Riemannian Geometry, Epiphany 2014.

7 Crash course: Basics about Lie groups

A Lie group is a smooth manifold wit a smooth group structure (see Definition 1.12.)

Examples: matrix Lie groups: $GL(n, \mathbf{R})$, $SL(n, \mathbf{R})$, O(n), SO(n).

7.1 Left-invariant vector fields and Lie algebra

Definition 7.1. Let G a be a Lie group, $g \in G$. Then the maps $L_g : G \to G$ and $R_g : G \to G$ defined by $L_g(h) = gh$ and $R_g(h) = hg$ are diffeomorphisms of G called <u>left-</u> and right-translation.

Remark: 1. $L_{g^{-1}} \circ L_g = id_G$, $L_{g_1}R_{g_2}(h) = R_{g_2}L_{g_1}(h) = g_1hg_2$. 2. The differential $DL_g: T_hG \to T_{gh}G$ gives a natural identification of tangent spaces. Moreover, $DL_g: \mathfrak{X}(G) \to \mathfrak{X}(G)$ defines a map of vector fields by the following formula: $(DL_gX)(h) := DL_g(g^{-1}h)(X(g^{-1}h)).$

Definition 7.2. A vector field $X \in \mathfrak{X}(G)$ is called <u>left-invariant</u> if $DL_gX = X$ for all $g \in G$.

Remark 7.3. 1. Left-invariant vector fields on G form a linear space over \mathbf{R} .

2. Left-invariant vector field is determined by its value at e: if X(e) = v then $X(g) = DL_g(e)v$.

3. Hence, the space of left-invariant vector fields on G may be identified with T_eG .

Definition 7.4. The space of left-invariant vector fields on G is called the Lie algebra of G and denoted by \mathfrak{g} .

Lemma 7.5. For arbitrary $X \in \mathfrak{X}(G)$, $f \in C^{\infty}(G)$ holds $((DL_qX)f)_q = X(f \circ L_q)$.

Corollary 7.7. If X is left-invariant, then $(Xf) \circ L_q = X(f \circ L_q)$ for any $f \in C^{\infty}(G)$.

Proposition 7.8. Let X be a Lie group with Lie algebra g. Then for any $X, Y \in \mathfrak{g}$ holds $[X, Y] \in \mathfrak{g}$. Consequently, \mathfrak{g} is a Lie algebra in terms of Definition 2.22.

Example 7.9. Computation of $DL_g(e)$ for a matrix Lie group. In case of matrix Lie group, the left-invariant vector field $X \in \mathfrak{g}$ with X(e) = v is given by X(g) = gv.

7.2 Lie group exponential map and adjoint representation

Define $Exp: M(n, \mathbf{R}) \to M(n, \mathbf{R})$ by $Exp(A) = \sum_{k=0}^{\infty} \frac{1}{k!} A^k$.

Properties: 1. the infinite sum converges for any matrix $A \in M(n, \mathbf{R})$, so Exp(A) is well-defined.

- 2. $Exp(0) = e = diag\{1, ..., 1\}$ ($n \times n$ diagonal matrix with 1's on the diagonal).
- 3. if AB = BA then $Exp(A + B) = Exp(A) \cdot Exp(B)$.
- 4. $Exp(A) \in GL(n, \mathbf{R})$ for any $A \in M(n, \mathbf{R})$: $(ExpA)^{-1} = Exp(-A)$.

Proposition 7.10. Let G be a matrix Lie group. Let $v \in T_eG$ and let X be a unique left-invariant vector field on G with X(e) = v. Then the curve $c(t) = Exp(tv) \in G$ satisfies c(0) = e, c'(0) = v and c'(t) = X(c(t)).

A curve of the form c(t) = Exp(tv) is called the 1-parameter subgroup in G with c'(0) = v.

Example 7.11: computation of the exponent for a diagonalizable matrix.

