Riemannian Geometry, Epiphany 2014.

7 Crash course: Basics about Lie groups

A Lie group is a smooth manifold wit a smooth group structure (see Definition 1.12.)
Examples: matrix Lie groups: $G L(n, \mathbf{R}), S L(n, \mathbf{R}), O(n), S O(n)$.

7.1 Left-invariant vector fields and Lie algebra

Definition 7.1. Let G a be a Lie group, $g \in G$. Then the maps $L_{g}: G \rightarrow G$ and $R_{g}: G \rightarrow G$ defined by $L_{g}(h)=g h$ and $R_{g}(h)=h g$ are diffeomorphisms of G called left- and right-translation.
Remark: 1. $L_{g^{-1}} \circ L_{g}=i d_{G}, \quad L_{g_{1}} R_{g_{2}}(h)=R_{g_{2}} L_{g_{1}}(h)=g_{1} h g_{2}$.
2. The differential $D L_{g}: T_{h} G \rightarrow T_{g h} G$ gives a natural identification of tangent spaces. Moreover, $D L_{g}: \mathfrak{X}(G) \rightarrow \mathfrak{X}(G)$ defines a map of vector fields by the following formula: $\left(D L_{g} X\right)(h):=D L_{g}\left(g^{-1} h\right)\left(X\left(g^{-1} h\right)\right)$.

Definition 7.2. A vector field $X \in \mathfrak{X}(G)$ is called left-invariant if $D L_{g} X=X$ for all $g \in G$.
Remark 7.3. 1. Left-invariant vector fields on G form a linear space over \mathbf{R}.
2. Left-invariant vector field is determined by its value at e : if $X(e)=v$ then $X(g)=D L_{g}(e) v$.
3. Hence, the space of left-invariant vector fields on G may be identified with $T_{e} G$.

Definition 7.4. The space of left-invariant vector fields on G is called the Lie algebra of G and denoted by \mathfrak{g}.
Lemma 7.5. For arbitrary $X \in \mathfrak{X}(G), f \in C^{\infty}(G)$ holds $\left(\left(D L_{g} X\right) f\right)_{g}=X\left(f \circ L_{g}\right)$.
Corollary 7.7. If X is left-invariant, then $(X f) \circ L_{g}=X\left(f \circ L_{g}\right)$ for any $f \in C^{\infty}(G)$.
Proposition 7.8. Let X be a Lie group with Lie algebra g. Then for any $X, Y \in \mathfrak{g}$ holds $[X, Y] \in \mathfrak{g}$. Consequently, \mathfrak{g} is a Lie algebra in terms of Definition 2.22.

Example 7.9. Computation of $D L_{g}(e)$ for a matrix Lie group. In case of matrix Lie group, the left-invariant vector field $X \in \mathfrak{g}$ with $X(e)=v$ is given by $X(g)=g v$.

7.2 Lie group exponential map and adjoint representation

Define $\operatorname{Exp}: M(n, \mathbf{R}) \rightarrow M(n, \mathbf{R})$ by $\operatorname{Exp}(A)=\sum_{k=0}^{\infty} \frac{1}{k!} A^{k}$.
Properties: 1. the infinite sum converges for any matrix $A \in M(n, \mathbf{R})$, so $\operatorname{Exp}(A)$ is well-defined.
2. $\operatorname{Exp}(0)=e=\operatorname{diag}\{1, \ldots, 1\} \quad(n \times n$ diagonal matrix with 1 's on the diagonal $)$.
3. if $A B=B A$ then $\operatorname{Exp}(A+B)=\operatorname{Exp}(A) \cdot \operatorname{Exp}(B)$.
4. $\operatorname{Exp}(A) \in G L(n, \mathbf{R})$ for any $A \in M(n, \mathbf{R}):(\operatorname{Exp} A)^{-1}=\operatorname{Exp}(-A)$.

