Riemannian Geometry, Epiphany 2014.

Homework 17-18

Starred problems due on Tuesday, March 18th

1. (*) Let M be a Riemannian manifold of non-positive sectional curvature.
(a) Let $c:[a, b] \rightarrow M$ be a differentiable curve and J be a Jacobi field along c. Let $f(t)=\|J(t)\|^{2}$. Show that $f^{\prime \prime}(t) \geq 0$, i.e., f is a convex function.
(b) Derive from (a) that M does not admit conjugate points.
2. (a) Let $c(t)$ be a geodesic, and $c\left(t_{0}\right)$ is conjugate to $c\left(t_{1}\right)$. Let J be any Jacobi field along c vanishing at t_{0} and t_{1}. Show that J is normal, i.e. $\left\langle J(t), c^{\prime}(t)\right\rangle \equiv 0$.
(b) Show that the dimension of the space J_{c}^{\perp} of normal vector fields along c is $2 n-2$.
3. $\left.{ }^{*}\right)$ Let $c:[0,1] \rightarrow M$ be a geodesic, and J be a Jacobi field along c. Denote $c(0)=p, c^{\prime}(0)=v$.

Define a curve $\gamma(s)$,

$$
\gamma:(-\varepsilon, \varepsilon) \rightarrow M, \quad \gamma(0)=p, \gamma^{\prime}(0)=J(0)
$$

Define also a vector field $V(s) \in T_{\gamma} M$, such that

$$
V(0)=v, \quad \frac{D}{d s} V(0)=\frac{D}{d t} J(0)
$$

and a variation $F(s, t)=\exp _{\gamma(s)} t V(s)$.
(a) Show that $F(s, t)$ is a geodesic variation of $c(t)$.
(b) Show that $\frac{\partial F}{\partial s}(0,0)=\gamma^{\prime}(0)=J(0)$, and $\frac{D}{d t} \frac{\partial F}{\partial s}(0,0)=\frac{D}{d s} V(0)=\frac{D}{d t} J(0)$.
(c) Deduce from (a) and (b) that every Jacobi field along a geodesic $c(t)$ is a variational vector field of some geodesic variation of c.
4. Let $M=\left\{(x, y, z) \in \mathbf{R}^{3} \mid x^{2}+y^{2}=z\right\}$ be a paraboloid of revolution with metric induced from \mathbf{R}^{3}. Let $p=(0,0,0)$. Show that p has no conjugate points in M.