Remark. In case of abstract Lie group the exponential map may be defined as follows. Let G be a Lie group and g be its Lie algebra. Let $v \in T_eG$ and $X \in \mathfrak{g}$ be a unique left-invariant vector field with X(e) = v. Then there exists a unique curve $c : \mathbf{R} \to G$ with $c_v(0) = e$, $c'_v(t) = X(c_v(t))$ [without proof]. The curve c_v is called an integral curve of X. We define the exponential map by $Exp(v) = c_v(1)$.

Definition 7.12. Let G be a Lie group. For $g \in G$ the adjoint representation $Ad(g) : T_eG \to T_eG$ is defined by

$$Ad(g)(w) := \frac{d}{dt}\Big|_{t=0} L_g R_{g^{-1}}(Exp(tw)) = \frac{d}{dt}\Big|_{t=0} gExp(tw)g^{-1}.$$

For $v \in T_e G$ the adjoint representation $ad(v): T_e G \to T_e G$ is defined by

$$ad(g)(v) := \frac{d}{dt}\Big|_{t=0} Ad(Exp(tv))(w) = \frac{d}{dt}\Big|_{t=0} \frac{d}{ds}\Big|_{s=0} Exp(tv)Exp(tw)Exp(-tv).$$

Theorem 7.13. (without proof) Let G be a Lie group with a Lie algebra \mathfrak{g} . Then for all $X, Y \in \mathfrak{g}$ holds $[X, Y](e) = ad(X(e))(Y(e)) \in T_eG$, i.e. by canonical identification of \mathfrak{g} with T_eG we have [X, Y] = ad(X)Y.

Example 7.14. Theorem 7.13 for the case of a matrix Lie group.

7.3 Riemannian metrics on Lie groups

Definition 7.15. For a given inner product $\langle \cdot, \cdot \rangle_e$ on T_eG , define the inner product at $g \in G$ for $v, w \in T_eG$ by $\langle v, w \rangle_g := \langle DL_{g^{-1}}(g)v, DL_{g^{-1}}(g)w \rangle_e$. The family $(\langle \cdot, \cdot \rangle_g)_{g \in G}$ of inner products defines a <u>left-invariant</u> Riemannian metric on G. (Every left-invariant Riemannian metric is obtained this way).

Remark 7.16. Let (G, <, >) be a Lie group with a left-invariant metric. Then

1. the diffeomorphisms $L_q: G \to G$ are isometries;

2. for any two left-invariant vector fields $X, Y \in \mathfrak{g}$ the map $g \mapsto \langle X(g), Y(g) \rangle_g$ is a constant function.

Theorem 7.17. Let G be a compact Lie group. Then G admits a biinvariant Riemannian metric $\langle \cdot, \cdot \rangle_g$, i.e. both families of diffeomorphisms L_g and R_g are isometries.

Corollary 7.18. Let (G, <, >) be a Lie group with biinvariant metric. Then for $X, Y, Z \in \mathfrak{g}$ holds $\langle [X, Y], Z \rangle = - \langle Y, [X, Z] \rangle$.

Corollary 7.19. Let (G, <, >) be a Lie group with biinvariant metric and let ∇ be the Levi-Civita connection. Then for $X, Y \in \mathfrak{g}$ holds $\nabla_X Y = \frac{1}{2}[X, Y]$.

Remark 7.20. The 1-parameter subgroups are exactly the geodesics of the left-invariant metric on G. So, the Lie group exponential map Exp coincides with the Riemannian exponential map exp_p at the identity.

7.4 Invariant metric on homogenious spaces (supplemetary matherial, not for exam!)

Definition 7.21. A connected Riemannian manifold (M, g) is called <u>homogeneous</u> if the group of isometries of M acts transitively on M.

Examples: $\mathbf{E}^n, S^n, \mathbf{H}^n$.