Proposition 7.10. Let G be a matrix Lie group. Let $v \in T_{e} G$ and let X be a unique left-invariant vector field on G with $X(e)=v$. Then the curve $c(t)=\operatorname{Exp}(t v) \in G$ satisfies $c(0)=e, c^{\prime}(0)=v$ and $c^{\prime}(t)=X(c(t))$.
A curve of the form $c(t)=\operatorname{Exp}(t v)$ is called the 1-parameter subgroup in G with $c^{\prime}(0)=v$.
Example 7.11: computation of the exponent for a diagonalizable matrix.
Remark. In case of abstract Lie group the exponential map may be defined as follows. Let G be a Lie group and g be its Lie algebra. Let $v \in T_{e} G$ and $X \in \mathfrak{g}$ be a unique left-invariant vector field with $X(e)=v$. Then there exists a unique curve $c: \mathbf{R} \rightarrow G$ with $c_{v}(0)=e, c_{v}^{\prime}(t)=X\left(c_{v}(t)\right)$ [without proof]. The curve c_{v} is called an integral curve of X. We define the exponential map by $\operatorname{Exp}(v)=c_{v}(1)$.
Definition 7.12. Let G be a Lie group. For $g \in G$ the adjoint representation $A d(g): T_{e} G \rightarrow T_{e} G$ is defined by

$$
A d(g)(w):=\left.\frac{d}{d t}\right|_{t=0} L_{g} R_{g^{-1}}(\operatorname{Exp}(t w))=\left.\frac{d}{d t}\right|_{t=0} g \operatorname{Exp}(t w) g^{-1}
$$

For $v \in T_{e} G$ the adjoint representation $a d(v): T_{e} G \rightarrow T_{e} G$ is defined by

$$
a d(g)(v):=\left.\frac{d}{d t}\right|_{t=0} A d(\operatorname{Exp}(t v))(w)=\left.\left.\frac{d}{d t}\right|_{t=0} \frac{d}{d s}\right|_{s=0} \operatorname{Exp}(t v) \operatorname{Exp}(t w) \operatorname{Exp}(-t v)
$$

Theorem 7.13. (without proof) Let G be a Lie group with a Lie algebra \mathfrak{g}. Then for all $X, Y \in \mathfrak{g}$ holds $[X, Y](e)=\operatorname{ad}(X(e))(Y(e)) \in T_{e} G$, i.e. by canonical identification of \mathfrak{g} with $T_{e} G$ we have $[X, Y]=a d(X) Y$.
Example 7.14. Theorem 7.13 for the case of a matrix Lie group.

7.3 Riemannian metrics on Lie groups

Definition 7.15. For a given inner product $<\cdot, \cdot>_{e}$ on $T_{e} G$, define the inner product at $g \in G$ for $v, w \in T_{e} G$ by $<v, w>_{g}:=<D L_{g^{-1}}(g) v, D L_{g^{-1}}(g) w>_{e}$. The family $\left(<\cdot, \cdot>_{g}\right)_{g \in G}$ of inner products defines a left-invariant Riemannian metric on G. (Every left-invariant Riemannian metric is obtained this way).

Remark 7.16. Let $(G,<,>)$ be a Lie group with a left-invariant metric. Then

1. the diffeomorphisms $L_{g}: G \rightarrow G$ are isometries;
2. for any two left-invariant vector fields $X, Y \in \mathfrak{g}$ the map $g \mapsto<X(g), Y(g)>_{g}$ is a constant function.

Theorem 7.17. Let G be a compact Lie group. Then G admits a biinvariant Riemannian metric $<\cdot, \cdot>_{g}$, i.e. both families of diffeomorphisms L_{g} and R_{g} are isometries.

Corollary 7.18. Let $(G,<,>)$ be a Lie group with biinvariant metric. Then for $X, Y, Z \in \mathfrak{g}$ holds $<[X, Y], Z>=-<Y,[X, Z]>$.
Corollary 7.19. Let $(G,<,>)$ be a Lie group with biinvariant metric and let ∇ be the Levi-Civita connection. Then for $X, Y \in \mathfrak{g}$ holds $\nabla_{X} Y=\frac{1}{2}[X, Y]$.
Remark 7.20. The 1-parameter subgroups are exactly the geodesics of the left-invariant metric on G. So, the Lie group exponential map Exp coincides with the Riemannian exponential map $\exp _{p}$ at the identity.

7.4 Invariant metric on homogenious spaces (supplemetary matherial, not for exam!)

Definition 7.21. A connected Riemannian manifold (M, g) is called homogeneous if the group of isometries of M acts transitively on M.

Examples: $\mathbf{E}^{n}, S^{n}, \mathbf{H}^{n}$.
Construction: Given a Lie group G and a closed subgroup $H \subset G$, consider the set $M=G / H=\{g H \mid g \in G\}$. Then

1. M is a smooth manifold (non-trivial theorem, uses that H is closed);
2. there is a canonical projection $\pi: G \rightarrow G / H, \pi(g)=g H$;
3. The elements of G act on M by $\widetilde{L}_{g}\left(g^{\prime} H\right)=g g^{\prime} H$, the diffeomorphism $\widetilde{L}_{g}: M \rightarrow M$ is called left G-action.

