
Riemannian Geometry, Epiphany 2014.

7 Crash course: Basics about Lie groups

A Lie group is a smooth manifold wit a smooth group structure (see Definition 1.12.)

Examples: matrix Lie groups: GL(n,R), SL(n,R), O(n), SO(n).

7.1 Left-invariant vector fields and Lie algebra

Definition 7.1. Let G a be a Lie group, g ∈ G. Then the maps Lg : G → G and Rg : G → G defined by
Lg(h) = gh and Rg(h) = hg are diffeomorphisms of G called left- and right-translation.

Remark: 1. Lg−1 ◦ Lg = idG, Lg1Rg2(h) = Rg2Lg1(h) = g1hg2.
2. The differential DLg : ThG→ TghG gives a natural identification of tangent spaces.
Moreover, DLg : X(G)→ X(G) defines a map of vector fields by the following formula:
(DLgX)(h) := DLg(g−1h)(X(g−1h)).

Definition 7.2. A vector field X ∈ X(G) is called left-invariant if DLgX = X for all g ∈ G.

Remark 7.3. 1. Left-invariant vector fields on G form a linear space over R.
2. Left-invariant vector field is determined by its value at e: if X(e) = v then X(g) = DLg(e)v.
3. Hence, the space of left-invariant vector fields on G may be identified with TeG.

Definition 7.4. The space of left-invariant vector fields on G is called the Lie algebra of G and denoted by g.

Lemma 7.5. For arbitrary X ∈ X(G), f ∈ C∞(G) holds ((DLgX)f)g = X(f ◦ Lg).

Corollary 7.7. If X is left-invariant, then (Xf) ◦ Lg = X(f ◦ Lg) for any f ∈ C∞(G) .

Proposition 7.8. Let X be a Lie group with Lie algebra g. Then for any X,Y ∈ g holds [X,Y ] ∈ g.
Consequently, g is a Lie algebra in terms of Definition 2.22.

Example 7.9. Computation of DLg(e) for a matrix Lie group. In case of matrix Lie group, the left-invariant
vector field X ∈ g with X(e) = v is given by X(g) = gv.

7.2 Lie group exponential map and adjoint representation

Define Exp : M(n,R)→M(n,R) by Exp(A) =
∑∞

k=0
1
k!A

k.

Properties: 1. the infinite sum converges for any matrix A ∈M(n,R), so Exp(A) is well-defined.
2. Exp(0) = e = diag{1, . . . , 1} (n× n diagonal matrix with 1’s on the diagonal).
3. if AB = BA then Exp(A+B) = Exp(A) · Exp(B).
4. Exp(A) ∈ GL(n,R) for any A ∈M(n,R): (ExpA)−1 = Exp(−A).

Proposition 7.10. Let G be a matrix Lie group. Let v ∈ TeG and let X be a unique left-invariant vector field
on G with X(e) = v. Then the curve c(t) = Exp(tv) ∈ G satisfies c(0) = e, c′(0) = v and c′(t) = X(c(t)).

A curve of the form c(t) = Exp(tv) is called the 1-parameter subgroup in G with c′(0) = v.

Example 7.11: computation of the exponent for a diagonalizable matrix.

Remark. In case of abstract Lie group the exponential map may be defined as follows. Let G be a Lie group
and g be its Lie algebra. Let v ∈ TeG and X ∈ g be a unique left-invariant vector field with X(e) = v. Then
there exists a unique curve c : R→ G with cv(0) = e, c′v(t) = X(cv(t)) [without proof]. The curve cv is called
an integral curve of X. We define the exponential map by Exp(v) = cv(1).

Definition 7.12. Let G be a Lie group. For g ∈ G the adjoint representation Ad(g) : TeG→ TeG is defined by

Ad(g)(w) :=
d

dt

∣∣∣
t=0

LgRg−1(Exp(tw)) =
d

dt

∣∣∣
t=0

gExp(tw)g−1.
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For v ∈ TeG the adjoint representation ad(v) : TeG→ TeG is defined by

ad(g)(v) :=
d

dt

∣∣∣
t=0

Ad(Exp(tv))(w) =
d

dt

∣∣∣
t=0

d

ds

∣∣∣
s=0

Exp(tv)Exp(tw)Exp(−tv).