Construction: Given a Lie group G and a <u>closed</u> subgroup $H \subset G$, consider the set $M = G/H = \{gH \mid g \in G\}$. Then

1. M is a smooth manifold (non-trivial theorem, uses that H is closed);

2. there is a canonical projection $\pi: G \to G/H$, $\pi(g) = gH$;

3. The elements of G act on M by $\widetilde{L}_q(g'H) = gg'H$, the diffeomorphism $\widetilde{L}_q: M \to M$ is called <u>left G-action</u>.

If there is a left-invariant metric on M, (i.e. $\langle D\tilde{L}_g(e)v, D\tilde{L}_g(e)w \rangle_{gH} = \langle v, w \rangle_{eH} \forall g \in G, v, w \in T_{eH}(G/H)$) then \tilde{L}_g is an isometry of M, and M is a homogeneous space.

Theorem 7.22. (without proof). Each homogeneous manifold may be obtained in this way.

Theorem 7.23. (without proof)

The left-invariant metrics $\langle \cdot, \cdot \rangle$ on G/H are in one-to-one correspondence to Ad(H)-invariant inner products $\langle \cdot, \cdot \rangle_e$ on T_eG , i.e. $\langle Ad(h)v, Ad(h)w \rangle_e = \langle v, w \rangle_e$ for all $h \in H, w, v \in T_eG$.

Example. G = SO(3), isometries of a sphere S^2 ; H = SO(2) isometries of the sphere stabilizing one point, $M = SO(3)/SO(2) = S^2$, the sphere.

More generally, for a homogeneous space M one may coinside the group of its isometries Isom(M) with a subgroup $Stab_p \subset Isom(M)$ of isometries stabilizing one point $p \in M$. Then, one can prove $M = Isom(M)/Stab_p$.

8 Curvature

8.1 Riemannian curvature tensor

Definition 8.1. Let (M,g) be a Riemannian manifold, let $\mathfrak{X}(M)$ be vector field on M, and let ∇ be a Levi-Civita connection. Define a map (Riemannian curvature tensor) $R : \mathfrak{X}(M) \times \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M)$ by $R(X,Y)Z = \nabla_X \nabla_Y Z - \nabla_{YX} Z \nabla_{[X,Y]} Z$.

Remark: R is linear in all variables; in particular, R(fX, gY)hZ = fghR(X, Y)Z (so, it is a tensor).

Lemma 8.2. *R* has the following symmetries: (a) R(X,Y)Z = -R(Y,X)Z(b) R(X,Y)Z + R(Y,Z)X + R(Z,X)Y = 0(c) $\langle R(X,Y)Z,W \rangle = -\langle R(X,Y)W,Z \rangle$ (d) $\langle R(X,Y)Z,W \rangle = -\langle R(Z,W)X,Y \rangle$

Remark: Define components of Riemannian curvature tensor by $R_{ijkl} = \langle R(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j}) \frac{\partial}{\partial x_k}, \frac{\partial}{\partial x_l} \rangle$, and define R_{ijk}^l by $\overline{R(\frac{\partial}{\partial x_i}, \frac{\partial}{\partial x_j})} \frac{\partial}{\partial x_k} = \sum_l R_{ijk}^l \frac{\partial}{\partial x_l}$. Then $R_{ijkl} = \sum_m R_{ijk}^l g_{ml}$ and $R_{ijk}^l = \sum_m R_{ijkm} g^{ml}$.

Remark: In \mathbf{E}^n , we have $R \equiv 0$.

Definition 8.3. A Riemannian manifold is called <u>flat</u> if it is locally isometric to \mathbf{E}^n (i.e. each point has a neighbourhood isometric to an open set in \mathbf{E}^n).

Theorem 8.4. (without proof)

A Riemannian manifold is flat if and anly if its Riemannian curvature tensor vanishes identically.

Example 8.5. Let G be a Lie group with a biinvariant metric. Then $R(X,Y)Z = -\frac{1}{4}[[X,Y],Z]$ for all $X, Y, Z \in \mathfrak{g}$.

Example 8.6: components R_{ijks} and R_{ijk}^{l} for hyperbolic plane (in the upper half-plane model).

