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Riemannian Geometry IV, Term 1: outline

1 Smooth manifolds

“Smooth” means “infinitely differentiable”, C∞.

Definition 1.1. LetM be a set. An n-dimensional smooth atlas onM is a collection of triples (Uα, Vα, ϕα),
where α ∈ I for some indexing set I, s.t.

0. Uα ⊆M ; Vα ⊆ Rn is open ∀α ∈ I;

1.
⋃
α∈I Uα = M ;

2. Each ϕα : Uα → Vα is a bijection;

3. For every α, β ∈ I such that Uα ∩ Uβ 6= ∅ the composition ϕβ ◦ ϕ−1α
∣∣
ϕα(Uα∩Uβ)

: ϕα(Uα ∩ Uβ) →
ϕβ(Uα ∩ Uβ) is a smooth map for all ordered pairs (α, β), where α, β ∈ I.

The number n is called the dimension of M , the maps ϕα are called coordinate charts, the compositions
ϕβ ◦ ϕ−1α are called transition maps or changes of coordinates.

Example 1.2. Two atlases on a circle S1 ⊂ R2.

Definition 1.3. Let M have a smooth atlas. A set A ⊆M is open if for every α ∈ I the set ϕα(A∩Uα)
is open in Rn. This defines a topology on M .

Definition 1.4. M is called Hausdorff if for each x, y ∈ M , x 6= y, there exist open sets Ax 3 x and
Ay 3 y such that Ax ∩Ay = ∅.

Example 1.5. An example of a non-Hausdorff space: a line with a double point.

Definition 1.6. M is called a smooth n-dimensional manifold if

1. M has an n-dimensional smooth atlas;

2. M is Hausdorff (in the topology defined by the atlas)

3. M is second-countable (technical condition, we will ignore).

Example 1.7. (a) The boundary of a square in R2 is a smooth manifold.
(b) Not all sets with a smooth atlas satisfy Hausdorffness condition.

Example 1.8. Examples of smooth manifolds: torus, Klein bottle, 3-torus, real projective space.

Definition 1.9. Let U ⊆ Rn be open, m < n, and let f : U → Rm be a smooth map (i.e., all the partial
derivatives are smooth). Let Df(x) = ( ∂fi∂xj

) be the matrix of partial derivatives at x ∈ U (differential or

Jacobi matrix). Then

(a) x ∈ Rn is a regular point of f if rk Df(x) = m (i.e., Df(x) has a maximal rank);

(b) y ∈ Rm is a regular value of f if the full preimage f−1(y) consists of regular points only.
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Theorem 1.10 (Corollary of Implicit Function Theorem). Let U ⊂ Rn be open, f : U → Rm smooth,
m < n. If y ∈ f(U) is a regular value of f then f−1(y) ⊂ U ⊂ Rn is an (n − m)-dimensional smooth
manifold.

Examples 1.11–1.12. An ellipsoid as a smooth manifold; matrix groups are smooth manifolds.

Definition 1.13. LetMm andNn be smooth manifolds of dimensionsm and n, with atlases (Uα, ϕα(Uα), ϕα),
α ∈ A and (Wβ, ψβ(Wβ), ψβ), β ∈ B. A map f : Mm → Nn is smooth if it induces smooth maps of open
sets in Rn and Rm, i.e. ψβ ◦ f ◦ ϕ−1α

∣∣
ϕα(f−1(Wβ∩f(Uα)))

is smooth for all α ∈ A, β ∈ B.

Remark. A smooth manifold G together with a group operation G×G→ G is a Lie group is the maps
(g1, g2)→ g1g2 and g → g−1 are smooth.

2 Tangent space

Definition 2.1. A smooth map f : M → R is called a smooth function on M .

Definition 2.2. A derivation on the set C∞(M,p) of all smooth functions on M defined in a neighborhood
of p is a linear map δ : C∞(M,p)→ R, s.t. for all f, g ∈ C∞(M,p) holds δ(f · g) = f(p)δ(g) + δ(f)g(p)
(the Leibniz rule).

The set of all derivations is denoted by D∞(M,p). This is a real vector space (exercise).

Definition 2.3. The space D∞(M,p) is called the tangent space of M at p, denoted TpM . Derivations
are tangent vectors.

