Riemannian Geometry IV, Term 1: outline

1 Smooth manifolds

"Smooth" means "infinitely differentiable", C^{∞} .

Definition 1.1. Let M be a set. An <u>*n*-dimensional smooth atlas</u> on M is a collection of triples $(U_{\alpha}, V_{\alpha}, \varphi_{\alpha})$, where $\alpha \in I$ for some indexing set I, s.t.

- 0. $U_{\alpha} \subseteq M; V_{\alpha} \subseteq \mathbb{R}^n$ is open $\forall \alpha \in I;$
- 1. $\bigcup_{\alpha \in I} U_{\alpha} = M;$
- 2. Each $\varphi_{\alpha}: U_{\alpha} \to V_{\alpha}$ is a bijection;
- 3. For every $\alpha, \beta \in I$ such that $U_{\alpha} \cap U_{\beta} \neq \emptyset$ the composition $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}|_{\varphi_{\alpha}(U_{\alpha} \cap U_{\beta})} : \varphi_{\alpha}(U_{\alpha} \cap U_{\beta}) \rightarrow \varphi_{\beta}(U_{\alpha} \cap U_{\beta})$ is a smooth map for all ordered pairs (α, β) , where $\alpha, \beta \in I$.

The number n is called the dimension of M, the maps φ_{α} are called <u>coordinate charts</u>, the compositions $\varphi_{\beta} \circ \varphi_{\alpha}^{-1}$ are called transition maps or changes of coordinates.

Example 1.2. Two atlases on a circle $S^1 \subset \mathbb{R}^2$.

Definition 1.3. Let M have a smooth atlas. A set $A \subseteq M$ is <u>open</u> if for every $\alpha \in I$ the set $\varphi_{\alpha}(A \cap U_{\alpha})$ is open in \mathbb{R}^n . This defines a topology on M.

Definition 1.4. *M* is called <u>Hausdorff</u> if for each $x, y \in M$, $x \neq y$, there exist open sets $A_x \ni x$ and $A_y \ni y$ such that $A_x \cap A_y = \emptyset$.

Example 1.5. An example of a non-Hausdorff space: a line with a double point.

Definition 1.6. *M* is called a smooth *n*-dimensional manifold if

- 1. M has an n-dimensional smooth atlas;
- 2. M is Hausdorff (in the topology defined by the atlas)
- 3. M is second-countable (technical condition, we will ignore).

Example 1.7. (a) The boundary of a square in R² is a smooth manifold.
(b) Not all sets with a smooth atlas satisfy Hausdorffness condition.

Example 1.8. Examples of smooth manifolds: torus, Klein bottle, 3-torus, real projective space.

Definition 1.9. Let $U \subseteq \mathbb{R}^n$ be open, m < n, and let $f : U \to \mathbb{R}^m$ be a smooth map (i.e., all the partial derivatives are smooth). Let $Df(x) = (\frac{\partial f_i}{\partial x_j})$ be the matrix of partial derivatives at $x \in U$ (differential or Jacobi matrix). Then

- (a) $x \in \mathbb{R}^n$ is a regular point of f if $\operatorname{rk} Df(x) = m$ (i.e., Df(x) has a maximal rank);
- (b) $y \in \mathbb{R}^m$ is a regular value of f if the full preimage $f^{-1}(y)$ consists of regular points only.

Theorem 1.10 (Corollary of Implicit Function Theorem). Let $U \subset \mathbb{R}^n$ be open, $f : U \to \mathbb{R}^m$ smooth, m < n. If $y \in f(U)$ is a regular value of f then $f^{-1}(y) \subset U \subset \mathbb{R}^n$ is an (n-m)-dimensional smooth manifold.

Examples 1.11–1.12. An ellipsoid as a smooth manifold; matrix groups are smooth manifolds.

Definition 1.13. Let M^m and N^n be smooth manifolds of dimensions m and n, with atlases $(U_\alpha, \varphi_\alpha(U_\alpha), \varphi_\alpha)$, $\alpha \in A$ and $(W_\beta, \psi_\beta(W_\beta), \psi_\beta), \beta \in B$. A map $f: M^m \to N^n$ is <u>smooth</u> if it induces smooth maps of open sets in \mathbb{R}^n and \mathbb{R}^m , i.e. $\psi_\beta \circ f \circ \varphi_\alpha^{-1}|_{\varphi_\alpha(f^{-1}(W_\beta \cap f(U_\alpha)))}$ is smooth for all $\alpha \in A, \beta \in B$.

