Riemannian Geometry, Epiphany 2014.

Homework 15-16

Starred problems due on Friday, March 7th

1. $\left.{ }^{*}\right)$
(a) Let $M \subset \mathbf{R}^{n}$ be a Riemannian manifold with a metric induced from \mathbf{R}^{n}. Let $p, q \in M$ be two points. Show that

$$
d_{M}(p, q) \geq d_{\mathbf{R}^{n}}(p, q),
$$

where $d_{M}(p, q)$ is the distance from p to q in M, and $d_{\mathbf{R}^{n}}(p, q)$ is the distance between the same points in \mathbf{R}^{n}.
(b) Recall that Bonnet-Myers theorem implies that if (M, g) is complete, and there is $\varepsilon>0$ such that $\operatorname{Ric} c_{p}(v)>\varepsilon$ for every $p \in M$ and for every unit tangent vector v, then the diameter of M is finite.
Use the surface $M=\left\{(x, y, z) \in \mathbf{R}^{3} \mid x^{2}+y^{2}+1=z^{2}\right\}$ to show that the assumption $\varepsilon>0$ is essential (i.e. can not be substituted by the assumtion $\operatorname{Ric}_{p}(v)>0$).
Hint: parametrize M by $(x, y, z)=\left(r \cos \varphi, r \sin \varphi, \sqrt{r^{2}+1}\right)$.

2. Second Variation Formula of Energy

Let $F:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ be a proper variation of a geodesic $c:[a, b] \rightarrow M$, and let X be its variational vector field. Let $E:(-\varepsilon, \varepsilon) \rightarrow \mathbf{R}$ denote the associated energy, i.e.,

$$
E(s)=\frac{1}{2} \int_{a}^{b}\left\|\frac{\partial F}{\partial t}(s, t)\right\|^{2} d t
$$

Show that

$$
E^{\prime \prime}(0)=\int_{a}^{b}\left\|\frac{D}{d t} X\right\|^{2}-\left\langle R\left(X, c^{\prime}\right) c^{\prime}, X\right\rangle d t
$$

3. $\left(^{*}\right)$ Let $S^{2}=\left\{x \in \mathbb{R}^{3} \mid x_{1}^{2}+x_{2}^{2}+x_{3}^{2}=1\right\}$ be a unit sphere, and $c:[-\pi / 2, \pi / 2] \rightarrow S^{2}$ be a geodesic defined by $c(t)=(\cos t, 0, \sin t)$. Define a vector field $X:[-\pi / 2, \pi / 2] \rightarrow T S^{2}$ along c by

$$
X(t)=(0, \cos t, 0)
$$

Let $\frac{D}{d t}$ denote covariant derivative on S^{2} along c.
(a) Calculate $\frac{D}{d t} X(t)$ and $\frac{D^{2}}{d t^{2}} X(t)$.
(b) Show that X satisfies the Jacobi equation.
4. Jacobi fields on manifolds of constant curvature.

Let M be a Riemannian manifold of constant sectional curvature K, and $c:[0,1] \rightarrow M$ be a geodesic satisfying $\left\|c^{\prime}\right\|=1$. Let $J:[0,1] \rightarrow T M$ be a orthogonal Jacobi field along c (i.e. $\left\langle J(t), c^{\prime}(t)\right\rangle=0$ for every $t \in[0,1]$).
(a) Show that $R\left(J, c^{\prime}\right) c^{\prime}=K J$.

Hint: You may use the result of Problem 4 from HW13-14.
(b) Let $Z_{1}, Z_{2}:[0,1] \rightarrow T M$ be parallel vector fields along c with $Z_{1}(0)=J(0), Z_{2}(0)=$ $\frac{D J}{d t}(0)$. Show that

$$
J(t)= \begin{cases}\cos (t \sqrt{K}) Z_{1}(t)+\frac{\sin (t \sqrt{K})}{\sqrt{K}} Z_{2}(t) & \text { if } K>0 \\ Z_{1}(t)+t Z_{2}(t) & \text { if } K=0, \\ \cosh (t \sqrt{-K}) Z_{1}(t)+\frac{\sinh (t \sqrt{-K})}{\sqrt{-K}} Z_{2}(t) & \text { if } K<0 .\end{cases}
$$

Hint: Show that these fields satisfy Jacobi equation, there value and covariant derivative at $t=0$ is the same as for $J(t)$, and then use uniqueness (Corollary 10.5).