Definition 2.4. Let γ : (a, b) → M be a smooth curve in M , t0 ∈ (a, b), γ(t0) = p and f ∈ C∞(M,p).
Define the directional derivative γ′(t0)(f) ∈ R of f at p along γ by

γ′(t0)(f) = lim
s→0

f(γ(t0 + s))− f(γ(t0))

s
= (f ◦ γ)′(t0) =

d

dt

∣∣∣∣
t=t0

(f ◦ γ)

Directional derivatives are derivations (exercise).

Remark. Two curves γ1 and γ2 through p may define the same directional derivative.

Notation. Let Mn be a manifold, ϕ : U → V ⊆ Rn a chart at p ∈ U ⊂ M . For i = 1, . . . , n define the
curves γi(t) = ϕ−1(ϕ(p) + eit) for small t > 0 (here {ei} is a basis of Rn).

Definition 2.5. Define ∂
∂xi

∣∣
p

= γ′i(0), i.e.

∂

∂xi

∣∣∣∣
p

(f) = (f ◦ γi)′(0) =
d

dt
(f ◦ ϕ−1)(ϕ(p) + tei)

∣∣
t=0

=
∂

∂xi
(f ◦ ϕ−1)(ϕ(p)),

where ∂
∂xi

on the right is just a classical partial derivative.

By definition, we have

〈 ∂
∂x1

, . . . ,
∂

∂xn
〉 ⊆ {Directional derivatives} ⊆ D∞(M,p)

Proposition 2.6. 〈 ∂
∂x1

, . . . , ∂
∂xn
〉 = {Directional derivatives} = D∞(M,p).
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Lemma 2.7. Let ϕ : U ⊆ M → Rn be a chart, ϕ(p) = 0. Let γ̃(t) = (
∑n

i=1 kiei) t : R → Rn be a line,
where {e1, . . . , en} is a basis, ki ∈ R. Define γ(t) = ϕ−1 ◦ γ̃(t) ∈M . Then γ′(0) =

∑n
i=1 ki

∂
∂xi

.

Example. (see Problems class 2) For the group SLn(R) = {A ∈ Mn | detA = 1}, the tangent space at
I is the set of all trace-free matrices: TI(SLn(R)) = {X ∈Mn(R) | tr X = 0}.

Proposition 2.8. (Change of basis for TpM). Let Mn be a smooth manifold, ϕα : Uα → Vα a

chart, (xα1 , . . . , x
α
n) the coordinates in Vα. Let p ∈ Uα ∩ Uβ. Then ∂

∂xαj

∣∣∣
p

=
∑n

i=1
∂xβi
∂xαj

∂
∂xαi

, where

∂xβi
∂xαj

=
∂(ϕiβ◦ϕ

−1
α )

∂xαj
(ϕ(p)), ϕiβ = πi ◦ ϕβ.

Definition 2.9. Let M,N be smooth manifolds, let f : M → N be a smooth map. Define a linear map
Df(p) : TpM → Tf(p)N called the differential of f at p by Df(p)γ′(0) = (f ◦ γ)′(0) for a smooth curve
γ ∈M with γ(0) = p.

Remark. Df(p) is well defined (i.e. depend only on γ′(0) not on the curve γ itself).

Lemma 2.10. If ϕ is a chart, then
(a) Dϕ−1(0) is linear;

(b) Dϕ(p) : TpM → Tϕ(p)Rn is the identity map taking ∂
∂xi

∣∣∣
p

to ∂
∂xi

;

(c) For M
f→ N

g→ L holds D(g ◦ f)(p) = Dg(f(p)) ◦Df(p).

Remark. Hence, Df(p) is a linear map.

Example 2.11. Differential of a map from a disc to a sphere.

Tangent bundle and vector fields

Definition 2.12. Let M be a smooth manifold. A disjoint union TM = ∪p∈MTpM of tangent spaces to
each p ∈M is called a tangent bundle.

There is a canonical projection Π : TM →M , Π(v) = p for every v ∈ TpM .

Proposition 2.13. The tangent bundle TM has a structure of 2n-dimensional smooth manifold, s.t.
Π : TM →M is a smooth map.

Definition 2.14. A vector field X on a smooth manifold M is a smooth map X : M → TM such that
∀p ∈M X(p) ∈ TpM

The set of all vector fields on M is denoted by X(M).