8.2 Sectional curvature

Definition 8.7. Let (M, g) be a Riemannian manifold, let $p \in M$ be a point, let $v_1, v_2 \in T_pM$ be tangent vectors and $\Pi \subset T_pM$ be a 2-plane spanned by v_1, v_2 .

The <u>sectional curvature</u> of Π at p is $K(\Pi) = K(v_1, v_2) = \frac{\langle R(v_1, v_2)v_2, v_1 \rangle}{||v_1||^2||v_2||^2 - \langle v_1, v_2 \rangle^2}.$

Proposition 8.8. $K(\Pi)$ does not depend on the basis $\{v_1, v_2\}$ of Π .

Examples 8.9-8.10: Sectional curvature of hyperbolic 3-space is -1; sectional curvature of a paraboloid of revolution is positive.

8.3 Ricci and scalar curvature

Given $v, w \in T_pM$ define a linear map $R(\cdot, v)w: T_pM \to T_pM$ by $u \mapsto R(u, v)w$.

Definition 8.11. <u>Ricci curvature tensor</u> Ric(v, w) is the <u>trace</u> of the map $R(\cdot, v)w$: $Ric_p(v, w) = tr(R(\cdot, v)w)$. In <u>orthonormal basis</u> $\{u_i\}$, $Ric_p(v, w) = \sum_{j=1}^n \langle R(u_j, v)w, u_j \rangle$. <u>Ricci curvature</u> at p is $Ric_p(v) = Ric_p(v, v) = \sum_{j=1}^n \langle R(u_j, v)w, u_j \rangle$ In orthonormal basis $\{v = u_1, \ldots, u_n\}$ we have $Ric_p(v) = \sum_{j=2}^n K(v, u_j)$.

Lemma 8.12. Ric(v, u) is a symmetric bilinear form (i.e. Ric(v) is a quadratic form).

Example 8.13. If K(v, w) is constant (= K) for vectors with ||v|| = 1, then Ric(v) = (n-1)K.

Definition 8.14. Scalar curvature $s(p) = \sum_{j} Ric_p(u_j, u_j)$.

Example: If K(v, w) is constant (= K) then s = n(n-1)K.

Lemma 8.15. s(p) does not depend on the orthonormal basis $\{u_j\}$.

9 Bonnet-Myers Theorem

Theorem 9.1. (Second variation formula of length).

Let $c : [a, b] \to M$ be a geodesic, let $F : (-\varepsilon, \varepsilon) \times [a, b] \to M$ be a proper variation, let $X(t) = \frac{\partial F}{\partial s}(0, t)$ be a variation vector field. Define $X^{\perp}(t) = X(t) - \langle X(t), c'(t) \rangle c'(t)$, the orthogonal component of X(t). Let l(s) be the length of variation.

Then $\tilde{l''(0)} = \int_a^b (||\frac{DX^{\perp}}{dt}||^2 - K(c', X^{\perp})||X^{\perp}||^2) dt.$

Remark: In case if X^{\perp} is collinear to c' (i.e. $X^{\perp} = 0$) we define $K(c', X^{\perp}) := 0$.

Corollary 9.2. If $K(\Pi) < 0$ for each $p \in M$ and each 2-plane $\Pi \in T_pM$ (space of negative curvature) then every geodesic is <u>minimal</u>.

Theorem 9.3. (Bonnet-Myers, 1935) Let (M, g) be connected, complete Riemannian manifold of dimension n. Suppose that $Ric(v) \ge \frac{n-1}{r^2}$ for all $v \in SM = \{w \in TM \mid ||w|| = 1\}$.

Then $diamM := sup_{p,q \in M} d(p,q) \le \pi r$. In particular, M is bounded, so, it is compact (as it is complete).

Example 9.4. For *n*-dimensional sphere S_r^n of radius *r* the inequality in the Bonnet-Myers Theorem turns into equality. Hence, the bound is sharp.