If there is a left-invariant metric on M, (i.e. $<D \widetilde{L}_{g}(e) v, D \widetilde{L}_{g}(e) w>_{g H}=<v, w>_{e H} \forall g \in G, v, w \in T_{e H}(G / H)$) then \widetilde{L}_{g} is an isometry of M, and M is a homogeneous space.
Theorem 7.22. (without proof). Each homogeneous manifold may be obtained in this way.
Theorem 7.23. (without proof)
The left-invariant metrics $<\cdot, \cdot>$ on G / H are in one-to-one correspondence to $A d(H)$-invariant inner products $<\cdot, \cdot>_{e}$ on $T_{e} G$, i.e. $<\operatorname{Ad}(h) v, A d(h) w>_{e}=<v, w>_{e}$ for all $h \in H, w, v \in T_{e} G$.
Example. $G=S O(3)$, isometries of a sphere $S^{2} ; H=S O(2)$ isometries of the sphere stabilizing one point, $M=S O(3) / S O(2)=S^{2}$, the sphere.
More generally, for a homogeneous space M one may coinside the group of its isometries $\operatorname{Isom}(M)$ with a subgroup $\operatorname{Stab}_{p} \subset \operatorname{Isom}(M)$ of isometries stabilizing one point $p \in M$. Then, one can prove $M=I \operatorname{som}(M) / \operatorname{Stab}_{p}$.

8 Curvature

8.1 Riemannian curvature tensor

Definition 8.1. Let (M, g) be a Riemannian manifold, let $\mathfrak{X}(M)$ be vector field on M, and let ∇ be a LeviCivita connection. Define a map (Riemannian curvature tensor) $R: \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \rightarrow \mathfrak{X}(M)$ by $R(X, Y) Z=\nabla_{X} \nabla_{Y} Z-\nabla_{Y X} Z \nabla_{[X, Y]} Z$.

Remark: $\quad R$ is linear in all variables; in particular, $R(f X, g Y) h Z=f g h R(X, Y) Z$ (so, it is a tensor).
Lemma 8.2. R has the following symmetries:
(a) $R(X, Y) Z=-R(Y, X) Z$
(c) $\langle R(X, Y) Z, W\rangle=-\langle R(X, Y) W, Z\rangle$
(b) $R(X, Y) Z+R(Y, Z) X+R(Z, X) Y=0$
(d) $\langle R(X, Y) Z, W\rangle=-\langle R(Z, W) X, Y\rangle$
(first Bianchi Identity)
Remark: Define components of Riemannian curvature tensor by $R_{i j k l}=\left\langle R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}, \frac{\partial}{\partial x_{l}}\right\rangle$, and define $R_{i j k}^{l}$ by $R\left(\frac{\partial}{\partial x_{i}}, \frac{\partial}{\partial x_{j}}\right) \frac{\partial}{\partial x_{k}}=\sum_{l} R_{i j k}^{l} \frac{\partial}{\partial x_{l}}$.
Then $R_{i j k l}=\sum_{m} R_{i j k}^{l} g_{m l} \quad$ and $\quad R_{i j k}^{l}=\sum_{m} R_{i j k m} g^{m l}$.
Remark: In \mathbf{E}^{n}, we have $R \equiv 0$.
Definition 8.3. A Riemannian manifold is called flat if it is locally isometric to \mathbf{E}^{n} (i.e. each point has a neighbourhood isometric to an open set in \mathbf{E}^{n}).

Theorem 8.4. (without proof)
A Riemannian manifold is flat if and anly if its Riemannian curvature tensor vanishes identically.
Example 8.5. Let G be a Lie group with a biinvariant metric.
Then $R(X, Y) Z=-\frac{1}{4}[[X, Y], Z]$ for all $X, Y, Z \in \mathfrak{g}$.
Example 8.6: components $R_{i j k s}$ and $R_{i j k}^{l}$ for hyperbolic plane (in the upper half-plane model).