Remark 2.15. (a) X(M) has a structure of a vector space.

(b) Vector fields can be multiplied by smooth functions.

(c) Taking a coordinate chart (U,ϕ = (x1, . . . , xn)), any vector field X can be written in U as
X(p) =

∑n
i=1 fi(p)

∂
∂xi
∈ TpM , where {fi} are some smooth functions on U .

Examples 2.17–2.18. Vector fields on R2 and 2-sphere.

Remark 2.18. Observe that for X =
∑
ai(p)

∂
∂xi
∈ X(M) we have X(p) ∈ TpM , i.e. X(p) is a directional

derivative at p ∈ M . Thus, we can use the vector field to differentiate a function f ∈ C∞(M) by
(Xf)(p) =

∑
ai(p)

∂f
∂xi

∣∣
p
, so that we get another smooth function Xf ∈ C∞(M).
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Proposition 2.19. Let X,Y ∈ X(M). Then there exists a unique vector field Z ∈ X(M) such that
Z(f) = X(Y (f))− Y (X(f)) for all f ∈ C∞(M).

This vector field Z = XY − Y X is denoted by [X,Y ] and called the Lie bracket of X and Y .

Proposition 2.20. Properties of Lie bracket:

(a) [X,Y ] = −[Y,X];

(b) [aX + bY, Z] = a[X,Z] + b[Y,Z] for a, b ∈ R;

(c) [[X,Y ], Z] + [[Y,Z], X] + [[Z,X], Y ] = 0 (Jacobi identity);

(d) [fX, gY ] = fg[X,Y ] + f(Xg)Y − g(Y f)X for f, g ∈ C∞(M).

Definition 2.21. A Lie algebra is a vector space g with a binary operation [·, ·] : g × g → g called the
Lie bracket which satisfies first three properties from Proposition 2.20.

Proposition 2.20 implies that X(M) is a Lie algebra.

Theorem 2.22 (The Hairy Ball Theorem). There is no non-vanishing continuous vector field on an
even-dimensional sphere S2m.

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A Riemannian metric gp(·, ·) or 〈·, ·〉p is a family of real
inner products gp : TpM × TpM → R depending smoothly on p ∈ M . A smooth manifold M with a
Riemannian metric g is called a Riemannian manifold (M, g).

Examples 3.2–3.3. Euclidean metric on Rn, induced metric on M ⊂ Rn.

Definition 3.4. Let (M, g) be a Riemannian manifold.
(1) For v ∈ TpM define the length of v by 0 ≤ ‖v‖g =

√
gp(v, v).

(2) If c : [a, b]→M is a smooth curve, then the length of c is L(c) :=
∫ b
a ||c

′(t)||dt.

Remark (Reparametrization). Let ϕ : [c, d] → [a, b] be a strictly monotonic smooth function, ϕ′ 6= 0,
and let γ : [a, b]→M be a smooth curve. Then for γ̃ = γ ◦ ϕ : [c, d]→M holds L(γ) = L(γ̃).

Example 3.5. Three models of hyperbolic geometry:

model notation M g

Hyperboloid Wn {y ∈ Rn+1 | q(y, y) = −1, yn+1 > 0}
where q(x, y) =

∑n
i=1 xiyi − xn+1yn+1

gx(v, w) = q(v, w)

Poincaré ball Bn {x ∈ Rn | ‖x‖2 =
n∑
i=1

x2i < 1} gx(v, w) = 4
(1−‖x‖2)2 〈v, w〉

Upper half-space Hn {x ∈ Rn | xn > 0} gx(v, w) = 1
x2n
〈v, w〉

Definition 3.6. Given two vector spaces V1, V2 with real inner products (Vi, 〈·, ·〉i), an isomorphism
T : V1 → V2 of vector spaces is a linear isometry if 〈Tv, Tw〉2 = 〈v, w〉1 for all v, w ∈ V1.

This is equivalent to preserving the lengths of all vectors (since 〈v, w〉 = 1
2(〈v+w, v+w〉−〈v, v〉−〈w,w〉)).

Definition. A bijective map f is a diffeomorphism if both f and f−1 are smooth.
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Definition 3.7. A diffeomorphism f : (M, g) → (N,h) of two Riemannian manifolds is an isometry if
Df(p) : TpM → Tf(p)N is a linear isometry for all p ∈M .

