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Riemannian Geometry IV, Term 1: outline

1 Smooth manifolds

“Smooth” means “infinitely differentiable”, C'*°.

Definition 1.1. Let M be a set. An n-dimensional smooth atlas on M is a collection of triples (Uy, Va, ©a),
where o € I for some indexing set I, s.t.

0. Uy € M; V, CR"™is open Va € I;
L. Uper Ua = M;
2. Each ¢, : Uy — V, is a bijection;

3. For every a, 3 € I such that U, N Ug # 0 the composition ¢g o goa_l‘ tpa(Ua NUB) —

Sﬁa(UaﬁUB)
vp(Us NUg) is a smooth map for all ordered pairs (a, ), where «, 3 € I.

The number n is called the dimension of M, the maps ¢, are called coordinate charts, the compositions
¢p o 5! are called transition maps or changes of coordinates.

Example 1.2. Two atlases on a circle S' C R2.

Definition 1.3. Let M have a smooth atlas. A set A C M is open if for every a € I the set po(ANU,)
is open in R™. This defines a topology on M.

Definition 1.4. M is called Hausdorff if for each x,y € M, x # y, there exist open sets A, > x and
Ay > y such that A, N A, = 0.

Example 1.5. An example of a non-Hausdorff space: a line with a double point.

Definition 1.6. M is called a smooth n-dimensional manifold if

1. M has an n-dimensional smooth atlas;
2. M is Hausdorff (in the topology defined by the atlas)
3. M is second-countable (technical condition, we will ignore).

Example 1.7. (a) The boundary of a square in R? is a smooth manifold.
(b) Not all sets with a smooth atlas satisfy Hausdorffness condition.

Example 1.8. Examples of smooth manifolds: torus, Klein bottle, 3-torus, real projective space.

Definition 1.9. Let U C R™ be open, m < n, and let f: U — R™ be a smooth map (i.e., all the partial

derivatives are smooth). Let Df(z) = ( aj;;) be the matrix of partial derivatives at x € U (differential or

Jacobi matrix). Then
(a) x € R™ is a regular point of f if rtk Df(x) =m (i.e., Df(x) has a maximal rank);

(b) y € R™ is a regular value of f if the full preimage f~!(y) consists of regular points only.



Theorem 1.10 (Corollary of Implicit Function Theorem). Let U C R™ be open, f : U — R™ smooth,
m < n. If y € f(U) is a regular value of f then f~!(y) C U C R" is an (n — m)-dimensional smooth
manifold.

Examples 1.11-1.12. An ellipsoid as a smooth manifold; matrix groups are smooth manifolds.

Definition 1.13. Let M™ and N" be smooth manifolds of dimensions m and n, with atlases (U, v (Ua), ©a),
a € Aand (Wg,v3(Wg),v8), B € B. Amap f: M™ — N" is smooth if it induces smooth maps of open

. n m . 71 .
sets in R™ and R™, i.e. 1go f o, ‘«pa(ffl(Wgﬂf(Ua))) is smooth for all a« € A, 8 € B.

Remark. A smooth manifold G together with a group operation G x G — G is a Lie group is the maps
(g1,92) — 9192 and g — g~ ! are smooth.

2 Tangent space

Definition 2.1. A smooth map f: M — R is called a smooth function on M.

Definition 2.2. A derivation on the set C°°(M, p) of all smooth functions on M defined in a neighborhood
of p is a linear map ¢ : C*°(M,p) — R, s.t. for all f,g € C*°(M,p) holds (f-g) = f(p)d(g) +(f)g(p)
(the Leibniz rule).

The set of all derivations is denoted by D*°(M,p). This is a real vector space (exercise).

Definition 2.3. The space D*°(M, p) is called the tangent space of M at p, denoted T),M. Derivations
are tangent vectors.

Definition 2.4. Let v : (a,b) — M be a smooth curve in M, tg € (a,b), y(top) = p and f € C*(M,p).
Define the directional derivative 7/(¢o)(f) € R of f at p along ~ by

V(to)(f) = tim LG0T D Z O _ iy = 4| (5o

s—0 S dt t=to

Directional derivatives are derivations (exercise).
Remark. Two curves v; and o through p may define the same directional derivative.