8.2 Sectional curvature

Definition 8.7. Let (M, g) be a Riemannian manifold, let $p \in M$ be a point, let $v_{1}, v_{2} \in T_{p} M$ be tangent vectors and $\Pi \subset T_{p} M$ be a 2 -plane spanned by v_{1}, v_{2}.
The sectional curvature of Π at p is $K(\Pi)=K\left(v_{1}, v_{2}\right)=\frac{\left\langle R\left(v_{1}, v_{2}\right) v_{2}, v_{1}\right\rangle}{\left\|v_{1}\right\|^{2}\left\|v_{2}\right\|^{2}-\left\langle v_{1}, v_{2}\right\rangle^{2}}$.
Proposition 8.8. $K(\Pi)$ does not depend on the basis $\left\{v_{1}, v_{2}\right\}$ of Π.
Examples 8.9-8.10: Sectional curvature of hyperbolic 3-space is -1 ;
sectional curvature of a paraboloid of revolution is positive.

8.3 Ricci and scalar curvature

Given $v, w \in T_{p} M$ define a linear map $R(\cdot, v) w: T_{p} M \rightarrow T_{p} M$ by $u \mapsto R(u, v) w$.

In orthonormal basis $\left\{u_{i}\right\}, \operatorname{Ric}_{p}(v, w)=\sum_{j=1}^{n}\left\langle R\left(u_{j}, v\right) w, u_{j}\right\rangle$.
Ricci curvature at p is $\operatorname{Ric}_{p}(v)=\operatorname{Ric}_{p}(v, v)=\sum_{j=1}^{n}\left\langle R\left(u_{j}, v\right) w, u_{j}\right\rangle$
In orthonormal basis $\left\{v=u_{1}, \ldots, u_{n}\right\}$ we have $\operatorname{Ric}_{p}(v)==\sum_{j=2}^{n} K\left(v, u_{j}\right)$.
Lemma 8.12. $\operatorname{Ric}(v, u)$ is a symmetric bilinear form (i.e. $\operatorname{Ric}(v)$ is a quadratic form).
Example 8.13. If $K(v, w)$ is constant $(=K)$ for vectors with $\|v\|=1$, then $\operatorname{Ric}(v)=(n-1) K$.
Definition 8.14. Scalar curvature $s(p)=\sum_{j} \operatorname{Ric} c_{p}\left(u_{j}, u_{j}\right)$.
Example: If $K(v, w)$ is constant $(=K)$ then $s=n(n-1) K$.
Lemma 8.15. $s(p)$ does not depend on the orthonormal basis $\left\{u_{j}\right\}$.

9 Bonnet-Myers Theorem

Theorem 9.1. (Second variation formula of length).

Let $c:[a, b] \rightarrow M$ be a geodesic, let $F:(-\varepsilon, \varepsilon) \times[a, b] \rightarrow M$ be a proper variation, let $X(t)=\frac{\partial F}{\partial s}(0, t)$ be a variation vector field. Define $X^{\perp}(t)=X(t)-\left\langle X(t), c^{\prime}(t)\right\rangle c^{\prime}(t)$, the orthogonal component of $X(t)$. Let $l(s)$ be the length of variation.
Then $l^{\prime \prime}(0)=\int_{a}^{b}\left(\left\|\frac{D X^{\perp}}{d t}\right\|^{2}-K\left(c^{\prime}, X^{\perp}\right)\left\|X^{\perp}\right\|^{2}\right) d t$.
Remark: In case if X^{\perp} is collinear to c^{\prime} (i.e. $X^{\perp}=0$) we define $K\left(c^{\prime}, X^{\perp}\right):=0$.
Corollary 9.2. If $K(\Pi)<0$ for each $p \in M$ and each 2 -plane $\Pi \in T_{p} M$ (space of negative curvature) then every geodesic is minimal.

Theorem 9.3. (Bonnet-Myers, 1935) Let (M, g) be connected, complete Riemannian manifold of dimension n. Suppose that $\operatorname{Ric}(v) \geq \frac{n-1}{r^{2}}$ for all $v \in S M=\{w \in T M \mid\|w\|=1\}$.
Then $\operatorname{diam} M:=\sup _{p, q \in M} d(p, q) \leq \pi r$. In particular, M is bounded, so, it is compact (as it is complete).
Example 9.4. For n-dimensional sphere S_{r}^{n} of radius r the inequality in the Bonnet-Myers Theorem turns into equality. Hence, the bound is sharp.

