Riemannian Geometry, Epiphany 2014.

Homework 11-12

Starred problems due on Friday, February 7th

1. $\left.{ }^{*}\right)$ Consider the upper half-plane $M=\left\{(x, y) \in \mathbf{R}^{2} \mid y>0\right\}$ with the metric

$$
\left(g_{i j}\right)=\left(\begin{array}{cc}
1 & 0 \\
0 & \frac{1}{y}
\end{array}\right)
$$

(a) Show that all the Christoffel symbols are zero except $\Gamma_{22}^{2}=-\frac{1}{2 y}$.
(b) Show that the vertical segment $x=0, \varepsilon \leq y \leq 1$ with $0<\varepsilon<1$ is a geodesic curve when parametrized proportionally to arc length.
(c) Show that the length of the segment $x=0, \varepsilon \leq y \leq 1$ with $0<\varepsilon<1$ tends to 2 as ε tends to zero.
(d) Show that (M, g) is not geodesically complete
2. (a) Show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{llll}
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0
\end{array}\right)\right)=\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

Guess how the answer would be for the Lie group exponential of a $n \times n$-matrix of the same form (i.e., only entries 1 at the first upper diagonal).
(b) Use the fact (you don't need to prove this) that if A, B commute then

$$
\operatorname{Exp}(A) \operatorname{Exp}(B)=\operatorname{Exp}(A+B),
$$

in order to show that

$$
\operatorname{Exp}\left(t\left(\begin{array}{cccc}
c & 1 & 0 & 0 \\
0 & c & 1 & 0 \\
0 & 0 & c & 1 \\
0 & 0 & 0 & c
\end{array}\right)\right)=e^{t c}\left(\begin{array}{cccc}
1 & t & t^{2} / 2 & t^{3} /(3!) \\
0 & 1 & t & t^{2} / 2 \\
0 & 0 & 1 & t \\
0 & 0 & 0 & 1
\end{array}\right)
$$

3. (a) Let $H_{3}(\mathbf{R})$ be a set of 3×3 upper triangular matrices (i.e. the matrices of the form $\left(\begin{array}{ccc}1 & x_{1} & x_{2} \\ 0 & 1 & x_{3} \\ 0 & 0 & 1\end{array}\right)$, where $x_{1}, x_{2}, x_{3} \in \mathbf{R}$).

Show that the set $H_{3}(\mathbf{R})$ form a group. This group is called the Heisenberg group.
(b) Show that the Heisenberg group is a Lie group. What is its dimension?
(c) Prove that the matrices

$$
X_{1}=\left(\begin{array}{ccc}
0 & 1 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{2}=\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad X_{3}=\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

form a basis for the tangent space $T_{e} H_{3}(\mathbf{R})$ of the group $H_{3}(\mathbf{R})$ at the neutral element e.
(d) For each $k=1,2,3$, find an explicit formula for the curve $c_{k}: \mathbf{R} \rightarrow S L_{2}(\mathbf{R})$ given by $c_{k}(t)=\operatorname{Exp}\left(t X_{k}\right)$.
4. Let $(G,\langle\cdot, \cdot\rangle)$ be a compact Lie group with left-invariant metric and let dvol denote the corresponding left-invariant volume form. Compactness implies that $\operatorname{vol}(G)<\infty$ (you don't need to prove this). Define an inner product $\langle\langle\cdot, \cdot\rangle\rangle_{e}$ at $e \in G$ by

$$
\left\langle\left\langle v_{1}, v_{2}\right\rangle\right\rangle_{e}:=\int_{G}\left\langle A d\left(g^{-1}\right) v_{1}, \operatorname{Ad}\left(g^{-1}\right) v_{2}\right\rangle_{e} \operatorname{dvol}(g)
$$

and let $\langle\langle\cdot, \cdot\rangle\rangle_{g}$ denote the left-invariant extension to a Riemannian metric on G. Show that $\langle\langle\cdot, \cdot\rangle\rangle_{g}$ is a bi-invariant Riemannian metric on G :
(a) Show first that