Notation. Let M™ be a manifold, ¢ : U =V CR" a chart at p € U C M. For i = 1,...,n define the
curves ;(t) = ¢ 1 (p(p) + e;t) for small ¢t > 0 (here {e;} is a basis of R").

Definition 2.5. Define %!p = 7/(0), i.e.

0

833‘i p

()= (f0m)(O) = 27 057 0l0) + 1)y = - (T 0 &™),

where 8%1- on the right is just a classical partial derivative.

By definition, we have

0 d
(a—, ce 8—> C {Directional derivatives} C D*°(M,p)
T1 In
Proposition 2.6. (a%l, e %> = {Directional derivatives} = D>(M,p).



Lemma 2.7. Let ¢ : U C M — R™ be a chart, ¢(p) = 0. Let 3(t) = (3.1, kiei)t : R — R™ be a line,
where {e1,...,e,} is a basis, k; € R. Define y(t) = ¢! o 4(t) € M. Then v'(0) = > I, kia%i‘

Example. (see Problems class 2) For the group SL,(R) = {A € M,, | det A = 1}, the tangent space at
I is the set of all trace-free matrices: T7(SL,(R)) = {X € M, (R) | tr X = 0}.

Proposition 2.8. (Change of basis for T,M). Let M™ be a smooth manifold, ¢, : Uy — Vi a

rrn

B
chart, (z¢,...,z%) the coordinates in V,. Let p € Uy N Ug. Then 8% = Z?:l%@%? where
ilp et}

ox?  A(phopa") -
o = —gar—(9(p)), ¥l = i o pp.

J J

Definition 2.9. Let M, N be smooth manifolds, let f: M — N be a smooth map. Define a linear map
Df(p) : TyM — Ty N called the differential of f at p by Df(p)y'(0) = (f o~)'(0) for a smooth curve
v € M with v(0) = p.

Remark. Df(p) is well defined (i.e. depend only on 4/(0) not on the curve ~ itself).

Lemma 2.10. If ¢ is a chart, then
(a) Dp~1(0) is linear;
(b) Do(p) : TyM — T,;,)R™ is the identity map taking 8%1- ) to %;

(c) For M & N % L holds D(go £)(p) = Dg(f(p)) o Df (p).
Remark. Hence, Df(p) is a linear map.

Example 2.11. Differential of a map from a disc to a sphere.

Tangent bundle and vector fields

Definition 2.12. Let M be a smooth manifold. A disjoint union T'M = UpeprT, M of tangent spaces to
each p € M is called a tangent bundle.
There is a canonical projection IT : TM — M, II(v) = p for every v € T,M.

Proposition 2.13. The tangent bundle TM has a structure of 2n-dimensional smooth manifold, s.t.
II:TM — M is a smooth map.

Definition 2.14. A vector field X on a smooth manifold M is a smooth map X : M — TM such that
Vpe M X(p) € T,M
The set of all vector fields on M is denoted by X(M).

Remark 2.15. (a) X(M) has a structure of a vector space.
(b) Vector fields can be multiplied by smooth functions.

(c) Taking a coordinate chart (U, p = (x1,...,2y)), any vector field X can be written in U as
X(p)=>", fi(p)a%i € T,M, where {f;} are some smooth functions on U.

Examples 2.17-2.18. Vector fields on R? and 2-sphere.

Remark 2.18. Observe that for X =3 ai(p)a%i € X(M) we have X (p) € T,M, ie. X(p)is a directional
derivative at p € M. Thus, we can use the vector field to differentiate a function f € C°°(M) by
(XH)p)=> ai(p)g—gf: ,» 80 that we get another smooth function X f € C>(M).




Proposition 2.19. Let X,Y € X(M). Then there exists a unique vector field Z € X(M) such that
Z(f) = X(Y(f)) = Y (X(f)) for all f € C>(M).
This vector field Z = XY — Y X is denoted by [X,Y] and called the Lie bracket of X and Y.

Proposition 2.20. Properties of Lie bracket:
(a) [X,Y]=-[V,X];

(b) [aX +bY,Z] = a[X, Z] 4+ b]Y, Z] for a,b € R;
)

c) [X,Y],Z]+ Y, Z], X] + [[Z,X],Y] = 0 (Jacobi identity);

(
(d) [fX,gY] = fg[X, Y]+ f(Xg)Y —g(Y f)X for f,g € C=(M).