Example 9.5. Let $T^{n}=\mathbf{R}^{n} / \mathbf{Z}^{n}$ be an n-dimensional torus with arbitrary metric g. Then there is no $c>0$ such that $\operatorname{Ric}(v) \geq c$ for all $p \in M, v \in T_{p} M$ (otherwise the lift of g to \mathbf{R}^{n} contradicts to B-M Theorem).

10 Jacobi fields

10.1 Jacobi fields and geodesic variations

Definition 10.1. Let $c(t)$ be a geodesic. A vector field $J \in \mathfrak{X}_{c}(M)$ is a Jacobi field if it satisfies Jacobi equation: $\frac{D^{2}}{d t^{2}} J+R\left(J, c^{\prime}\right) c^{\prime}=0$.
Example 10.2. Vector fields $c^{\prime}(t)$ and $t c^{\prime}(t)$ are Jacobi fields for any geodesic $c(t)$.
Theorem 10.3. Let $c(t)$ be a geodesic. Let $F(s, t)$ be a variation, s.t. every curve $F_{s}(t)$ is geodesic. Then the variation field $X(t)=\frac{\partial F}{\partial s}(0, t)$ is Jacobi field.
Example 10.4. Geodesic variation on a sphere and its variation field.
Definition 10.5. Let $E_{1}(t), \ldots, E_{n}(t) \in \mathfrak{X}_{c}(M)$ be vector fields on $c(t)$. We say that $\left\{E, \ldots, E_{n}\right\}$ is a parallel orthonormal basis along c if for all t, i, j holds $\frac{D}{d t} E_{i}=0$ and $<E_{i}, E_{j}>=\delta_{i j}$.

Notation: $R_{i j}=<R\left(E_{i}, c^{\prime}\right) c^{\prime}, e_{j}>, \quad n \times n$ symmetric matrix depending on t.
Theorem 10.6. Let $c(t)$ be a geodesic and $\left\{E_{i}\right\}$ be a parallel orthonormal basis along c. Take $J \in \mathfrak{X}_{c}(M)$ and its expansion $J=\sum_{j} J_{j}(t) E_{j}(t)$ (where $J_{j}(t)$ is a function). Then J is a Jacobi field is and only if $J_{k}^{\prime \prime}+\sum_{k=1}^{n} R_{k j} J_{j}=0$ for all $k=1, \ldots, n$.

Corollary 10.7. For any choice of $v, w \in T_{c\left(t_{0}\right)} M$ there exists a unique Jacobi field J along c such that $J\left(t_{0}\right)=v, \frac{D}{d t} J\left(t_{0}\right)=w$.

Remark 10.8. Corollary 10.7 implies that for any geodesic $c(t)$ there is a $2 n$-dimensional space $J_{c}(M)$ of Jacobi fields on c. Moreover, the map $T_{c\left(t_{0}\right)} M \times T_{c\left(t_{0}\right)} M \rightarrow J_{c}(M)$ defined by $(v, w) \mapsto J$ s.t. $J\left(t_{0}\right)=v, \frac{D}{d t} J\left(t_{0}\right)=w$ is an isomorphism.

Lemma 10.9. Let $c:[0,1] \rightarrow M$ be a geodesic and $J \in J_{c}(M)$ be a Jacobi field along c. Suppose $J(0)=0$. Then there exists a geodesic variation F of c such that $J=\frac{\partial F}{\partial s}(0, t)$.

10.2 Conjugate points and normal Jacobi fields

Definition 10.10. Let $c:[a, b] \rightarrow M$ be a geodesic, $a \leq t_{0}<t_{1} \leq b$ and $p=c\left(t_{0}\right), q=c\left(t_{1}\right)$ be two points. The point q is conjugate to p along $c(t)$ if there exists a Jacobi field $J \in J_{c}(M), J \neq 0$ such that $J\left(t_{0}\right)=J\left(t_{1}\right)=0$.

Example 10.11. On the sphere S^{2} (with induced metric), the South pole is conjugate to the North pole along each geodesic passing through both these points.
Definition 10.12. A point $q \in M$ is conjugate to a point $p \in M$ if there exists a geodesic $c(t)$ passing through p and q such that q is conjugate to p along $c(t)$.

Definition 10.13. A multiplicity of a conjugate point $c\left(t_{1}\right)$ (with respect to the point $c\left(t_{0}\right)$ is the number of linear independent Jacobi fields along c such that $J\left(t_{0}\right)=J\left(t_{1}\right)=0$, in other words, it is $\operatorname{dim}_{c}^{J_{0}, t_{1}}(M)$ where $J_{c}^{t_{0}, t_{1}}(M)=\left\{J \in J_{c}(M) \mid J\left(t_{0}\right)=J\left(t_{1}\right)=0\right\}$.