Remark. A smooth manifold G together with a group operation $G \times G \to G$ is a Lie group is the maps $(g_1, g_2) \to g_1 g_2$ and $g \to g^{-1}$ are smooth.

2 Tangent space

Definition 2.1. A smooth map $f: M \to \mathbb{R}$ is called a <u>smooth function</u> on M.

Definition 2.2. A derivation on the set $C^{\infty}(M, p)$ of all smooth functions on M defined in a neighborhood of p is a linear map $\delta : C^{\infty}(M, p) \to \mathbb{R}$, s.t. for all $f, g \in C^{\infty}(M, p)$ holds $\delta(f \cdot g) = f(p)\delta(g) + \delta(f)g(p)$ (the Leibniz rule).

The set of all derivations is denoted by $\mathcal{D}^{\infty}(M,p)$. This is a real vector space (exercise).

Definition 2.3. The space $\mathcal{D}^{\infty}(M, p)$ is called the <u>tangent space</u> of M at p, denoted T_pM . Derivations are tangent vectors.

Definition 2.4. Let $\gamma : (a, b) \to M$ be a smooth curve in $M, t_0 \in (a, b), \gamma(t_0) = p$ and $f \in C^{\infty}(M, p)$. Define the <u>directional derivative</u> $\gamma'(t_0)(f) \in \mathbb{R}$ of f at p along γ by

$$\gamma'(t_0)(f) = \lim_{s \to 0} \frac{f(\gamma(t_0 + s)) - f(\gamma(t_0))}{s} = (f \circ \gamma)'(t_0) = \frac{d}{dt}\Big|_{t=t_0} (f \circ \gamma)$$

Directional derivatives are derivations (exercise).

Remark. Two curves γ_1 and γ_2 through p may define the same directional derivative.

Notation. Let M^n be a manifold, $\varphi: U \to V \subseteq \mathbb{R}^n$ a chart at $p \in U \subset M$. For $i = 1, \ldots, n$ define the curves $\gamma_i(t) = \varphi^{-1}(\varphi(p) + e_i t)$ for small t > 0 (here $\{e_i\}$ is a basis of \mathbb{R}^n).

Definition 2.5. Define $\frac{\partial}{\partial x_i}\Big|_p = \gamma'_i(0)$, i.e.

$$\frac{\partial}{\partial x_i}\Big|_p (f) = (f \circ \gamma_i)'(0) = \frac{d}{dt} (f \circ \varphi^{-1})(\varphi(p) + te_i)\Big|_{t=0} = \frac{\partial}{\partial x_i} (f \circ \varphi^{-1})(\varphi(p)),$$

where $\frac{\partial}{\partial x_i}$ on the right is just a classical partial derivative.

By definition, we have

$$\langle \frac{\partial}{\partial x_1}, \dots, \frac{\partial}{\partial x_n} \rangle \subseteq \{ \text{Directional derivatives} \} \subseteq \mathcal{D}^{\infty}(M, p)$$

Proposition 2.6. $\langle \frac{\partial}{\partial x_1}, \ldots, \frac{\partial}{\partial x_n} \rangle = \{ \text{Directional derivatives} \} = \mathcal{D}^{\infty}(M, p).$

Lemma 2.7. Let $\varphi : U \subseteq M \to \mathbb{R}^n$ be a chart, $\varphi(p) = 0$. Let $\tilde{\gamma}(t) = (\sum_{i=1}^n k_i e_i) t : \mathbb{R} \to \mathbb{R}^n$ be a line, where $\{e_1, \ldots, e_n\}$ is a basis, $k_i \in \mathbb{R}$. Define $\gamma(t) = \varphi^{-1} \circ \tilde{\gamma}(t) \in M$. Then $\gamma'(0) = \sum_{i=1}^n k_i \frac{\partial}{\partial x_i}$.

Example. (see Problems class 2) For the group $SL_n(\mathbb{R}) = \{A \in M_n \mid \det A = 1\}$, the tangent space at I is the set of all trace-free matrices: $T_I(SL_n(\mathbb{R})) = \{X \in M_n(\mathbb{R}) \mid \operatorname{tr} X = 0\}$.