Definition 2.21. A Lie algebra is a vector space g with a binary operation [-,:] : g x g — g called the
Lie bracket which satisfies first three properties from Proposition 2.20.

Proposition 2.20 implies that X(M) is a Lie algebra.

Theorem 2.22 (The Hairy Ball Theorem). There is no non-vanishing continuous vector field on an
even-dimensional sphere S2™.

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A Riemannian metric g,(-,-) or (-,-), is a family of real
inner products g, : T,M x T,M — R depending smoothly on p € M. A smooth manifold M with a
Riemannian metric g is called a Riemannian manifold (M, g).

Examples 3.2—3.3. Euclidean metric on R”, induced metric on M C R".

Definition 3.4. Let (M, g) be a Riemannian manifold.
(1) For v € T, M define the length of v by 0 < [[v||g = \/gp(v, v)

(2) If ¢ : [a,b] = M is a smooth curve, then the length of cis L(c f [l (t)]|dt.

Remark (Reparametrization). Let ¢ : [¢,d] — [a,b] be a strictly monotonic smooth function, ¢’ # 0,
and let 7 : [a,b] = M be a smooth curve. Then for ¥ =y o ¢ : [¢,d] = M holds L(v) = L(7).

Example 3.5. Three models of hyperbolic geometry:

model notation M g
: {y e R | q(y,y) = —L,yn+1 > 0}
Hyperboloid W v,w) = q(v,w
P where g(z,y) = 37, Tilfi = Tn1Yntd ga(v; 0) = g(v, w)
Poincaré ball B" {x eR" | ||z]]? = Z r? <1} gz (v, w) = W(v w)
Upper half-space H" {r e R" |z, >0} gz (v, w) = x%(v,w)

Definition 3.6. Given two vector spaces Vi, Vs with real inner products (V;, (-, -);), an isomorphism
T : Vi — V, of vector spaces is a linear isometry if (T'v, Tw)y = (v, w); for all v,w € V.

This is equivalent to preserving the lengths of all vectors (since (v, w) = ((v+w,v+w) — (v, v) — (w, w))).

Definition. A bijective map f is a diffeomorphism if both f and f~! are smooth.




Definition 3.7. A diffeomorphism f : (M,g) — (N, h) of two Riemannian manifolds is an isometry if
Df(p) : T,M — Ty, N is a linear isometry for all p € M.

Remark. For a smooth manifold M denote by Diff(M) all diffeomorphisms M — M. Notice that
Diff(M) is a group. If (M, g) is a Riemannian manifold, define isometry group Isom(M,g) by
Isom(M,q):={f € Dif f(M) | f is an isometry}. Isom(M,g) has a structure of a Lie group.

Example. Some isometry groups:
M | s | §% | 52\ { North and South poles} | S?\ {3 gencral points}
Isom(M) | O(2) | O(3) | 0(2) x (Z)27) | {id}

Theorem 3.8 (Nash embedding theorem). For any Riemannian manifold (M™, g) the exists an isometric
embedding into R* for some k € N. If M is compact, there exists such k < W, and if M is not

compact, there is such k < w

Example 3.9. Isometry between two models of hyperbolic plane.

Definition 3.10. A smooth curve c: [a,b] — M is arc-length parametrized if ||c/(¢)|| = 1.

Proposition 3.11 (evident). If a curve c¢: [a,b] — M is arc-length parametrized, then L(c) =b — a.
Proposition 3.12. Every curve has an arc-length parametrization.
Example 3.13. Length of vertical segments in H. Shortest paths between points on vertical rays.

Definition 3.14. Define a distance d : M x M — [0,00) on (M, g) by d(p,q) = inf,{L(7)}, where 7 is a
piecewise smooth curve connecting p and gq.

Remark. (M,d) is a metric space.

Definition 3.15. If (M, g) is a Riemannian manifold, then any subset A C M is also a metric space
with the induced metric d|axa : A x A — [0,00) defined by d(p,q) = inf,{L(v) | v : [a,b] = A,v(a) =
p,v(b) = q}, where the length L(v) is computed in M.

Example 3.16. Induced metric on S' C R2.
Example 3.17. Punctured Riemann sphere: R™ with metric g, (v, w) = W(v, w).

Definition 3.18. A topological space is compact if for every open cover {U;};cs of T there exists a finite
subcover.

Example. R" is not compact while S™ is compact.