Remark 10.14. Multiplicity does not exceed $n-1$.
Lemma 10.15. Let $J \in J_{c}(M)$ be a Jacobi field along a geodesic $c(t)=\exp _{p} t v$. Suppose $J(0)=0$. Then there exists $v, w \in T_{c(0)} M$ s.t. $J(t)=\left(\operatorname{Dexp}_{p}\right)_{t v} t w$.
Lemma 10.16. The point $q=c\left(t_{1}\right)$ is conjugate to $p=c(0)$ along a geodesic $c(t)=\exp _{p} t v$ if and only if the point $v_{1}=t_{1} v$ is a critical point of the $\operatorname{exponential} \operatorname{map} \exp _{p}$ (i.e. $\left.\operatorname{dim} \operatorname{Ker}\left(\operatorname{Dexp} p_{p}\right)_{t_{1} v}>0\right)$. Multiplicity of q is equal to $\operatorname{dimKer}\left(\operatorname{Dexp} p_{t_{1} v}\right.$.
Lemma 10.17. Let $c:[a, b] \rightarrow M$ be a geodesic, $a \leq t_{0}<t_{1} \leq b$. Suppose that $c\left(t_{1}\right)$ is not conjugate to $c\left(t_{0}\right)$. Take $v \in T_{c\left(t_{0}\right)} M, u \in T_{c\left(t_{1}\right)} M$. Then there exists a unique Jacobi field J along c s.t. $J\left(t_{0}\right)=v, J\left(t_{1}\right)=u$.
Lemma 10.18. Let $J \in J_{c}(M)$ be a Jacobi field along a geodesic $c(t)$. Then the function $t \mapsto<J(t), c^{\prime}(t)>$ is linear. Namely, $<J(t), c^{\prime}(t)>=<J(0), c^{\prime}(0)>+t<\left.\frac{D}{d t}\right|_{t=0} J(t), c^{\prime}(0)>$.
Corollary 10.19. Let $<J\left(t_{1}\right), c^{\prime}\left(t_{1}\right)>=<J\left(t_{2}\right), c^{\prime}\left(t_{2}\right)>$. Then $<J(t), c^{\prime}(t)>=$ const, a constant function.
Definition 10.20. A Jacobi field $J \in J_{c}(M)$ is normal if $\left\langle J, c^{\prime}\right\rangle \equiv 0$.
Notation: $J_{c}^{\perp}:=\left\{J \in J_{c}(M) \mid<J, c^{\prime}>\equiv 0\right\}$.
Corollary 10.21. (1) Let $J(0)=0$. Then J is normal if and only if $<\left.\frac{D}{d t}\right|_{t=0} J(t), c^{\prime}(0)>=0$.
(2) $\operatorname{dim} J_{c}^{\perp, t_{0}}=n-1$ where $J_{c}^{\perp, t_{0}}:=\left\{J \in J_{c}(M) \mid<J, c^{\prime}>\equiv 0, J\left(t_{0}\right)=0\right\}$.
(3) $\operatorname{dim} J_{c}^{\perp}=2 n-2$.

Example 10.22. Jacobi fields on \mathbf{R}^{2}.
Theorem 10.23. Let c be a geodesic. Then every Jacobi field $J \in J_{c}(M)$ is a variation field for some geodesic variation $F(s, t)$ of c.

10.3 Minimizing geodesics and conjugate points

Theorem 10.24. Let $c:[0, b] \rightarrow M$ be a geodesic and let $c(a)$ be a point conjugate to $c(0), 0<a<b$. Then c is not minimal between $c(0)$ and $c(b)$.
Lemma 10.25 , Corollary 10.26 and Lemma 10.27 serve to prove Theorem 10.24; we skip it here.
Examples 10.28, 10.29: Jacobi fields on the sphere and hyperbolic plane.

10.4 Minimizing geodesics and conjugate points

Definition 10.24. A topological space is simply connected if for each curve; $[0,1] \rightarrow M$ with $c(0)=c(1)$ there exists a continuous map $F:[0,1] \times[0,1] \rightarrow M$ such that $F(1, t)=c(t), F(0, t)=p$ for some $p \in M$.
Examples: \mathbf{R}^{n} is simply connected, S^{n} is simply connected for $n>1 ; S^{1}$ and T^{n} (torus) are not simplyconnected.