Proposition 2.8. (Change of basis for T_pM). Let M^n be a smooth manifold, $\varphi_{\alpha} : U_{\alpha} \to V_{\alpha}$ a chart, $(x_1^{\alpha}, \ldots, x_n^{\alpha})$ the coordinates in V_{α} . Let $p \in U_{\alpha} \cap U_{\beta}$. Then $\frac{\partial}{\partial x_j^{\alpha}}\Big|_p = \sum_{i=1}^n \frac{\partial x_i^{\beta}}{\partial x_j^{\alpha}} \frac{\partial}{\partial x_i^{\alpha}}$, where $\frac{\partial x_i^{\beta}}{\partial x_j^{\alpha}} = \frac{\partial(\varphi_{\beta}^i \circ \varphi_{\alpha}^{-1})}{\partial x_j^{\alpha}}(\varphi(p)), \varphi_{\beta}^i = \pi_i \circ \varphi_{\beta}.$

Definition 2.9. Let M, N be smooth manifolds, let $f : M \to N$ be a smooth map. Define a linear map $Df(p) : T_pM \to T_{f(p)}N$ called the <u>differential</u> of f at p by $Df(p)\gamma'(0) = (f \circ \gamma)'(0)$ for a smooth curve $\gamma \in M$ with $\gamma(0) = p$.

Remark. Df(p) is well defined (i.e. depend only on $\gamma'(0)$ not on the curve γ itself).

Lemma 2.10. If φ is a chart, then

(a) $D\varphi^{-1}(0)$ is linear;

(b) $D\varphi(p): T_pM \to T_{\varphi(p)}\mathbb{R}^n$ is the identity map taking $\frac{\partial}{\partial x_i}\Big|_{\infty}$ to $\frac{\partial}{\partial x_i}$;

(c) For $M \xrightarrow{f} N \xrightarrow{g} L$ holds $D(g \circ f)(p) = Dg(f(p)) \circ Df(p)$.

Remark. Hence, Df(p) is a linear map.

Example 2.11. Differential of a map from a disc to a sphere.

Tangent bundle and vector fields

Definition 2.12. Let M be a smooth manifold. A disjoint union $TM = \bigcup_{p \in M} T_p M$ of tangent spaces to each $p \in M$ is called a tangent bundle.

There is a canonical projection $\Pi: TM \to M, \ \Pi(v) = p$ for every $v \in T_pM$.

Proposition 2.13. The tangent bundle TM has a structure of 2*n*-dimensional smooth manifold, s.t. $\Pi: TM \to M$ is a smooth map.

Definition 2.14. A vector field X on a smooth manifold M is a smooth map $X : M \to TM$ such that $\forall p \in M \ X(p) \in T_pM$

The set of all vector fields on M is denoted by $\mathfrak{X}(M)$.

Remark 2.15. (a) $\mathfrak{X}(M)$ has a structure of a vector space.

- (b) Vector fields can be multiplied by smooth functions.
- (c) Taking a coordinate chart $(U, \varphi = (x_1, \dots, x_n))$, any vector field X can be written in U as $X(p) = \sum_{i=1}^{n} f_i(p) \frac{\partial}{\partial x_i} \in T_p M$, where $\{f_i\}$ are some smooth functions on U.

Examples 2.17–2.18. Vector fields on \mathbb{R}^2 and 2-sphere.

Remark 2.18. Observe that for $X = \sum a_i(p) \frac{\partial}{\partial x_i} \in \mathfrak{X}(M)$ we have $X(p) \in T_pM$, i.e. X(p) is a directional derivative at $p \in M$. Thus, we can use the vector field to differentiate a function $f \in C^{\infty}(M)$ by $(Xf)(p) = \sum a_i(p) \frac{\partial f}{\partial x_i}|_p$, so that we get another smooth function $Xf \in C^{\infty}(M)$.

Proposition 2.19. Let $X, Y \in \mathfrak{X}(M)$. Then there exists a unique vector field $Z \in \mathfrak{X}(M)$ such that Z(f) = X(Y(f)) - Y(X(f)) for all $f \in C^{\infty}(M)$.

This vector field Z = XY - YX is denoted by [X, Y] and called the <u>Lie bracket</u> of X and Y.

Proposition 2.20. Properties of Lie bracket:

- (a) [X,Y] = -[Y,X];
- (b) [aX + bY, Z] = a[X, Z] + b[Y, Z] for $a, b \in \mathbb{R}$;
- (c) [[X, Y], Z] + [[Y, Z], X] + [[Z, X], Y] = 0 (Jacobi identity);
- (d) [fX, gY] = fg[X, Y] + f(Xg)Y g(Yf)X for $f, g \in C^{\infty}(M)$.