Example 9.5. Let $T^n = \mathbf{R}^n / \mathbf{Z}^n$ be an *n*-dimensional torus with arbitrary metric *g*. Then there is no c > 0 such that $Ric(v) \ge c$ for all $p \in M$, $v \in T_pM$ (otherwise the lift of *g* to \mathbf{R}^n contradicts to B-M Theorem).

10 Jacobi fields

10.1 Jacobi fields and geodesic variations

Definition 10.1. Let c(t) be a geodesic. A vector field $J \in \mathfrak{X}_c(M)$ is a <u>Jacobi field</u> if it satisfies <u>Jacobi equation</u>: $\frac{D^2}{dt^2}J + R(J,c')c' = 0.$

Example 10.2. Vector fields c'(t) and tc'(t) are Jacobi fields for any geodesic c(t).

Theorem 10.3. Let c(t) be a geodesic. Let F(s,t) be a variation, s.t. every curve $F_s(t)$ is geodesic. Then the variation field $X(t) = \frac{\partial F}{\partial s}(0,t)$ is Jacobi field.

Example 10.4. Geodesic variation on a sphere and its variation field.

Definition 10.5. Let $E_1(t), \ldots, E_n(t) \in \mathfrak{X}_c(M)$ be vector fields on c(t). We say that $\{E_1, \ldots, E_n\}$ is a parallel orthonormal basis along c if for all t, i, j holds $\frac{D}{dt}E_i = 0$ and $\langle E_i, E_j \rangle = \delta_{ij}$.

Notation: $R_{ij} = \langle R(E_i, c')c', e_j \rangle$, $n \times n$ symmetric matrix depending on t.

Theorem 10.6. Let c(t) be a geodesic and $\{E_i\}$ be a parallel orthonormal basis along c. Take $J \in \mathfrak{X}_c(M)$ and its expansion $J = \sum_j J_j(t) E_j(t)$ (where $J_j(t)$ is a function). Then J is a Jacobi field is and only if $J_k'' + \sum_{k=1}^n R_{kj}J_j = 0$ for all $k = 1, \ldots, n$.

Corollary 10.7. For any choice of $v, w \in T_{c(t_0)}M$ there exists a unique Jacobi field J along c such that $J(t_0) = v, \frac{D}{dt}J(t_0) = w.$

Remark 10.8. Corollary 10.7 implies that for any geodesic c(t) there is a 2*n*-dimensional space $J_c(M)$ of Jacobi fields on *c*. Moreover, the map $T_{c(t_0)}M \times T_{c(t_0)}M \to J_c(M)$ defined by $(v, w) \mapsto J$ s.t. $J(t_0) = v$, $\frac{D}{dt}J(t_0) = w$ is an isomorphism.

Lemma 10.9. Let $c : [0,1] \to M$ be a geodesic and $J \in J_c(M)$ be a Jacobi field along c. Suppose J(0) = 0. Then there exists a geodesic variation F of c such that $J = \frac{\partial F}{\partial s}(0, t)$.

10.2 Conjugate points and normal Jacobi fields

Definition 10.10. Let $c : [a, b] \to M$ be a geodesic, $a \le t_0 < t_1 \le b$ and $p = c(t_0)$, $q = c(t_1)$ be two points. The point q is conjugate to p along c(t) if there exists a Jacobi field $J \in J_c(M)$, $J \ne 0$ such that $J(t_0) = J(t_1) = 0$.

Example 10.11. On the sphere S^2 (with induced metric), the South pole is conjugate to the North pole along each geodesic passing through both these points.

Definition 10.12. A point $q \in M$ is conjugate to a point $p \in M$ if there exists a geodesic c(t) passing through p and q such that q is conjugate to p along c(t).