Theorem 10.31. (Cartan-Hadamard). Let M be a complete connected, simply connected Riemannian manifold of non-positive sectional curvature. Then M is diffeomorphic to \mathbf{R}^{n}, where n is the dimension of M.

11 Appendix: Curvature and Geometry

The contents of this section is not included in the Examination.
In lectures, the statements were presented without proofs.

11.1 Cut locus

Example 11.1. Flat (Euclidean) torus: no conjugate points, but there are non-minimal geodesics.
Definition 11.2. Let c be a geodesic, $p=c(0)$. A cut point of p with respect to c is $q=c\left(t_{0}\right)$, such that the geodesic c is minimizing on $\left[0, t_{0}\right]$ and not minimizing on $[0, t]$ for $t>t_{0}$.
A cut locus of p is the set of all cut points of p (with respect to al geodesics though p).
Example 11.3. Cut loci on the sphere S^{n} and on a flat torus T^{2}.
Proposition 11.4. If $c\left(t_{0}\right)$ is the cut point of $p=c(0)$ along c, then
(a) either $c\left(t_{0}\right)$ is the first conjugate point of $c(0)$ along c;
(b) or there exists a geodesic $\gamma \neq c$ from p to $c\left(t_{0}\right)$ such that $l(\gamma)=l(c)$.

Conversely, if (a) or (b) holds then there exists $t_{1} \in\left(0, t_{0}\right]$ s.t. $C\left(t_{0}\right)$ is a cut point of p along c.
Corollary 11.5. 1) If q is a cut point of p along c then p is a cut point of Q along c.
2) If Q is not a cut point of p along c then there exists a unique minimizing geodesics joining p to q.

11.2 Injectivity radius

Definition 11.6. The injectivity radius of a point $p \in M$ is $i_{p}:=\sup _{r}\left\{r \mid \exp p_{p}\right.$ is diffeo in $B_{r}(p)$.
The injectivity radius of M is $i(M):=\inf _{p} i_{p}$.
Proposition 11.7. If M is complete, with sectional curvature K satisfying $0<K_{\min }<K<K_{\max }$ then
(a) $i(M) \geq \pi / \sqrt{K_{\max }}$;
(b) there exists a shortest closed geodesic $c \in M$ s.t. $i(M)=\frac{1}{2} l(c)$.

11.3 Sphere Theorem

Theorem 11.8. (Sphere Theorem). Let M be a compact, simply connected Riemannian manifold with $\frac{1}{4}<K(\Pi) \leq 1$ for all $\Pi \in T_{p} M$, for all $p \in M$. Then M is homeomorphic to S^{n}.
Remark 11.9. 1. Recently, it was proved that M is also diffeomorphic to S^{n}.
2. The Theorem 11.8 foes not hold for $\frac{1}{4} \leq K(\Pi) \leq 1$.
3. In case of dimension $n=2$ stronger result holds:

If $K \geq 0$ for all $p \in M$ and $K>0$ in at least one point, then M is homeomorphic to S^{2}.
Theorem 11.10. Any smooth manifold of dimension $n \geq 3$ admits a Riemannian metric of negative Ricci curvature.

Remark. The theorem does not hold for surfaces! (Look at S^{2} and apply Gauss-Bonnet).

11.4 Spaces of constant curvature

Theorem 11.11. Let M be a complete, simply connected Riemannian manifold of constant sectional curvature K. Then

1) if $K>0$ then M is isometric to S^{n};
2) if $K=0$ then M is isometric to \mathbf{E}^{n};
3) if $K<0$ then M is isometric to \mathbf{H}^{n}.

Remark. If M is not simply connected, then the statement holds locally only.

11.5 Index form

Recall: given a geodesic $c:[0, a) \rightarrow M$ there exists a bilinear symmetric form on $\mathfrak{X}_{c} M$ given by
$I_{a}(V, W)=\int_{0}^{a}\left(<V, W>+<R\left(V, c^{\prime}\right) c^{\prime}, W>\right) d t$.
Definition: The quadratic form $I_{a}(V, V)$ is called an index form.
Definition 11.12. The index of I_{a} is the maximal dimension of a subspace of $\mathfrak{X}_{c} M$ on which I_{a} is negative definite.