Theorem 7.13. (without proof) Let G be a Lie group with a Lie algebra g. Then for all X,Y ∈ g holds
[X,Y ](e) = ad(X(e))(Y (e)) ∈ TeG, i.e. by canonical identification of g with TeG we have [X,Y ] = ad(X)Y .

Example 7.14. Theorem 7.13 for the case of a matrix Lie group.

7.3 Riemannian metrics on Lie groups

Definition 7.15. For a given inner product < ·, · >e on TeG, define the inner product at g ∈ G for v, w ∈ TeG
by < v,w >g:=< DLg−1(g)v,DLg−1(g)w >e. The family (< ·, · >g)g∈G of inner products defines a left-invariant
Riemannian metric on G. (Every left-invariant Riemannian metric is obtained this way).

Remark 7.16. Let (G,<,>) be a Lie group with a left-invariant metric. Then
1. the diffeomorphisms Lg : G→ G are isometries;
2. for any two left-invariant vector fields X,Y ∈ g the map g 7→< X(g), Y (g) >g is a constant function.

Theorem 7.17. Let G be a compact Lie group. Then G admits a biinvariant Riemannian metric < ·, · >g,
i.e. both families of diffeomorphisms Lg and Rg are isometries.

Corollary 7.18. Let (G,<,>) be a Lie group with biinvariant metric. Then for X,Y, Z ∈ g holds
< [X,Y ], Z >= − < Y, [X,Z] >.

Corollary 7.19. Let (G,<,>) be a Lie group with biinvariant metric and let ∇ be the Levi-Civita connection.
Then for X,Y ∈ g holds ∇XY = 1

2 [X,Y ].

Remark 7.20. The 1-parameter subgroups are exactly the geodesics of the left-invariant metric on G. So, the
Lie group exponential map Exp coincides with the Riemannian exponential map expp at the identity.

7.4 Invariant metric on homogenious spaces (supplemetary matherial, not for exam!)

Definition 7.21. A connected Riemannian manifold (M, g) is called homogeneous if the group of isometries of
M acts transitively on M .

Examples: En, Sn, Hn.

Construction: Given a Lie group G and a closed subgroup H ⊂ G, consider the set M = G/H = {gH | g ∈ G}.
Then
1. M is a smooth manifold (non-trivial theorem, uses that H is closed);
2. there is a canonical projection π : G→ G/H, π(g) = gH;

3. The elements of G act on M by L̃g(g′H) = gg′H, the diffeomorphism L̃g : M →M is called left G-action.

If there is a left-invariant metric on M , (i.e. < DL̃g(e)v,DL̃g(e)w >gH=< v,w >eH ∀g ∈ G, v, w ∈ TeH(G/H))

then L̃g is an isometry of M , and M is a homogeneous space.

Theorem 7.22. (without proof). Each homogeneous manifold may be obtained in this way.

Theorem 7.23. (without proof)
The left-invariant metrics < ·, · > on G/H are in one-to-one correspondence to Ad(H)-invariant inner products
< ·, · >e on TeG, i.e. < Ad(h)v,Ad(h)w >e=< v,w >e for all h ∈ H, w, v ∈ TeG.

Example. G = SO(3), isometries of a sphere S2; H = SO(2) isometries of the sphere stabilizing one point,
M = SO(3)/SO(2) = S2, the sphere.
More generally, for a homogeneous space M one may coinside the group of its isometries Isom(M) with a sub-
group Stabp ⊂ Isom(M) of isometries stabilizing one point p ∈M . Then, one can prove M = Isom(M)/Stabp.
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8 Curvature

8.1 Riemannian curvature tensor

Definition 8.1. Let (M, g) be a Riemannian manifold, let X(M) be vector field on M , and let ∇ be a Levi-
Civita connection. Define a map (Riemannian curvature tensor) R : X(M) × X(M) × X(M) → X(M) by
R(X,Y )Z = ∇X∇Y Z −∇Y XZ∇[X,Y ]Z.

Remark: R is linear in all variables; in particular, R(fX, gY )hZ = fghR(X,Y )Z (so, it is a tensor).

Lemma 8.2. R has the following symmetries:
(a) R(X,Y )Z = −R(Y,X)Z (c) 〈R(X,Y )Z,W 〉 = −〈R(X,Y )W,Z〉
(b) R(X,Y )Z +R(Y, Z)X +R(Z,X)Y = 0 (d) 〈R(X,Y )Z,W 〉 = −〈R(Z,W )X,Y 〉

(first Bianchi Identity)

Remark: Define components of Riemannian curvature tensor by Rijkl = 〈R( ∂
∂xi

, ∂
∂xj

) ∂
∂xk

, ∂
∂xl
〉,

and define Rl
ijk by R( ∂

∂xi
, ∂
∂xj

) ∂
∂xk

=
∑

lR
l
ijk

∂
∂xl

.