Remark. For a smooth manifold M denote by Diff(M) all diffeomorphisms M → M . Notice that
Diff(M) is a group. If (M, g) is a Riemannian manifold, define isometry group Isom(M, g) by
Isom(M, g) := {f ∈ Diff(M) | f is an isometry}. Isom(M, g) has a structure of a Lie group.

Example. Some isometry groups:
M S1 S2 S2 \ { North and South poles} S2 \ {3 general points}

Isom(M) O(2) O(3) O(2)× (Z/2Z) {id}

Theorem 3.8 (Nash embedding theorem). For any Riemannian manifold (Mm, g) the exists an isometric

embedding into Rk for some k ∈ N. If M is compact, there exists such k ≤ m(3m+1)
2 , and if M is not

compact, there is such k ≤ m(m+1)(3m+1)
2 .

Example 3.9. Isometry between two models of hyperbolic plane.

Definition 3.10. A smooth curve c : [a, b]→M is arc-length parametrized if ‖c′(t)‖ ≡ 1.

Proposition 3.11 (evident). If a curve c : [a, b]→M is arc-length parametrized, then L(c) = b− a.

Proposition 3.12. Every curve has an arc-length parametrization.

Example 3.13. Length of vertical segments in H. Shortest paths between points on vertical rays.

Definition 3.14. Define a distance d : M ×M → [0,∞) on (M, g) by d(p, q) = infγ{L(γ)}, where γ is a
piecewise smooth curve connecting p and q.

Remark. (M,d) is a metric space.

Definition 3.15. If (M, g) is a Riemannian manifold, then any subset A ⊂ M is also a metric space
with the induced metric d|A×A : A × A → [0,∞) defined by d(p, q) = infγ{L(γ) | γ : [a, b] → A, γ(a) =
p, γ(b) = q}, where the length L(γ) is computed in M .

Example 3.16. Induced metric on S1 ⊂ R2.

Example 3.17. Punctured Riemann sphere: Rn with metric gx(v, w) = 4
(1+‖x‖2)2 〈v, w〉.

Definition 3.18. A topological space is compact if for every open cover {Ui}i∈I of T there exists a finite
subcover.

Example. Rn is not compact while Sn is compact.

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field X =
∑
ai(p)

∂
∂xi
∈ X(Rn) and a vector v ∈ TpRn define the

covariant derivative of X in direction v in Rn by ∇v(X) = lim
t→0

X(p+tv)−X(p)
t =

∑
v(ai)

∂
∂xi

∣∣
p
∈ TpRn.

Proposition 4.2. The covariant derivative ∇vX in Rn satisfies all the properties (a)–(e) listed below in
Definition 4.3 and Theorem 4.4.
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Definition 4.3. Let M be a smooth manifold. A map ∇ : X(M) × X(M) → X(M), (X,Y ) 7→ ∇XY is
affine connection if for all X,Y, Z ∈ X(M) and f, g ∈ C∞(M) holds

(a) ∇X(Y + Z) = ∇X(Y ) +∇X(Z)

(b) ∇X(fY ) = X(f)Y (p) + f(p)∇XY

(c) ∇fX+gY Z = f∇XZ + g∇Y Z

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Rieman-
nian manifold. There exists a unique affine connection ∇ on M with the additional properties for all
X,Y, Z ∈ X(M):

(d) v(〈X,Y 〉) = 〈∇vX,Y 〉+ 〈X,∇vY 〉 (Riemannian property);

(e) ∇XY −∇YX = [X,Y ] (∇ is torsion-free).

This connection is called Levi-Civita connection of (M, g).

Remark 4.5. Properties of Levi-Civita connection in Rn and in M ⊂ Rn with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be the Levi-Civita connection on (M, g), and let ϕ : U → V be a coordinate
chart with coordinates ϕ = (x1, . . . , xn). Since ∇ ∂

∂xi

∂
∂xj

(p) ∈ TpM , there exists a uniquely determined

collection of functions Γkij ∈ C∞(U) s.t. ∇ ∂
∂xi

∂
∂xj

(p) =
∑n

k=1 Γkij(p)
∂
∂xk

(p). These functions are called

Christoffel symbols of ∇ with respect to the chart ϕ.