Definition 2.21. A Lie algebra is a vector space \mathfrak{g} with a binary operation $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ called the Lie bracket which satisfies first three properties from Proposition 2.20.

Proposition 2.20 implies that $\mathfrak{X}(M)$ is a Lie algebra.

Theorem 2.22 (The Hairy Ball Theorem). There is no non-vanishing continuous vector field on an even-dimensional sphere S^{2m} .

3 Riemannian metric

Definition 3.1. Let M be a smooth manifold. A <u>Riemannian metric</u> $g_p(\cdot, \cdot)$ or $\langle \cdot, \cdot \rangle_p$ is a family of real inner products $g_p : T_pM \times T_pM \to \mathbb{R}$ depending smoothly on $p \in M$. A smooth manifold M with a Riemannian metric g is called a <u>Riemannian manifold</u> (M, g).

Examples 3.2–3.3. Euclidean metric on \mathbb{R}^n , induced metric on $M \subset \mathbb{R}^n$.

Definition 3.4. Let (M, g) be a Riemannian manifold.

(1) For $v \in T_p M$ define the length of v by $0 \le ||v||_q = \sqrt{g_p(v, v)}$.

(2) If $c: [a, b] \to M$ is a smooth curve, then the <u>length</u> of c is $L(c) := \int_a^b ||c'(t)|| dt$.

Remark (Reparametrization). Let $\varphi : [c, d] \to [a, b]$ be a strictly monotonic smooth function, $\varphi' \neq 0$, and let $\gamma : [a, b] \to M$ be a smooth curve. Then for $\tilde{\gamma} = \gamma \circ \varphi : [c, d] \to M$ holds $L(\gamma) = L(\tilde{\gamma})$.

model	notation	M	g
Hyperboloid	\mathbb{W}^n	$\{y \in \mathbb{R}^{n+1} \mid q(y,y) = -1, y_{n+1} > 0\}$ where $q(x,y) = \sum_{i=1}^{n} x_i y_i - x_{n+1} y_{n+1}$	$g_x(v,w) = q(v,w)$
Poincaré ball	\mathbb{B}^n	$\{x \in \mathbb{R}^n \mid \ x\ ^2 = \sum_{i=1}^n x_i^2 < 1\}$	$g_x(v,w) = \frac{4}{(1-\ x\ ^2)^2} \langle v,w \rangle$
Upper half-space	\mathbb{H}^n	$\{x\in\mathbb{R}^n\mid x_n>0\}$	$g_x(v,w) = \frac{1}{x_n^2} \langle v,w \rangle$

Example 3.5. Three models of hyperbolic geometry:

Definition 3.6. Given two vector spaces V_1, V_2 with real inner products $(V_i, \langle \cdot, \cdot \rangle_i)$, an isomorphism $T: V_1 \to V_2$ of vector spaces is a linear isometry if $\langle Tv, Tw \rangle_2 = \langle v, w \rangle_1$ for all $v, w \in V_1$.

This is equivalent to preserving the lengths of all vectors (since $\langle v, w \rangle = \frac{1}{2}(\langle v+w, v+w \rangle - \langle v, v \rangle - \langle w, w \rangle))$. **Definition.** A bijective map f is a diffeomorphism if both f and f^{-1} are smooth. **Definition 3.7.** A diffeomorphism $f : (M, g) \to (N, h)$ of two Riemannian manifolds is an isometry if $Df(p) : T_pM \to T_{f(p)}N$ is a linear isometry for all $p \in M$.

Remark. For a smooth manifold M denote by Diff(M) all diffeomorphisms $M \to M$. Notice that Diff(M) is a group. If (M,g) is a Riemannian manifold, define isometry group Isom(M,g) by $Isom(M,g) := \{f \in Diff(M) \mid f \text{ is an isometry}\}$. Isom(M,g) has a structure of a Lie group.

Example. Some isometry groups:

M	\tilde{S}^1	$\int S^2$	$S^2 \setminus \{ \text{ North and South poles} \}$	$S^2 \setminus \{3 \text{ general points}\}$
Isom(M)	O(2)	O(3)	$O(2) imes (\mathbb{Z}/2\mathbb{Z})$	$\{id\}$

Theorem 3.8 (Nash embedding theorem). For any Riemannian manifold (M^m, g) the exists an isometric embedding into \mathbb{R}^k for some $k \in \mathbb{N}$. If M is compact, there exists such $k \leq \frac{m(3m+1)}{2}$, and if M is not compact, there is such $k \leq \frac{m(m+1)(3m+1)}{2}$.