Then Rijkl =
∑

mRl
ijkgml and Rl

ijk =
∑

mRijkmg
ml.

Remark: In En, we have R ≡ 0.

Definition 8.3. A Riemannian manifold is called flat if it is locally isometric to En (i.e. each point has a
neighbourhood isometric to an open set in En).

Theorem 8.4. (without proof)
A Riemannian manifold is flat if and anly if its Riemannian curvature tensor vanishes identically.

Example 8.5. Let G be a Lie group with a biinvariant metric.
Then R(X,Y )Z = − 1

4 [[X,Y ], Z] for all X,Y, Z ∈ g.

Example 8.6: components Rijks and Rl
ijk for hyperbolic plane (in the upper half-plane model).

8.2 Sectional curvature

Definition 8.7. Let (M, g) be a Riemannian manifold, let p ∈ M be a point, let v1, v2 ∈ TpM be tangent
vectors and Π ⊂ TpM be a 2-plane spanned by v1, v2.

The sectional curvature of Π at p is K(Π) = K(v1, v2) = 〈R(v1,v2)v2,v1〉
||v1||2||v2||2−〈v1,v2〉2 .

Proposition 8.8. K(Π) does not depend on the basis {v1, v2} of Π.

Examples 8.9-8.10: Sectional curvature of hyperbolic 3-space is -1;
sectional curvature of a paraboloid of revolution is positive.

8.3 Ricci and scalar curvature

Given v, w ∈ TpM define a linear map R(·, v)w : TpM → TpM by u 7→ R(u, v)w.

Definition 8.11. Ricci curvature tensor Ric(v, w) is the trace of the map R(·, v)w: Ricp(v, w) = tr(R(·, v)w).
In orthonormal basis {ui}, Ricp(v, w) =

∑n
j=1〈R(uj , v)w, uj〉.

Ricci curvature at p is Ricp(v) = Ricp(v, v) =
∑n

j=1〈R(uj , v)w, uj〉
In orthonormal basis {v = u1, . . . , un} we have Ricp(v) ==

∑n
j=2K(v, uj).

Lemma 8.12. Ric(v, u) is a symmetric bilinear form (i.e. Ric(v) is a quadratic form).

Example 8.13. If K(v, w) is constant (= K) for vectors with ||v|| = 1, then Ric(v) = (n− 1)K.

Definition 8.14. Scalar curvature s(p) =
∑

j Ricp(uj , uj).

Example: If K(v, w) is constant (= K) then s = n(n− 1)K.

Lemma 8.15. s(p) does not depend on the orthonormal basis {uj}.
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9 Bonnet-Myers Theorem

Theorem 9.1. (Second variation formula of length).
Let c : [a, b] → M be a geodesic, let F : (−ε, ε) × [a, b] → M be a proper variation, let X(t) = ∂F

∂s (0, t) be a

variation vector field. Define X⊥(t) = X(t)− 〈X(t), c′(t)〉c′(t), the orthogonal component of X(t). Let l(s) be
the length of variation.

Then l′′(0) =
∫ b

a
(||DX⊥

dt ||
2 −K(c′, X⊥)||X⊥||2)dt.

Remark: In case if X⊥ is collinear to c′ (i.e. X⊥ = 0) we define K(c′, X⊥) := 0.

Corollary 9.2. If K(Π) < 0 for each p ∈ M and each 2-plane Π ∈ TpM (space of negative curvature) then
every geodesic is minimal.

Theorem 9.3. (Bonnet-Myers, 1935) Let (M, g) be connected, complete Riemannian manifold of dimension n.
Suppose that Ric(v) ≥ n−1

r2 for all v ∈ SM = {w ∈ TM | ||w|| = 1}.
Then diamM := supp,q∈Md(p, q) ≤ πr. In particular, M is bounded, so, it is compact (as it is complete).

Example 9.4. For n-dimensional sphere Sn
r of radius r the inequality in the Bonnet-Myers Theorem turns into

equality. Hence, the bound is sharp.