Remark. Christoffel symbols determine ∇ since ∇ n∑
i=1

ai
∂
∂xi

n∑
j=1

bj
∂
∂xj

=
∑
i,j
ai
∂bj
∂xi

∂
∂xj

+
∑
i,j,k

aibjΓ
k
ij

∂
∂xk

.

Proposition 4.7.

Γkij =
1

2

∑
m

gkm(gim,j + gjm,i − gij,m),

where gab,c = ∂
∂xc

gab and (gij) = (gij)
−1, i.e. {gij} are the elements of the matrix inverse to (gij).

In particular, Γkij = Γkji.

Example 4.8. In Rn, Γkij ≡ 0 for all i, j, k. Computation of Γkij in S2 ⊂ R3 with induced metric.

4.3 Parallel transport

Definition 4.9. Let c : (a, b) → M be a smooth curve. A smooth map X : (a, b) → TM with X(t) ∈
Tc(t)M is called a vector field along c. These fields form a vector space Xc(M).

Example 4.10. c′(t) ∈ Xc(M).

Proposition 4.11. Let (M, g) be a Riemannian manifold, let∇ be the Levi-Civita connection, c : (a, b)→
M be a smooth curve. There exists a unique map D

dt : Xc(M)→ Xc(M) satisfying

(a) D
dt(αX + Y ) = αDdtX + D

dtY for any α ∈ R.

(b) D
dt(fX) = f ′(t)X + f DdtX for every f ∈ C∞(M).
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(c) If X̃ ∈ X(M) is a local extension of X
(i.e. there exists t0 ∈ (a, b) and ε > 0 such that X(t) = X̃

∣∣
c(t)

for all t ∈ (t0 − ε, t0 + ε))

then (DdtX)(t0) = ∇c′(t0)X̃.

This map D
dt : Xc(M)→ Xc(M) is called the covariant derivative along the curve c.

Example 4.12. Covariant derivative in Rn.

Definition 4.13. Let X ∈ Xc(M). If D
dtX = 0 then X is said to be parallel along c.

Example 4.14. A vector field X in Rn is parallel along a curve if and only if X is constant.

Theorem 4.15. Let c : [a, b] → M be a smooth curve, v ∈ Tc(a)M . There exists a unique vector field
X ∈ Xc(M) parallel along c with X(a) = v.

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of
(M, g)).

Definition 4.17. Let c : [a, b] → M be a smooth curve. A linear map Pc : Tc(a)M → Tc(b)M defined by
Pc(v) = X(b), where X ∈ Xc(M) is parallel along c with X(a) = v, is called a parallel transport along c.

Remark. The parallel transport Pc depends on the curve c (not only on its endpoints).

Proposition 4.18. The parallel transport Pc : Tc(a)M → Tc(b)M is a linear isometry between Tc(a)M
and Tc(b)M , i.e. gc(a)(v, w) = gc(b)(Pcv, Pcw).

5 Geodesics

5.1 Geodesics as solutions of ODE’s

Definition 5.1. Given (M, g), a curve c : [a, b] → M is a geodesic if D
dtc
′(t) = 0 for all t ∈ [a, b] (i.e.,

c′(t) ∈ Xc(M) is parallel along c).

Lemma 5.2. If c is a geodesic then c is parametrized proportionally to the arc length.

Theorem 5.3. Given a Riemannian manifold (M, g), p ∈ M , v ∈ TpM , there exists ε > 0 and a unique
geodesic c : (−ε, ε)→M such that c(0) = p, c′(0) = v.

Examples 5.4–5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model H2.

5.2 Geodesics as distance-minimizing curves. First variation formula of the length

Definition 5.6. Let c : [a, b] → M be a smooth curve. A smooth map F : (−ε, ε) × [a, b] → M is a
(smooth) variation of c if F (0, t) = c(t). Variation is proper if F (s, a) = c(a) and F (s, b) = c(b) for all
s ∈ (−ε, ε).

Variation can be considered as a family of the curves Fs(t) = F (s, t).

Definition 5.7. A variational vector field X ∈ Xc(M) of a variation F is defined by X(t) = ∂F
∂s (0, t).