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field X = Zai(p)% € X(R") and a vector v € T,R"™ define the

covariant derivative of X in direction v in R" by V,(X) = }in% w =) v(ai)%’p € T,R™.
— 7

Proposition 4.2. The covariant derivative V, X in R" satisfies all the properties (a)—(e) listed below in
Definition 4.3 and Theorem 4.4.



Definition 4.3. Let M be a smooth manifold. A map V : X(M) x X(M) — X(M), (X,Y) — VxY is
affine connection if for all X,Y,Z € X(M) and f,g € C*°(M) holds

(a) Vx(Y+2)=Vx(Y)+Vx(2)
(b) Vx(fY)=X(f)Y(p)+ f(p)VxY
(C) VfX+gyZ = fVxZ +gVyZ

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Rieman-
nian manifold. There exists a unique affine connection V on M with the additional properties for all
XY, Z € X(M):

(d) v((X,Y)) =(V,X,Y) + (X,V,Y) (Riemannian property);
(e) VxY —VyX =[X,Y] (V is torsion-free).

This connection is called Levi-Civita connection of (M, g).

Remark 4.5. Properties of Levi-Civita connection in R” and in M C R™ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let V be the Levi-Civita connection on (M, g), and let ¢ : U — V be a coordinate
chart with coordinates ¢ = (z1,...,2,). Since V o %(p) € T,M, there exists a uniquely determined
oz, J

collection of functions I‘fj € C®(U) s.t. Va%i 6)%j(p) =Y Ffj(p)a%k(p). These functions are called
Christoffel symbols of V with respect to the chart ¢.

n
Remark. Christoffel symbols determine V since \% Y bjai Z a;2 &B 833 + Z a;b; Ffj a‘z,k

n
X %i5s; j=1 igik

Proposition 4.7.
1
k k
Iy = ) Zg "(Gim,j t Gim,i — Gijm)s
m
where ggp, . = %gab and (¢") = (g;j)71, i.e. {g"} are the elements of the matrix inverse to (g;;).

In particular, Fk = I‘k

Example 4.8. In R", = 0 for all 4, j, k. Computation of Ffj in §? C R3 with induced metric.

4.3 Parallel transport

Definition 4.9. Let ¢ : (a,b) — M be a smooth curve. A smooth map X : (a,b) — TM with X (t) €
T,yM is called a vector field along c. These fields form a vector space X.(M).

Example 4.10. ¢ (t) € X.(M).

Proposition 4.11. Let (M, g) be a Riemannian manifold, let V be the Levi-Civita connection, ¢ : (a,b) —
M be a smooth curve. There exists a unique map % t X (M) — X.(M) satisfying

(a) Z(aX +Y)=a2X + LY for any o € R.

(b) 2(fX) = f(t)X + f2X for every f € C°°(M).



(c) If X € X(M) is a local extension of X
(i.e. there exists tg € (a,b) and € > 0 such that X (¢ X‘ for allt € (tg —e,t0 +¢))

then (EX)( 0) = vc’(to)X'

This map £ : X.(M) — X.(M) is called the covariant derivative along the curve c.

Example 4.12. Covariant derivative in R"”.
Definition 4.13. Let X € X.(M). If %X = 0 then X is said to be parallel along c.
Example 4.14. A vector field X in R™ is parallel along a curve if and only if X is constant.

Theorem 4.15. Let c : [a,b] — M be a smooth curve, v € Ty, M. There exists a unique vector field
X € X.(M) parallel along ¢ with X (a) =

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of
(M, g))-

Definition 4.17. Let c: [a,b] — M be a smooth curve. A linear map P, : Ty(q)M — T, M defined by
P.(v) = X (b), where X € X.(M) is parallel along ¢ with X (a) = v, is called a parallel transport along c.

Remark. The parallel transport P, depends on the curve ¢ (not only on its endpoints).

Proposition 4.18. The parallel transport Fe : Ty M — T, M is a linear isometry between T, )M
and Tc(b)M) Le. Ye(a) (v,w) = gc(b)(Pcvv Pew).

5 Geodesics

5.1 Geodesics as solutions of ODE’s

Definition 5.1. Given (M, g), a curve ¢ : [a,b] — M is a geodesic if 2¢/(t) = 0 for all ¢ € [a,b] (i.e.,
d(t) € X.(M) is parallel along c).