Definition 10.13. A multiplicity of a conjugate point $c(t_1)$ (with respect to the point $c(t_0)$ is the number of linear independent Jacobi fields along c such that $J(t_0) = J(t_1) = 0$, in other words, it is $\dim J_c^{t_0,t_1}(M)$ where $J_c^{t_0,t_1}(M) = \{J \in J_c(M) \mid J(t_0) = J(t_1) = 0\}.$

Remark 10.14. Multiplicity does not exceed n-1.

Lemma 10.15. Let $J \in J_c(M)$ be a Jacobi field along a geodesic $c(t) = exp_p tv$. Suppose J(0) = 0. Then there exists $v, w \in T_{c(0)}M$ s.t. $J(t) = (Dexp_p)_{tv}tw$.

Lemma 10.16. The point $q = c(t_1)$ is conjugate to p = c(0) along a geodesic $c(t) = exp_p tv$ if and only if the point $v_1 = t_1 v$ is a critical point of the exponential map exp_p (i.e. $dimKer(Dexp_p)_{t_1v} > 0$). Multiplicity of q is equal to $dimKer(Dexp_p)_{t_1v}$.

Lemma 10.17. Let $c : [a, b] \to M$ be a geodesic, $a \le t_0 < t_1 \le b$. Suppose that $c(t_1)$ is <u>not</u> conjugate to $c(t_0)$. Take $v \in T_{c(t_0)}M$, $u \in T_{c(t_1)}M$. Then there exists a unique Jacobi field J along c s.t. $J(t_0) = v$, $J(t_1) = u$.

Lemma 10.18. Let $J \in J_c(M)$ be a Jacobi field along a geodesic c(t). Then the function $t \mapsto \langle J(t), c'(t) \rangle$ is <u>linear</u>. Namely, $\langle J(t), c'(t) \rangle = \langle J(0), c'(0) \rangle + t \langle \frac{D}{dt} \Big|_{t=0} J(t), c'(0) \rangle$.

Corollary 10.19. Let $\langle J(t_1), c'(t_1) \rangle = \langle J(t_2), c'(t_2) \rangle$. Then $\langle J(t), c'(t) \rangle = const$, a constant function.

Definition 10.20. A Jacobi field $J \in J_c(M)$ is <u>normal</u> if $\langle J, c' \rangle \equiv 0$. Notation: $J_c^{\perp} := \{J \in J_c(M) | \langle J, c' \rangle \equiv 0\}.$

Corollary 10.21. (1) Let J(0) = 0. Then J is normal if and only if $\langle \frac{D}{dt} |_{t=0} J(t), c'(0) \rangle = 0$. (2) $\dim J_c^{\perp,t_0} = n-1$ where $J_c^{\perp,t_0} := \{J \in J_c(M) | \langle J, c' \rangle \equiv 0, J(t_0) = 0\}$. (3) $\dim J_c^{\perp} = 2n-2$.

Example 10.22. Jacobi fields on \mathbb{R}^2 .

Theorem 10.23. Let c be a geodesic. Then every Jacobi field $J \in J_c(M)$ is a variation field for some geodesic variation F(s,t) of c.

10.3 Minimizing geodesics and conjugate points

Theorem 10.24. Let $c : [0,b] \to M$ be a geodesic and let c(a) be a point conjugate to c(0), 0 < a < b. Then c is <u>not minimal</u> between c(0) and c(b).

Lemma 10.25, Corollary 10.26 and Lemma 10.27 serve to prove Theorem 10.24; we skip it here.

Examples 10.28, 10.29: Jacobi fields on the sphere and hyperbolic plane.

10.4 Minimizing geodesics and conjugate points

Definition 10.24. A topological space is simply connected if for each curve $:[0,1] \to M$ with c(0) = c(1) there exists a continuous map $F: [0,1] \times [0,1] \to \overline{M}$ such that $\overline{F}(1,t) = c(t)$, F(0,t) = p for some $p \in M$.

Examples: \mathbf{R}^n is simply connected, S^n is simply connected for n > 1; S^1 and T^n (torus) are not simply-connected.