Example 3.9. Isometry between two models of hyperbolic plane.

Definition 3.10. A smooth curve $c : [a, b] \to M$ is arc-length parametrized if $||c'(t)|| \equiv 1$.

Proposition 3.11 (evident). If a curve $c : [a, b] \to M$ is arc-length parametrized, then L(c) = b - a.

Proposition 3.12. Every curve has an arc-length parametrization.

Example 3.13. Length of vertical segments in **H**. Shortest paths between points on vertical rays.

Definition 3.14. Define a <u>distance</u> $d: M \times M \to [0, \infty)$ on (M, g) by $d(p, q) = \inf_{\gamma} \{L(\gamma)\}$, where γ is a piecewise smooth curve connecting p and q.

Remark. (M, d) is a metric space.

Definition 3.15. If (M, g) is a Riemannian manifold, then any subset $A \subset M$ is also a metric space with the <u>induced metric</u> $d|_{A \times A} : A \times A \to [0, \infty)$ defined by $d(p, q) = \inf_{\gamma} \{L(\gamma) \mid \gamma : [a, b] \to A, \gamma(a) = p, \gamma(b) = q\}$, where the length $L(\gamma)$ is computed in M.

Example 3.16. Induced metric on $S^1 \subset \mathbb{R}^2$.

Example 3.17. Punctured Riemann sphere: \mathbb{R}^n with metric $g_x(v, w) = \frac{4}{(1+||x||^2)^2} \langle v, w \rangle$.

Definition 3.18. A topological space is <u>compact</u> if for every open cover $\{U_i\}_{i \in I}$ of T there exists a finite subcover.

Example. \mathbb{R}^n is not compact while S^n is compact.

4 Levi-Civita connection and parallel transport

4.1 Levi-Civita connection

Example 4.1. Given a vector field $X = \sum a_i(p) \frac{\partial}{\partial x_i} \in \mathfrak{X}(\mathbb{R}^n)$ and a vector $v \in T_p \mathbb{R}^n$ define the covariant derivative of X in direction v in \mathbb{R}^n by $\nabla_v(X) = \lim_{t \to 0} \frac{X(p+tv) - X(p)}{t} = \sum v(a_i) \frac{\partial}{\partial x_i} \Big|_p \in T_p \mathbb{R}^n$.

Proposition 4.2. The covariant derivative $\nabla_v X$ in \mathbb{R}^n satisfies all the properties (a)–(e) listed below in Definition 4.3 and Theorem 4.4.

Definition 4.3. Let M be a smooth manifold. A map $\nabla : \mathfrak{X}(M) \times \mathfrak{X}(M) \to \mathfrak{X}(M), (X, Y) \mapsto \nabla_X Y$ is affine connection if for all $X, Y, Z \in \mathfrak{X}(M)$ and $f, g \in C^{\infty}(M)$ holds

- (a) $\nabla_X(Y+Z) = \nabla_X(Y) + \nabla_X(Z)$
- (b) $\nabla_X(fY) = X(f)Y(p) + f(p)\nabla_X Y$
- (c) $\nabla_{fX+gY}Z = f\nabla_XZ + g\nabla_YZ$

Theorem 4.4 (Levi-Civita, Fundamental Theorem of Riemannian Geometry). Let (M, g) be a Riemannian manifold. There exists a unique affine connection ∇ on M with the additional properties for all $X, Y, Z \in \mathfrak{X}(M)$:

(d) $v(\langle X, Y \rangle) = \langle \nabla_v X, Y \rangle + \langle X, \nabla_v Y \rangle$ (Riemannian property); (e) $\nabla_X Y - \nabla_Y X = [X, Y]$ (∇ is torsion-free).

This connection is called <u>Levi-Civita connection</u> of (M, g).

Remark 4.5. Properties of Levi-Civita connection in \mathbb{R}^n and in $M \subset \mathbb{R}^n$ with induced metric.