Theorem 11.11. (Morse Index Theorem). The index of I_{a} is finite for each geodesic c. Moreover, it equals to the number of points $c(t), 0<t<a$ conjugate to $c(0)$. each counted with its multiplicity.

Corollary 11.12. The set of conjugate points along a geodesic is a discrete set.
Lemma 11.15. (Index Lemma). Let $c:[0, a] \rightarrow M$ be a geodesic containing no conjugate points to $c(0)$. Let $J \in J_{c}$ be a normal Jacobi field, $\left\langle J, c^{\prime}\right\rangle=0$. Let V be a piecewise differentiable vector field on $c,\left\langle V, c^{\prime}\right\rangle=0$. Suppose also $J(0)=V(0)=0, J\left(t_{0}\right)=V\left(t_{0}\right)$ for some $t_{0} \in(0, a]$.
Then $I_{t_{0}}(J, J) \leq I_{t_{0}}(V, V)$, where equality holds only if $V=J$ on $[0, a]$.

11.6 Comparison Theorems

Theorem 11.16. (Rauch's Comparison Theorem). Let $c:[0, a] \rightarrow M^{n}$ and $\tilde{c}:[0, a] \rightarrow \widetilde{M}^{n+k}, k \geq 0$ be two unite speed geodesics and let $J:[0, a] \rightarrow T M$ and $\widetilde{J}:[0, a] \rightarrow T \widetilde{M}$ be normal Jacobi fields along c and \widetilde{c} with $J(0)=0, \widetilde{J}(0)=0,\left\|J^{\prime}(0)\right\|=\left\|\widetilde{J^{\prime}}(0)\right\|$. Assume that \widetilde{J} does not have conjugate points on $[0, a)$ and that for any $t \in[0, a]$ the inequality $K_{M}(\Pi) \leq K_{\widetilde{M}}(\widetilde{\Pi})$ holds for all 2-planes $\Pi \subset T_{c(t)} M$ and $\widetilde{\Pi} \subset T_{\widetilde{c}(t)} \widetilde{M}$. Then $\|J(t)\| \geq\|\widetilde{J}(t)\|$ for all $t \in[0, a]$.
Example. Regular triangles with side $\pi / 2$ in S^{2}, \mathbf{E}^{2} and \mathbf{H}^{2} : length of the median.
Definition 11.17. A triangle in a Riemannian manifold is a collection of 3 points with minimal geodesics connecting them. A generalized triangle is a collection of 3 points with any geodesics connecting them and satisfying triangle inequality.

Definition 11.18. A comparison triangle $p^{\prime} q^{\prime} r^{\prime}$ for a generalized triangle $p q r \in M$ is a triangle in a space of constant curvature with sides of of the same lengths.

Remark. In \mathbf{E}^{n} and \mathbf{H}^{n} such a triangle always exists.
In S^{n} it does exist if the lengths in $p q r$ a not too big ($l \leq \pi r$, where r is the radius of the sphere).
Theorem 11.19. (Alexandrov-Toponogov Comparison Theorem). Let $K(\Pi) \geq 0$ for all $\Pi \in T_{p} M$ for all $p \in M$. Let $p_{0}, p_{1}, p_{2} \in M$. Let p_{3} lie between p_{1} and p_{2} (i.e. $\left|p_{1}-p_{3}\right|+\left|p_{2}-p_{3}\right|=\left|p_{1}-p_{2}\right|$). Let $p_{0}^{\prime}, p_{1}^{\prime}, p_{2}^{\prime}$ be a comparison triangle in \mathbf{E}^{2}. Define p_{3}^{\prime} by $\left|p_{i}-p_{3}\right|_{M}=\left|p_{i}^{\prime}-p_{3}^{\prime}\right|_{\mathbf{E}^{2}}$, for $i=1,2$.
Then $\left|p_{0}-p_{3}\right|_{M} \geq\left|p_{0}^{\prime}-p_{3}^{\prime}\right|_{\mathbf{E}^{2}}$ (Alexandrov-Toponogov inequality).
Conversely, if Alexandrov-Toponogov inequality holds for all $p_{0}, p_{1}, p_{2}, p_{3}$ then $K \geq 0$.
Remark. 1. Dual statement for $K \leq O$ with inverse AT-inequality.
2. Equivalent conditions:
a. smaller K imply smaller angles;
b. smaller K imply bigger circumference of a circle of radius r;
c. smaller K imply bigger volume of a ball or radius r.