Theorem 10.31. (Cartan-Hadamard). Let M be a complete connected, simply connected Riemannian manifold of non-positive sectional curvature. Then M is diffeomorphic to \mathbb{R}^n , where n is the dimension of M.

11 Appendix: Curvature and Geometry

The contents of this section is not included in the Examination. In lectures, the statements were presented without proofs.

11.1 Cut locus

Example 11.1. Flat (Euclidean) torus: no conjugate points, but there are non-minimal geodesics.

Definition 11.2. Let c be a geodesic, p = c(0). A <u>cut point</u> of p with respect to c is $q = c(t_0)$, such that the geodesic c is minimizing on $[0, t_0]$ and not minimizing on [0, t] for $t > t_0$. A cut locus of p is the set of all cut points of p (with respect to al geodesics though p).

Example 11.3. Cut loci on the sphere S^n and on a flat torus T^2 .

Proposition 11.4. If $c(t_0)$ is the cut point of p = c(0) along c, then

(a) either $c(t_0)$ is the first conjugate point of c(0) along c;

(b) or there exists a geodesic $\gamma \neq c$ from p to $c(t_0)$ such that $l(\gamma) = l(c)$.

Conversely, if (a) or (b) holds then there exists $t_1 \in (0, t_0]$ s.t. $C(t_0)$ is a cut point of p along c.

Corollary 11.5. 1) If q is a cut point of p along c then p is a cut point of Q along c. 2) If Q is not a cut point of p along c then there exists a unique minimizing geodesics joining p to q.

11.2 Injectivity radius

Definition 11.6. The injectivity radius of a point $p \in M$ is $i_p := \sup\{r \mid exp_p \text{ is diffeo in } B_r(p).$

The injectivity radius of M is $i(M) := \inf_{n \to \infty} i_p$.

Proposition 11.7. If *M* is complete, with sectional curvature *K* satisfying $0 < K_{min} < K < K_{max}$ then

(a) $i(M) \ge \pi/\sqrt{K_{max}};$

(b) there exists a shortest closed geodesic $c \in M$ s.t. $i(M) = \frac{1}{2}l(c)$.

11.3 Sphere Theorem

Theorem 11.8. (Sphere Theorem). Let M be a compact, simply connected Riemannian manifold with $\frac{1}{4} < K(\Pi) \leq 1$ for all $\Pi \in T_pM$, for all $p \in M$. Then M is homeomorphic to S^n .

Remark 11.9. 1. Recently, it was proved that M is also diffeomorphic to S^n .

2. The Theorem 11.8 foes not hold for $\frac{1}{4} \leq K(\Pi) \leq 1$.

3. In case of dimension n = 2 stronger result holds:

If $K \ge 0$ for all $p \in M$ and K > 0 in at least one point, then M is homeomorphic to S^2 .

Theorem 11.10. Any smooth manifold of dimension $n \ge 3$ admits a Riemannian metric of negative Ricci curvature.

Remark. The theorem does not hold for surfaces! (Look at S^2 and apply Gauss-Bonnet).

11.4 Spaces of constant curvature

Theorem 11.11. Let M be a complete, simply connected Riemannian manifold of <u>constant</u> sectional curvature K. Then

1) if K > 0 then M is isometric to S^n ;

- 2) if K = 0 then M is isometric to \mathbf{E}^n ;
- 3) if K < 0 then M is isometric to \mathbf{H}^n .

Remark. If M is not simply connected, then the statement holds locally only.

11.5 Index form

Recall: given a geodesic $c : [0, a) \to M$ there exists a bilinear symmetric form on $\mathfrak{X}_c M$ given by $I_a(V, W) = \int_0^a (\langle V, W \rangle + \langle R(V, c')c', W \rangle) dt.$

Definition: The quadratic form $I_a(V, V)$ is called an <u>index form</u>.

Definition 11.12. The <u>index</u> of I_a is the maximal dimension of a subspace of $\mathfrak{X}_c M$ on which I_a is negative definite.