Example 9.5. Let Tn = Rn/Zn be an n-dimensional torus with arbitrary metric g. Then there is no c > 0
such that Ric(v) ≥ c for all p ∈M , v ∈ TpM (otherwise the lift of g to Rn contradicts to B-M Theorem).

10 Jacobi fields

10.1 Jacobi fields and geodesic variations

Definition 10.1. Let c(t) be a geodesic. A vector field J ∈ Xc(M) is a Jacobi field if it satisfies Jacobi equation:
D2

dt2 J +R(J, c′)c′ = 0.

Example 10.2. Vector fields c′(t) and tc′(t) are Jacobi fields for any geodesic c(t).

Theorem 10.3. Let c(t) be a geodesic. Let F (s, t) be a variation, s.t. every curve Fs(t) is geodesic. Then the
variation field X(t) = ∂F

∂s (0, t) is Jacobi field.

Example 10.4. Geodesic variation on a sphere and its variation field.

Definition 10.5. Let E1(t), . . . , En(t) ∈ Xc(M) be vector fields on c(t). We say that {E, . . . , En} is a
parallel orthonormal basis along c if for all t, i, j holds D

dtEi = 0 and < Ei, Ej >= δij .

Notation: Rij =< R(Ei, c
′)c′, ej >, n× n symmetric matrix depending on t.

Theorem 10.6. Let c(t) be a geodesic and {Ei} be a parallel orthonormal basis along c. Take J ∈ Xc(M)
and its expansion J =

∑
j Jj(t)Ej(t) (where Jj(t) is a function). Then J is a Jacobi field is and only if

J ′′k +
∑n

k=1RkjJj = 0 for all k = 1, . . . , n.

Corollary 10.7. For any choice of v, w ∈ Tc(t0)M there exists a unique Jacobi field J along c such that

J(t0) = v, D
dtJ(t0) = w.

Remark 10.8. Corollary 10.7 implies that for any geodesic c(t) there is a 2n-dimensional space Jc(M) of Jacobi
fields on c. Moreover, the map Tc(t0)M × Tc(t0)M → Jc(M) defined by (v, w) 7→ J s.t. J(t0) = v, D

dtJ(t0) = w
is an isomorphism.

Lemma 10.9. Let c : [0, 1] → M be a geodesic and J ∈ Jc(M) be a Jacobi field along c. Suppose J(0) = 0.
Then there exists a geodesic variation F of c such that J = ∂F

∂s (0, t).

10.2 Conjugate points and normal Jacobi fields

Definition 10.10. Let c : [a, b]→M be a geodesic, a ≤ t0 < t1 ≤ b and p = c(t0), q = c(t1) be two points. The
point q is conjugate to p along c(t) if there exists a Jacobi field J ∈ Jc(M), J 6= 0 such that J(t0) = J(t1) = 0.
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Example 10.11. On the sphere S2 (with induced metric), the South pole is conjugate to the North pole along
each geodesic passing through both these points.

Definition 10.12. A point q ∈M is conjugate to a point p ∈M if there exists a geodesic c(t) passing through
p and q such that q is conjugate to p along c(t).

Definition 10.13. A multiplicity of a conjugate point c(t1) (with respect to the point c(t0) is the number of
linear independent Jacobi fields along c such that J(t0) = J(t1) = 0, in other words, it is dimJ t0,t1

c (M) where
J t0,t1
c (M) = {J ∈ Jc(M) | J(t0) = J(t1) = 0}.

Remark 10.14. Multiplicity does not exceed n− 1.

Lemma 10.15. Let J ∈ Jc(M) be a Jacobi field along a geodesic c(t) = expptv. Suppose J(0) = 0. Then there
exists v, w ∈ Tc(0)M s.t. J(t) = (Dexpp)tvtw.

Lemma 10.16. The point q = c(t1) is conjugate to p = c(0) along a geodesic c(t) = expptv if and only if the
point v1 = t1v is a critical point of the exponential map expp (i.e. dimKer(Dexpp)t1v > 0). Multiplicity of q
is equal to dimKer(Dexpp)t1v.

Lemma 10.17. Let c : [a, b]→M be a geodesic, a ≤ t0 < t1 ≤ b. Suppose that c(t1) is not conjugate to c(t0).
Take v ∈ Tc(t0)M , u ∈ Tc(t1)M . Then there exists a unique Jacobi field J along c s.t. J(t0) = v, J(t1) = u.