Definition 5.8. The length l : (−ε, ε) → [0,∞) and energy E : (−ε, ε) → [0,∞) of a variation F are
defined by

l(s) =

b∫
a

‖∂F
∂t

(s, t)‖ dt, E(s) =
1

2

b∫
a

‖∂F
∂t

(s, t)‖2 dt
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Remark. l(s) is the length of the curve Fs(t).

Theorem 5.9. A smooth curve c is a geodesic if and only if c is parametrized proportionally to the arc
length and l′(0) = 0 for every proper variation of c.

Corollary 5.10. Let c : [a, b] → M be the shortest curve from c(a) to c(b), and c is parametrized
proportionally to the arc length. Then c is geodesic.

Remark. The converse is false (e.g., on the sphere).

Lemma 5.11 (Symmetry Lemma). Let W ⊂ R2 be an open set and F : W → M , (s, t) 7→ F (s, t), be
a smooth map. Let D

dt be the covariant derivative along Fs(t) and D
ds be the covariant derivative along

Ft(s). Then D
dt
∂F
∂s = D

ds
∂F
∂t .

Theorem 5.12 (First variation formula of length). Let F : (−ε, ε) × [a, b] → M be a variation of a
smooth curve c(t), c′(t) 6= 0. Let X(t) be its variational vector field and l : (−ε, ε) → [0,∞) its length.
Then

l′(0) =

b∫
a

1

‖c′(t)‖
d

dt
〈X(t), c′(t)〉 dt−

b∫
a

1

‖c′(t)‖
〈X(t),

D

dt
c′(t)〉dt

Corollary 5.13. (a) If c(t) is parametrized proportionally to the arc length, ‖c′(t)‖ ≡ c, then

l′(0) = 1
c 〈X(b), c′(b)〉 − 1

c 〈X(a), c′(a)〉 − 1
c

b∫
a
〈X(t), Ddtc

′(t)〉dt;

(b) if c(t) is geodesic, then l′(0) = 1
c 〈X(b), c′(b)〉 − 1

c 〈X(a), c′(a)〉;

(c) if F is proper and c is parametrized proportionally to the arc length, then l′(0) = −1
c

b∫
a
〈X(t), Ddtc

′(t)〉 dt;

(d) if F is proper and c is geodesic, then l′(0) = 0.

Lemma 5.14. Any vector field X along c(t) with X(a) = X(b) = 0 is a variational vector field for some
proper variation F .

5.3 Exponential map and Gauss Lemma

Let p ∈ M , v ∈ TpM . Denote by cv(t) the unique maximal geodesic (i.e., the domain is maximal) with
cv(0) = p, c′v(0) = v.

Definition 5.15. If cv(1) exists, define expp : TpM →M by expp(v) = cv(1), the exponential map at p.

Example 5.16. Exponential map on the sphere S2: length of cv from p to cv(1) equals ‖v‖.

Notation. Br(0p) = {v ∈ TpM | ‖v‖ < r} ⊂ TpM is a ball of radius r centered at 0p.

Proposition 5.17. (without proof)
For any p ∈ (M, g) there exists r > 0 such that expp : Br(0p)→ expp(Br(0p)) is a diffeomorphism.

Example. On S2 the set expp(Bπ/2(0p)) is a hemisphere, so that every geodesic starting from p is
orthogonal to the boundary of this set.

Theorem 5.18 (Gauss Lemma). Let (M, g) be a Riemannian manifold, p ∈ M , and let ε > 0 be such
that expp : Bε(0p) → expp(Bε(0p)) is a diffeomorphism. Define Aδ = {expp(w) | ‖w‖ = δ} for every
0 < δ < ε. Then every radial geodesic c : t 7→ expp(tv), t ≥ 0, is orthogonal to Aδ.
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Remark 5.19. The curve cv(t) = expp(tv) is indeed geodesic; every geodesic γ through p can be written
as γ(t) = expp(tw) for appropriate w ∈ TpM .

Definition. Denote Bε(p) = expp(Bε(0p)) ⊂M , a geodesic ball.

Lemma 5.20. Let (M, g) be a Riemannian manifold and p ∈ M . Let ε > 0 be small enough such that
expp : Bε(0p) → Bε(p) ⊂ M is a diffeomorphism. Let γ : [0, 1] → Bε(p) \ {p} be any curve. Then there
exists a curve v : [0, 1] → TpM , ‖v(s)‖ = 1 for all s ∈ [0, 1], and a positive function r : [0, 1] → R+, such
that γ(s) = expp(r(s)v(s)).