Lemma 5.2. If ¢ is a geodesic then c is parametrized proportionally to the arc length.
Theorem 5.3. Given a Riemannian manifold (M, g), p € M, v € T,M, there exists € > 0 and a unique
geodesic ¢ : (—e,e) — M such that ¢(0) = p, ¢/(0) = v.

Examples 5.4-5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model H?.

5.2 Geodesics as distance-minimizing curves. First variation formula of the length

Definition 5.6. Let ¢ : [a,b] — M be a smooth curve. A smooth map F : (—¢,¢) x [a,b] — M is a
(smooth) variation of ¢ if F'(0,t) = ¢(t). Variation is proper if F(s,a) = c¢(a) and F(s,b) = ¢(b) for all
s € (—g,e).

Variation can be considered as a family of the curves Fy(t) = F(s,t).

Definition 5.7. A variational vector field X € X.(M) of a variation F' is defined by X (t) = %{:(0 t).

Definition 5.8. The length [ : (—¢,e) — [0,00) and energy F : (—¢,e) — [0,00) of a variation F' are

defined by
/n (s,0lldt, (s /n )t



Remark. [(s) is the length of the curve Fi(t).

Theorem 5.9. A smooth curve c is a geodesic if and only if ¢ is parametrized proportionally to the arc
length and !’(0) = 0 for every proper variation of c.

Corollary 5.10. Let ¢ : [a,b] — M be the shortest curve from c(a) to ¢(b), and ¢ is parametrized
proportionally to the arc length. Then c is geodesic.

Remark. The converse is false (e.g., on the sphere).

Lemma 5.11 (Symmetry Lemma). Let W C R? be an open set and F : W — M, (s,t) — F(s,t), be
a smooth map. Let % be the covariant derivative along F(t) and % be the covariant derivative along
Fy(s). Then %%—f = %%—f.

Theorem 5.12 (First variation formula of length). Let F : (—¢,¢) X [a,b] — M be a variation of a
smooth curve ¢(t), ¢/(t) # 0. Let X(¢) be its variational vector field and [ : (—¢,e) — [0,00) its length.
Then

b b
/ _ 1 i J . 1 Bcl
’0) = / g X ) / KO Ze o)

e’

Corollary 5.13. (a) If ¢(¢) is parametrized proportionally to the arc length, ||¢/(¢)|| = ¢, then
b
I'(0) = (X (0),d (b)) — t(X(a),d(a)) — ¢ [(X (1), 3 (t)) dt;

(b) if c(t) is geodesic, then I'(0) = 1(X(b),¢ (b)) — 1(X(a), (a));
b
(c) if Fis proper and c is parametrized proportionally to the arc length, then '(0) = —% [(X(t), 2¢/(¢)) dt;

(d) if F is proper and c is geodesic, then I'(0) = 0.
Lemma 5.14. Any vector field X along ¢(t) with X (a) = X (b) = 0 is a variational vector field for some
proper variation F.
5.3 Exponential map and Gauss Lemma

Let p € M, v € T,M. Denote by ¢,(t) the unique maximal geodesic (i.e., the domain is maximal) with
co(0) =p, ¢,(0) = v.

Definition 5.15. If ¢,(1) exists, define exp,, : T,M — M by exp,(v) = ¢,(1), the exponential map at p.

Example 5.16. Exponential map on the sphere S?: length of ¢, from p to ¢,(1) equals ||v]|.
Notation. B,.(0,) = {v € T,M | ||v|| < r} C T, M is a ball of radius r centered at 0,,.

Proposition 5.17. (without proof)
For any p € (M, g) there exists 7 > 0 such that exp, : B.(0,) — exp,(B,(0p)) is a diffeomorphism.

Example. On S? the set exp,,(Br/2(0p)) is a hemisphere, so that every geodesic starting from p is
orthogonal to the boundary of this set.

Theorem 5.18 (Gauss Lemma). Let (M, g) be a Riemannian manifold, p € M, and let £ > 0 be such
that exp, : B:(0p) — exp,(B:(0p)) is a diffeomorphism. Define As = {exp,(w) | [|w|] = 0} for every
0 < § < e. Then every radial geodesic c : t = exp,(tv), t > 0, is orthogonal to As.
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Remark 5.19. The curve c,(t) = exp,(tv) is indeed geodesic; every geodesic v through p can be written
as 7(t) = exp,(tw) for appropriate w € T), M.