Lemma 10.18. Let J ∈ Jc(M) be a Jacobi field along a geodesic c(t). Then the function t 7→< J(t), c′(t) > is
linear. Namely, < J(t), c′(t) >=< J(0), c′(0) > +t < D

dt

∣∣
t=0

J(t), c′(0) >.

Corollary 10.19. Let < J(t1), c′(t1) >=< J(t2), c′(t2) >. Then < J(t), c′(t) >= const, a constant function.

Definition 10.20. A Jacobi field J ∈ Jc(M) is normal if < J, c′ >≡ 0.
Notation: J⊥c := {J ∈ Jc(M)| < J, c′ >≡ 0}.

Corollary 10.21. (1) Let J(0) = 0. Then J is normal if and only if < D
dt

∣∣
t=0

J(t), c′(0) >= 0.

(2) dimJ⊥,t0c = n− 1 where J⊥,t0c := {J ∈ Jc(M)| < J, c′ >≡ 0, J(t0) = 0}.
(3) dimJ⊥c = 2n− 2.

Example 10.22. Jacobi fields on R2.

Theorem 10.23. Let c be a geodesic. Then every Jacobi field J ∈ Jc(M) is a variation field for some geodesic
variation F (s, t) of c.

10.3 Minimizing geodesics and conjugate points

Theorem 10.24. Let c : [0, b]→M be a geodesic and let c(a) be a point conjugate to c(0), 0 < a < b. Then c
is not minimal between c(0) and c(b).
Lemma 10.25, Corollary 10.26 and Lemma 10.27 serve to prove Theorem 10.24; we skip it here.

Examples 10.28, 10.29: Jacobi fields on the sphere and hyperbolic plane.

10.4 Minimizing geodesics and conjugate points

Definition 10.24. A topological space is simply connected if for each curve :̧[0, 1]→M with c(0) = c(1) there
exists a continuous map F : [0, 1]× [0, 1]→M such that F (1, t) = c(t), F (0, t) = p for some p ∈M .

Examples: Rn is simply connected, Sn is simply connected for n > 1; S1 and Tn (torus) are not simply-
connected.

Theorem 10.31. (Cartan-Hadamard). Let M be a complete connected, simply connected Riemannian mani-
fold of non-positive sectional curvature. Then M is diffeomorphic to Rn, where n is the dimension of M .
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11 Appendix: Curvature and Geometry

The contents of this section is not included in the Examination.
In lectures, the statements were presented without proofs.

11.1 Cut locus

Example 11.1. Flat (Euclidean) torus: no conjugate points, but there are non-minimal geodesics.

Definition 11.2. Let c be a geodesic, p = c(0). A cut point of p with respect to c is q = c(t0), such that the
geodesic c is minimizing on [0, t0] and not minimizing on [0, t] for t > t0.
A cut locus of p is the set of all cut points of p (with respect to al geodesics though p).

Example 11.3. Cut loci on the sphere Sn and on a flat torus T 2.

Proposition 11.4. If c(t0) is the cut point of p = c(0) along c, then
(a) either c(t0) is the first conjugate point of c(0) along c;
(b) or there exists a geodesic γ 6= c from p to c(t0) such that l(γ) = l(c).

Conversely, if (a) or (b) holds then there exists t1 ∈ (0, t0] s.t. C(t0) is a cut point of p along c.

Corollary 11.5. 1) If q is a cut point of p along c then p is a cut point of Q along c.
2) If Q is not a cut point of p along c then there exists a unique minimizing geodesics joining p to q.

11.2 Injectivity radius

Definition 11.6. The injectivity radius of a point p ∈M is ip := sup
r
{r | exppis diffeo in Br(p).

The injectivity radius of M is i(M) := inf
p
ip.

Proposition 11.7. If M is complete, with sectional curvature K satisfying 0 < Kmin < K < Kmax then
(a) i(M) ≥ π/

√
Kmax;

(b) there exists a shortest closed geodesic c ∈M s.t. i(M) = 1
2 l(c).

11.3 Sphere Theorem

Theorem 11.8. (Sphere Theorem). Let M be a compact, simply connected Riemannian manifold
with 1

4 < K(Π) ≤ 1 for all Π ∈ TpM , for all p ∈M . Then M is homeomorphic to Sn.