4.2 Christoffel symbols

Definition 4.6. Let ∇ be the Levi-Civita connection on (M, g), and let $\varphi : U \to V$ be a coordinate chart with coordinates $\varphi = (x_1, \ldots, x_n)$. Since $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) \in T_p M$, there exists a uniquely determined collection of functions $\Gamma_{ij}^k \in C^{\infty}(U)$ s.t. $\nabla_{\frac{\partial}{\partial x_i}} \frac{\partial}{\partial x_j}(p) = \sum_{k=1}^n \Gamma_{ij}^k(p) \frac{\partial}{\partial x_k}(p)$. These functions are called Christoffel symbols of ∇ with respect to the chart φ .

Remark. Christoffel symbols determine
$$\nabla$$
 since $\nabla_{\sum_{i=1}^{n} a_i \frac{\partial}{\partial x_i}} \sum_{j=1}^{n} b_j \frac{\partial}{\partial x_j} = \sum_{i,j} a_i \frac{\partial b_j}{\partial x_i} \frac{\partial}{\partial x_j} + \sum_{i,j,k} a_i b_j \Gamma_{ij}^k \frac{\partial}{\partial x_k}$

Proposition 4.7.

$$\Gamma_{ij}^{k} = \frac{1}{2} \sum_{m} g^{km} (g_{im,j} + g_{jm,i} - g_{ij,m}),$$

where $g_{ab,c} = \frac{\partial}{\partial x_c} g_{ab}$ and $(g^{ij}) = (g_{ij})^{-1}$, i.e. $\{g^{ij}\}$ are the elements of the matrix inverse to (g_{ij}) . In particular, $\Gamma_{ij}^k = \Gamma_{ji}^k$.

Example 4.8. In \mathbb{R}^n , $\Gamma_{ij}^k \equiv 0$ for all i, j, k. Computation of Γ_{ij}^k in $S^2 \subset \mathbb{R}^3$ with induced metric.

4.3 Parallel transport

Definition 4.9. Let $c : (a, b) \to M$ be a smooth curve. A smooth map $X : (a, b) \to TM$ with $X(t) \in T_{c(t)}M$ is called a vector field along c. These fields form a vector space $\mathfrak{X}_c(M)$.

Example 4.10. $c'(t) \in \mathfrak{X}_c(M)$.

Proposition 4.11. Let (M, g) be a Riemannian manifold, let ∇ be the Levi-Civita connection, $c : (a, b) \to M$ be a smooth curve. There exists a unique map $\frac{D}{dt} : \mathfrak{X}_c(M) \to \mathfrak{X}_c(M)$ satisfying

(a) $\frac{D}{dt}(\alpha X + Y) = \alpha \frac{D}{dt}X + \frac{D}{dt}Y$ for any $\alpha \in \mathbb{R}$. (b) $\frac{D}{dt}(fX) = f'(t)X + f\frac{D}{dt}X$ for every $f \in C^{\infty}(M)$. (c) If $\widetilde{X} \in \mathfrak{X}(M)$ is a local extension of X(i.e. there exists $t_0 \in (a, b)$ and $\varepsilon > 0$ such that $X(t) = \widetilde{X}|_{c(t)}$ for all $t \in (t_0 - \varepsilon, t_0 + \varepsilon)$) then $(\frac{D}{dt}X)(t_0) = \nabla_{c'(t_0)}\widetilde{X}$.

This map $\frac{D}{dt} : \mathfrak{X}_c(M) \to \mathfrak{X}_c(M)$ is called the covariant derivative along the curve c.

Example 4.12. Covariant derivative in \mathbb{R}^n .

Definition 4.13. Let $X \in \mathfrak{X}_c(M)$. If $\frac{D}{dt}X = 0$ then X is said to be parallel along c.

Example 4.14. A vector field X in \mathbb{R}^n is parallel along a curve if and only if X is constant.

Theorem 4.15. Let $c : [a, b] \to M$ be a smooth curve, $v \in T_{c(a)}M$. There exists a unique vector field $X \in \mathfrak{X}_c(M)$ parallel along c with X(a) = v.

Corollary 4.16. Parallel vector fields form a vector space of dimension n (where n is the dimension of (M, g)).

Definition 4.17. Let $c : [a,b] \to M$ be a smooth curve. A linear map $P_c : T_{c(a)}M \to T_{c(b)}M$ defined by $P_c(v) = X(b)$, where $X \in \mathfrak{X}_c(M)$ is parallel along c with X(a) = v, is called a parallel transport along c.

Remark. The parallel transport P_c depends on the curve c (not only on its endpoints).