Lemma 5.21. Let r : [0, 1] → R+, v : [0, 1] → SpM = {w ∈ TpM | ‖w‖ = 1}. Define γ : [0, 1] →
Bε(p) \ {p} by γ(s) = expp(r(s)v(s)). Then the length l(γ) ≥ |r(1)− r(0)|, and the equality holds if and
only if γ is a reparametrization of a radial geodesic (i.e. v(s) ≡ ‖v(0)‖ and r(s) is a strictly increasing or
decreasing function).

Corollary 5.22. Given a point p ∈M , there exists ε > 0 such that for any q ∈ Bε(p) there exists a curve
c(t) connecting p and q and satisfying l(c) = d(p, q). (This curve is a radial geodesic).

Remark. According to Corollary 5.22, there is ε > 0 such that Bε(p) coincides with ε-ball at p, i.e. with
{q ∈M | d(p, q) < ε}.

Proposition 5.23. (without proof)
Let p ∈M . Then there is an open neighborhood U of p and ε > 0 such that ∀ q ∈ U expq : Bε(0q)→ Bε(q)
is a diffeomorphism.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic c : [a, b] → M is minimal if l(c) = d(c(a), c(b)). A geodesic c : R → M is
minimal if its restriction c|[a,b] is minimal for each segment [a, b] ⊂ R.

Example. No minimal geodesics in S2, all geodesics in E2 are minimal.

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic c : [a, b]→M
can be extended to a geodesic c̃ : R→M (i.e. can be extended infinitely in both directions). Equivalently,
expp is defined on the whole TpM for all p ∈M .

Theorem 5.26 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold with distance function
d. Then the following are equivalent:

(a) (M, g) is complete (i.e. every Cauchy sequence converges);

(b) every closed and bounded subset is compact;

(c) (M, g) is geodesically complete.

Moreover, every of the conditions above implies

(d) for every p, q ∈M there exists a minimal geodesic connecting p and q.

Remark. A geodesic in (d) may not be unique. Further, (d) does not imply (c).

Remark. Theorem 5.26 uses the following notions defined in a metric space:

• {xi}, xi ∈M , is a Cauchy sequence if ∀ε > 0 ∃N ∀m,n > N d(xm, xn) < ε;
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• a set A ⊂M is bounded if A ⊂ Br(p) for some r > 0, p ∈M ;

• a set A ⊂M is closed if {xn ∈ A, xn → x} ⇒ x ∈ A;

• a set A ⊂M is compact if each open cover has a finite subcover;

• a set A ⊂M is sequentially compact if each sequence has a converging subsequence.

Some properties:
1. A compact set is sequentially compact, bounded, closed.
2. A compact metric space is complete.
3. In a complete metric space, a sequentially compact set is compact.

Integration on Riemannian manifolds

Definition. A support of a function f : M → R is the set supp(f) := {x ∈M | f(x) 6= 0}.

Definition. Let (M, g) be a Riemannian manifold (M, g) and a let f : M → R be a function. Let
ϕ : U → V , U ⊂M , V ⊂ Rn be a chart, ϕ = (x1, . . . , xn). Assume that supp(f) ⊂ U . Then∫

M

f =

∫
M

fd Vol =

∫
U

fd Vol =

∫
V

f ◦ ϕ−1(x)
√
det(gij ◦ (ϕ−1(x))dx,

where gij(p) = 〈 ∂∂xi
∣∣
p
, ∂
∂xj

∣∣
p
〉 is the metric g written in the chart ϕ.

Remark. The result does not depend on the choice of the chart.

Definition. A volume of a (good) subset A ⊂ U ⊂ M is defined by V olA =
∫
M

1Ad Vol, where 1A is a

characteristic function of A: 1A(p) = 1 for all p ∈ A and 1A(p) = 0 otherwise. In other words,

Vol(A) =

∫
A

d Vol =

∫
ϕ(A)

√
det(gij ◦ ϕ−1(x))dx.

Example. The area of a hyperbolic triangle with all three vertices on the boundary is π (computation
in the upper half-plane model).

Remark. If supp(f) does not lie in one chart, one uses the technique of partition of unity which we don’t
study in this course.
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