Definition. Denote B:(p) = exp,(B:(0,)) C M, a geodesic ball.

Lemma 5.20. Let (M, g) be a Riemannian manifold and p € M. Let £ > 0 be small enough such that
exp,, : B:(0p) — Be(p) C M is a diffeomorphism. Let v : [0,1] — Bc(p) \ {p} be any curve. Then there
exists a curve v : [0,1] = T, M, ||v(s)|| =1 for all s € [0, 1], and a positive function r : [0, 1] — R, such

that v(s) = exp,(r(s)v(s)).

Lemma 5.21. Let r : [0,1] — Ry, v : [0,1] = S,M = {w € T,M | ||w|| = 1}. Define v : [0,1] —
Be(p) \ {p} by 7(s) = exp,(r(s)v(s)). Then the length I(y) > [r(1) — r(0)|, and the equality holds if and
only if «y is a reparametrization of a radial geodesic (i.e. v(s) = ||v(0)|| and r(s) is a strictly increasing or
decreasing function).

Corollary 5.22. Given a point p € M, there exists £ > 0 such that for any ¢ € B.(p) there exists a curve
¢(t) connecting p and ¢ and satisfying [(c) = d(p, q). (This curve is a radial geodesic).

Remark. According to Corollary 5.22, there is € > 0 such that B.(p) coincides with e-ball at p, i.e. with
{ge M |dp,q) <e}.

Proposition 5.23. (without proof)
Let p € M. Then there is an open neighborhood U of p and ¢ > 0 such that V¢ € U exp, : B:(0,) — B:(q)
is a diffeomorphism.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic ¢ : [a,b] — M is minimal if [(c) = d(c(a),c(b)). A geodesic ¢ : R — M is
minimal if its restriction c[j, ) is minimal for each segment [a,b] C R.

Example. No minimal geodesics in 52, all geodesics in E? are minimal.

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic ¢ : [a,b] — M
can be extended to a geodesic ¢ : R — M (i.e. can be extended infinitely in both directions). Equivalently,
exp,, is defined on the whole T}, M for all p € M.

Theorem 5.26 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold with distance function
d. Then the following are equivalent:

(a) (M, g) is complete (i.e. every Cauchy sequence converges);
(b) every closed and bounded subset is compact;

(c) (M,g) is geodesically complete.

Moreover, every of the conditions above implies

(d) for every p,q € M there exists a minimal geodesic connecting p and q.
Remark. A geodesic in (d) may not be unique. Further, (d) does not imply (c).
Remark. Theorem 5.26 uses the following notions defined in a metric space:

o {z;}, x; € M, is a Cauchy sequence if Ve > 0INVm,n > N d(zp,x,) < &;




a set A C M is bounded if A C B,(p) for some r > 0, p € M,

aset A C M is closed if {z, € A,x,, & z} = = € A;

a set A C M is compact if each open cover has a finite subcover;

a set A C M is sequentially compact if each sequence has a converging subsequence.

Some properties:

1. A compact set is sequentially compact, bounded, closed.

2. A compact metric space is complete.

3. In a complete metric space, a sequentially compact set is compact.

Integration on Riemannian manifolds

Definition. A support of a function f: M — R is the set supp(f) :={x € M | f(z) # 0}.

Definition. Let (M, g) be a Riemannian manifold (M,g¢) and a let f : M — R be a function.

0:U—V,UcC M,V CR"be a chart, p = (x1,...,2,). Assume that supp(f) C U. Then

[ = [1avi= [ gavi= [ 1o ) fetia o (o (@)
M M U \4

where g;;(p) = (7%

0
p’ Ox;

‘p) is the metric g written in the chart .

Remark. The result does not depend on the choice of the chart.

Let

Definition. A volume of a (good) subset A C U C M is defined by VolA = [ 14d Vol, where 14 is a
M

characteristic function of A: 14(p) =1 for all p € A and 14(p) = 0 otherwise. In other words,

Vol(A) = / d Vol = / Vdet(gij 0 oL () dz.

A »(A)

Example. The area of a hyperbolic triangle with all three vertices on the boundary is 7 (computation

in the upper half-plane model).

Remark. If supp(f) does not lie in one chart, one uses the technique of partition of unity which we don’t

study in this course.
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