Proposition 4.18. The parallel transport $P_c : T_{c(a)}M \to T_{c(b)}M$ is a linear isometry between $T_{c(a)}M$ and $T_{c(b)}M$, i.e. $g_{c(a)}(v,w) = g_{c(b)}(P_cv, P_cw)$.

5 Geodesics

5.1 Geodesics as solutions of ODE's

Definition 5.1. Given (M, g), a curve $c : [a, b] \to M$ is a geodesic if $\frac{D}{dt}c'(t) = 0$ for all $t \in [a, b]$ (i.e., $c'(t) \in \mathfrak{X}_c(M)$ is parallel along c).

Lemma 5.2. If c is a geodesic then c is parametrized proportionally to the arc length.

Theorem 5.3. Given a Riemannian manifold (M, g), $p \in M$, $v \in T_pM$, there exists $\varepsilon > 0$ and a unique geodesic $c : (-\varepsilon, \varepsilon) \to M$ such that c(0) = p, c'(0) = v.

Examples 5.4–5.5 Geodesics in Euclidean space, on a sphere, and in the upper half-plane model \mathbb{H}^2 .

5.2 Geodesics as distance-minimizing curves. First variation formula of the length

Definition 5.6. Let $c : [a, b] \to M$ be a smooth curve. A smooth map $F : (-\varepsilon, \varepsilon) \times [a, b] \to M$ is a (smooth) variation of c if F(0, t) = c(t). Variation is proper if F(s, a) = c(a) and F(s, b) = c(b) for all $s \in (-\varepsilon, \varepsilon)$.

Variation can be considered as a family of the curves $F_s(t) = F(s, t)$.

Definition 5.7. A variational vector field $X \in \mathfrak{X}_c(M)$ of a variation F is defined by $X(t) = \frac{\partial F}{\partial s}(0, t)$.

Definition 5.8. The length $l: (-\varepsilon, \varepsilon) \to [0, \infty)$ and energy $E: (-\varepsilon, \varepsilon) \to [0, \infty)$ of a variation F are defined by

$$l(s) = \int_{a}^{b} \left\| \frac{\partial F}{\partial t}(s,t) \right\| \mathrm{d}t, \qquad E(s) = \frac{1}{2} \int_{a}^{b} \left\| \frac{\partial F}{\partial t}(s,t) \right\|^2 \mathrm{d}t$$

Remark. l(s) is the length of the curve $F_s(t)$.

Theorem 5.9. A smooth curve c is a geodesic if and only if c is parametrized proportionally to the arc length and l'(0) = 0 for every proper variation of c.

Corollary 5.10. Let $c : [a, b] \to M$ be the shortest curve from c(a) to c(b), and c is parametrized proportionally to the arc length. Then c is geodesic.

Remark. The converse is false (e.g., on the sphere).

Lemma 5.11 (Symmetry Lemma). Let $W \subset \mathbb{R}^2$ be an open set and $F: W \to M$, $(s,t) \mapsto F(s,t)$, be a smooth map. Let $\frac{D}{dt}$ be the covariant derivative along $F_s(t)$ and $\frac{D}{ds}$ be the covariant derivative along $F_t(s)$. Then $\frac{D}{dt}\frac{\partial F}{\partial s} = \frac{D}{ds}\frac{\partial F}{\partial t}$.

Theorem 5.12 (First variation formula of length). Let $F : (-\varepsilon, \varepsilon) \times [a, b] \to M$ be a variation of a smooth curve $c(t), c'(t) \neq 0$. Let X(t) be its variational vector field and $l : (-\varepsilon, \varepsilon) \to [0, \infty)$ its length. Then

$$l'(0) = \int_{a}^{b} \frac{1}{\|c'(t)\|} \frac{d}{dt} \langle X(t), c'(t) \rangle \,\mathrm{d}t - \int_{a}^{b} \frac{1}{\|c'(t)\|} \langle X(t), \frac{D}{dt} c'(t) \rangle \,\mathrm{d}t$$

Corollary 5.13. (a) If c(t) is parametrized proportionally to the arc length, $||c'(t)|| \equiv c$, then

$$l'(0) = \frac{1}{c} \langle X(b), c'(b) \rangle - \frac{1}{c} \langle X(a), c'(a) \rangle - \frac{1}{c} \int_{a}^{b} \langle X(t), \frac{D}{dt} c'(t) \rangle dt$$

- (b) if c(t) is geodesic, then $l'(0) = \frac{1}{c} \langle X(b), c'(b) \rangle \frac{1}{c} \langle X(a), c'(a) \rangle$;
- (c) if F is proper and c is parametrized proportionally to the arc length, then $l'(0) = -\frac{1}{c} \int_{-\infty}^{b} \langle X(t), \frac{D}{dt}c'(t) \rangle dt$;
- (d) if F is proper and c is geodesic, then l'(0) = 0.