Remark 11.9. 1. Recently, it was proved that M is also diffeomorphic to Sn.
2. The Theorem 11.8 foes not hold for 1

4 ≤ K(Π) ≤ 1.
3. In case of dimension n = 2 stronger result holds:

If K ≥ 0 for all p ∈M and K > 0 in at least one point, then M is homeomorphic to S2.

Theorem 11.10. Any smooth manifold of dimension n ≥ 3 admits a Riemannian metric of negative Ricci
curvature.

Remark. The theorem does not hold for surfaces! (Look at S2 and apply Gauss-Bonnet).

11.4 Spaces of constant curvature

Theorem 11.11. Let M be a complete, simply connected Riemannian manifold of constant sectional curvature
K. Then

1) if K > 0 then M is isometric to Sn;
2) if K = 0 then M is isometric to En;
3) if K < 0 then M is isometric to Hn.

Remark. If M is not simply connected, then the statement holds locally only.
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11.5 Index form

Recall: given a geodesic c : [0, a)→M there exists a bilinear symmetric form on XcM given by

Ia(V,W ) =
a∫
0

(< V,W > + < R(V, c′)c′,W >)dt.

Definition: The quadratic form Ia(V, V ) is called an index form.

Definition 11.12. The index of Ia is the maximal dimension of a subspace of XcM on which Ia is negative
definite.

Theorem 11.11. (Morse Index Theorem). The index of Ia is finite for each geodesic c. Moreover, it equals to
the number of points c(t), 0 < t < a conjugate to c(0). each counted with its multiplicity.

Corollary 11.12. The set of conjugate points along a geodesic is a discrete set.

Lemma 11.15. (Index Lemma). Let c : [0, a]→ M be a geodesic containing no conjugate points to c(0). Let
J ∈ Jc be a normal Jacobi field, < J, c′ >= 0. Let V be a piecewise differentiable vector field on c, < V, c′ >= 0.
Suppose also J(0) = V (0) = 0, J(t0) = V (t0) for some t0 ∈ (0, a].
Then It0(J, J) ≤ It0(V, V ), where equality holds only if V = J on [0, a].

11.6 Comparison Theorems

Theorem 11.16. (Rauch’s Comparison Theorem). Let c : [0, a] → Mn and c̃ : [0, a] → M̃n+k, k ≥ 0 be

two unite speed geodesics and let J : [0, a] → TM and J̃ : [0, a] → TM̃ be normal Jacobi fields along c and c̃

with J(0) = 0, J̃(0) = 0, ||J ′(0)|| = ||J̃ ′(0)||. Assume that J̃ does not have conjugate points on [0, a) and that

for any t ∈ [0, a] the inequality KM (Π) ≤ K
M̃

(Π̃) holds for all 2-planes Π ⊂ Tc(t)M and Π̃ ⊂ Tc̃(t)M̃ . Then

||J(t)|| ≥ ||J̃(t)|| for all t ∈ [0, a].

Example. Regular triangles with side π/2 in S2, E2 and H2: length of the median.

Definition 11.17. A triangle in a Riemannian manifold is a collection of 3 points with minimal geodesics
connecting them. A generalized triangle is a collection of 3 points with any geodesics connecting them and
satisfying triangle inequality.

Definition 11.18. A comparison triangle p′q′r′ for a generalized triangle pqr ∈ M is a triangle in a space of
constant curvature with sides of of the same lengths.

Remark. In En and Hn such a triangle always exists.
In Sn it does exist if the lengths in pqr a not too big (l ≤ πr, where r is the radius of the sphere).

Theorem 11.19. (Alexandrov-Toponogov Comparison Theorem). Let K(Π) ≥ 0 for all Π ∈ TpM for all
p ∈M . Let p0, p1, p2 ∈M . Let p3 lie between p1 and p2 (i.e. |p1 − p3|+ |2 − p3| = |p1 − p2|). Let p′0, p

′
1, p
′
2 be

a comparison triangle in E2. Define p′3 by |pi − p3|M = |p′i − p′3|E2 , for i = 1, 2.
Then |p0 − p3|M ≥ |p′0 − p′3|E2 (Alexandrov-Toponogov inequality).
Conversely, if Alexandrov-Toponogov inequality holds for all p0, p1, p2, p3 then K ≥ 0.

Remark. 1. Dual statement for K ≤ O with inverse AT-inequality.
2. Equivalent conditions:

a. smaller K imply smaller angles;
b. smaller K imply bigger circumference of a circle of radius r;
c. smaller K imply bigger volume of a ball or radius r.
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