,3)$ are collinear.
5. Formulate and prove the statement dual to the one in Question 4.

5 Möbius geometry

Problems Class 5 (23 January, 2024)

1. Find the type of Möbius transformation $f(z)=1 / z$.
2. Let f and g be inversions with respect to two intersecting circles. Show that $g \circ f=f \circ g$ if and only if $F i x_{f} \perp$ Fix ${ }_{g}$.
3. Let $\mathcal{C}_{1}, \ldots, \mathcal{C}_{5}$ be circles all passing through the points A and B on the plane. Show that there exists a circle γ orthogonal to all of \mathcal{C}_{i}.
4. Prove Ptolemy's theorem: given a quadrilateral $A B C D$ inscribed into a circle, one has

$$
|A B| \cdot|C D|+|B C| \cdot|A D|=|A C| \cdot|B D|
$$

6 Poincaré disc

Problems Class 6 (6 February, 2024)

1. Let l_{1} and l_{2} be two divergent lines. Show that there exists a unique common perpendicular to l_{1} and l_{2}.
2. Let $0 \leq \alpha, \beta, \gamma<\pi, \alpha+\beta+\gamma<\pi$. Then there exists a hyperbolic triangle with angles α, β, γ.
3. Show that every triangle in \mathbb{H}^{2} has an inscribed circle.
4. Given a hyperbolic triangle, is it true that it always has a circumscribed circle?
5. Ruler and compass constructions in hyperbolic plane:

- midpoint of a segment;
- perpendicular bisector;
- angle bisector;
- centre of a given circle;
- tangent line to a given circle;
- centre of inscribed circle for a triangle;
- centre of circumscribed circle for a triangle (when exists);
- common perpendicular for two divergent lines (in assumptions that one is given an infinitely long ruler, which allows to draw lines through two points of the absolute).

6. A polygon with all vertices at the absolute is called ideal. Is it true that all ideal hyperbolic quadrilaterals are isometric to each other?

7 Some computations in hyperbolic plane

Problems Class 7 (20 February, 2024)

1. Show that area of hyperbolic disc of radius r is $4 \pi \sinh ^{2}\left(\frac{r}{2}\right)$.
2. [Hyperbolic oranges] Consider hyperbolic oranges, i.e. a discs of radius r, where the inner disc of radius $\frac{9}{10} r$ is a pulp, while the outer $1 / 10$ is a peal. Assuming that all oranges are equally tasty, which oranges are better to buy: big or small?
3. [Hyperbolic golf] Assume you are playing golf on hyperbolic field and your aim is 300 m apart from you. You made a very good shoot, by sending a ball 300 m far away with only 1° mistake. How far away from you goal will the ball land?
4. We had many statements about hyperbolic triangles (e.g. sine and cosine rules, congruence theorems, area formula) - which of them still hold for unbounded triangles, having at least one vertex at the absolute?

8 Computations in hyperboloid model

Problems Class 8 (5 March, 2024)

1. Given a right-angled triangle with sides a, b, c and corresponding angles α, β, γ, where $\gamma=\pi / 2$, show that

$$
\sinh a=\sinh c \sin \alpha .
$$

2. Prove Pythagorean theorem $\cosh c=\cosh a \cosh b$ for a right-angled triangle with $\gamma=\pi / 2$.
3. For a right-angled triangle with $\gamma=\pi / 2$ prove $\tanh b=\tanh c \cos \alpha$.
4. Let $A B C D$ be a hyperbolic quadrilateral, with $\angle A=\angle B=\angle C=\pi / 2, A B=a$ and $B C=b$. Denote $\angle D=\varphi$. Find $\cos \varphi$.
5. Find the radius of the circle inscribed into an ideal hyperbolic triangle.
6. Let l a be a line in \mathbb{H}^{2}, e be an equidistant curve to the line. Let $N, N \in l$ and $A \in e$. Consider the points $B=e \cap A M$ and $C=e \cap A N$. Show that the area $S_{A B C}$ of triangle $\triangle A B C$ does not depend on the choice of $A \in e$.