Theorem 11.11. (Morse Index Theorem). The index of I_a is finite for each geodesic c. Moreover, it equals to the number of points c(t), 0 < t < a conjugate to c(0). each counted with its multiplicity.

Corollary 11.12. The set of conjugate points along a geodesic is a discrete set.

Lemma 11.15. (Index Lemma). Let $c : [0, a] \to M$ be a geodesic containing no conjugate points to c(0). Let $J \in J_c$ be a normal Jacobi field, $\langle J, c' \rangle = 0$. Let V be a piecewise differentiable vector field on $c, \langle V, c' \rangle = 0$. Suppose also J(0) = V(0) = 0, $J(t_0) = V(t_0)$ for some $t_0 \in (0, a]$. Then $I_{t_0}(J, J) \leq I_{t_0}(V, V)$, where equality holds only if V = J on [0, a].

11.6 Comparison Theorems

Theorem 11.16. (Rauch's Comparison Theorem). Let $c : [0, a] \to M^n$ and $\tilde{c} : [0, a] \to \widetilde{M}^{n+k}$, $k \ge 0$ be two unite speed geodesics and let $J : [0, a] \to TM$ and $\widetilde{J} : [0, a] \to T\widetilde{M}$ be normal Jacobi fields along c and \widetilde{c} with J(0) = 0, $\widetilde{J}(0) = 0$, $||J'(0)|| = ||\widetilde{J}'(0)||$. Assume that \widetilde{J} does not have conjugate points on [0, a) and that for any $t \in [0, a]$ the inequality $K_M(\Pi) \le K_{\widetilde{M}}(\widetilde{\Pi})$ holds for all 2-planes $\Pi \subset T_{c(t)}M$ and $\widetilde{\Pi} \subset T_{\widetilde{c}(t)}\widetilde{M}$. Then $||J(t)|| \ge ||\widetilde{J}(t)||$ for all $t \in [0, a]$.

Example. Regular triangles with side $\pi/2$ in S^2 , \mathbf{E}^2 and \mathbf{H}^2 : length of the median.

Definition 11.17. A triangle in a Riemannian manifold is a collection of 3 points with <u>minimal</u> geodesics connecting them. A <u>generalized triangle</u> is a collection of 3 points with any geodesics connecting them and satisfying triangle inequality.

Definition 11.18. A comparison triangle p'q'r' for a generalized triangle $pqr \in M$ is a triangle in a space of constant curvature with sides of of the same lengths.

Remark. In \mathbf{E}^n and \mathbf{H}^n such a triangle always exists.

In S^n it does exist if the lengths in pqr a not too big $(l \leq \pi r, \text{ where } r \text{ is the radius of the sphere}).$

Theorem 11.19. (Alexandrov-Toponogov Comparison Theorem). Let $K(\Pi) \ge 0$ for all $\Pi \in T_pM$ for all $p \in M$. Let $p_0, p_1, p_2 \in M$. Let p_3 lie between p_1 and p_2 (i.e. $|p_1 - p_3| + |_2 - p_3| = |p_1 - p_2|$). Let p'_0, p'_1, p'_2 be a comparison triangle in \mathbf{E}^2 . Define p'_3 by $|p_i - p_3|_M = |p'_i - p'_3|_{\mathbf{E}^2}$, for i = 1, 2. Then $|p_0 - p_3|_M \ge |p'_0 - p'_3|_{\mathbf{E}^2}$ (Alexandrov-Toponogov inequality).

Conversely, if Alexandrov-Toponogov inequality holds for all p_0, p_1, p_2, p_3 then $K \ge 0$.

Remark. 1. Dual statement for $K \leq O$ with inverse AT-inequality.

2. Equivalent conditions:

- a. smaller K imply smaller angles;
- b. smaller K imply bigger <u>circumference</u> of a circle of radius r;
- c. smaller K imply bigger <u>volume</u> of a ball or radius r.