$$
\left\langle\left\langle A d\left(h^{-1}\right) v_{1}, \operatorname{Ad}\left(h^{-1}\right) v_{2}\right\rangle\right\rangle_{e}=\left\langle\left\langle v_{1}, v_{2}\right\rangle\right\rangle_{e}
$$

for all $h \in G$, by using the fact that left-invariance of $d v o l$ implies that

$$
\int_{G} f\left(L_{h}(g)\right) d \operatorname{vol}(g)=\int_{G} f(g) d v o l(g) .
$$

(You may use this fact without proof.)
(b) Use the fact $A d\left(h^{-1}\right)=D L_{h^{-1}}(h) D R_{h}(e)$ in order to show

$$
\left\langle\left\langle D R_{h}(e) v_{1}, D R_{h}(e) v_{2}\right\rangle\right\rangle_{h}=\left\langle\left\langle v_{1}, v_{2}\right\rangle\right\rangle_{e} \quad \text { for all } h \in G,
$$

i.e., the right-invariance of $\langle\langle\cdot, \cdot\rangle\rangle_{g}$.

Remark: The above averaging procedure is called the Weyl trick.
5. $\left(^{*}\right)$ Let $(G,\langle\cdot, \cdot\rangle)$ be a Lie group with a bi-invariant Riemannian metric. Let \mathfrak{g} denote the corresponding Lie algebra of left-invariant vector fields on G. Our aim is to show for $X, Y \in \mathfrak{g}$ that

$$
\nabla_{X} Y=\frac{1}{2}[X, Y]
$$

(a) Use the relation

$$
\begin{aligned}
& \left\langle Z, \nabla_{X} Y\right\rangle= \\
& \quad \frac{1}{2}(X\langle Z, Y\rangle+Y\langle Z, X\rangle-Z\langle Y, X\rangle+\langle X,[Z, Y]\rangle+\langle Y,[Z, X]\rangle-\langle Z,[Y, X]\rangle)
\end{aligned}
$$

and the fact that the metric is left-invariant to prove that $\left\langle Z, \nabla_{Y} Y\right\rangle=\langle Y,[Z, Y]\rangle$ for $X, Y, Z \in \mathfrak{g}$.
(b) By Corollary 7.17, the bi-invariance of the metric implies that

$$
\langle[U, X], V\rangle=-\langle U,[V, X]\rangle
$$

for $X, U, V \in \mathfrak{g}$. Use this fact in order to conclude that $\nabla_{Y} Y=0$ for all $Y \in \mathfrak{g}$.
(c) Show that $\nabla_{X} Y=\frac{1}{2}[X, Y]$.
6. As in the lecture, let G be a Lie group, $H \subset G$ be a closed subgroup, $\pi: G \rightarrow G / H$ be the canonical projection, $\langle\cdot, \cdot\rangle_{e}$ be an $A d(H)$-invariant inner product on $T_{e} G, V \subset T_{e} G$ be the orthogonal complement to $T_{e} H \subset T_{e} G$ with respect to $\langle\cdot, \cdot\rangle_{e}$, and Φ the restriction of $D \pi(e): T_{e} G \rightarrow T_{e H} G / H$ to the subspace V. Prove the following statements:
(a) $T_{e} H=\operatorname{ker} D \pi(e)$.
(You may use without proof that $D \pi(e): T_{e} G \rightarrow T_{e H} G / H$ is surjective.)
(b) $\Phi: V \rightarrow T_{e H} G / H$ is an isomorphism.
(c) V is $A d(H)$-invariant.
(Hint: The fact that $\operatorname{Ad}\left(h_{1}\right) \operatorname{Ad}\left(h_{2}\right)=\operatorname{Ad}\left(h_{1} h_{2}\right)$ might be useful.)