Lemma 5.14. Any vector field X along c(t) with X(a) = X(b) = 0 is a variational vector field for some proper variation F.

5.3 Exponential map and Gauss Lemma

Let $p \in M$, $v \in T_p M$. Denote by $c_v(t)$ the unique maximal geodesic (i.e., the domain is maximal) with $c_v(0) = p$, $c'_v(0) = v$.

Definition 5.15. If $c_v(1)$ exists, define $\exp_p: T_pM \to M$ by $\exp_p(v) = c_v(1)$, the exponential map at p.

Example 5.16. Exponential map on the sphere S^2 : length of c_v from p to $c_v(1)$ equals ||v||.

Notation. $B_r(0_p) = \{v \in T_pM \mid ||v|| < r\} \subset T_pM$ is a ball of radius r centered at 0_p .

Proposition 5.17. (without proof)

For any $p \in (M, g)$ there exists r > 0 such that $\exp_p : B_r(0_p) \to \exp_p(B_r(0_p))$ is a diffeomorphism.

Example. On S^2 the set $\exp_p(B_{\pi/2}(0_p))$ is a hemisphere, so that every geodesic starting from p is orthogonal to the boundary of this set.

Theorem 5.18 (Gauss Lemma). Let (M, g) be a Riemannian manifold, $p \in M$, and let $\varepsilon > 0$ be such that $\exp_p : B_{\varepsilon}(0_p) \to \exp_p(B_{\varepsilon}(0_p))$ is a diffeomorphism. Define $A_{\delta} = \{\exp_p(w) \mid ||w|| = \delta\}$ for every $0 < \delta < \varepsilon$. Then every radial geodesic $c : t \mapsto \exp_p(tv), t \ge 0$, is orthogonal to A_{δ} .

Remark 5.19. The curve $c_v(t) = \exp_p(tv)$ is indeed geodesic; every geodesic γ through p can be written as $\gamma(t) = \exp_p(tw)$ for appropriate $w \in T_pM$.

Definition. Denote $B_{\varepsilon}(p) = \exp_p(B_{\varepsilon}(0_p)) \subset M$, a geodesic ball.

Lemma 5.20. Let (M, g) be a Riemannian manifold and $p \in M$. Let $\varepsilon > 0$ be small enough such that $\exp_p : B_{\varepsilon}(0_p) \to B_{\varepsilon}(p) \subset M$ is a diffeomorphism. Let $\gamma : [0,1] \to B_{\varepsilon}(p) \setminus \{p\}$ be any curve. Then there exists a curve $v : [0,1] \to T_pM$, ||v(s)|| = 1 for all $s \in [0,1]$, and a positive function $r : [0,1] \to \mathbb{R}_+$, such that $\gamma(s) = \exp_p(r(s)v(s))$.

Lemma 5.21. Let $r : [0,1] \to \mathbb{R}_+$, $v : [0,1] \to S_p M = \{w \in T_p M \mid ||w|| = 1\}$. Define $\gamma : [0,1] \to B_{\varepsilon}(p) \setminus \{p\}$ by $\gamma(s) = \exp_p(r(s)v(s))$. Then the length $l(\gamma) \ge |r(1) - r(0)|$, and the equality holds if and only if γ is a reparametrization of a radial geodesic (i.e. $v(s) \equiv ||v(0)||$ and r(s) is a strictly increasing or decreasing function).

Corollary 5.22. Given a point $p \in M$, there exists $\varepsilon > 0$ such that for any $q \in B_{\varepsilon}(p)$ there exists a curve c(t) connecting p and q and satisfying l(c) = d(p, q). (This curve is a radial geodesic).

Remark. According to Corollary 5.22, there is $\varepsilon > 0$ such that $B_{\varepsilon}(p)$ coincides with ε -ball at p, i.e. with $\{q \in M \mid d(p,q) < \varepsilon\}$.

Proposition 5.23. (without proof)

Let $p \in M$. Then there is an open neighborhood U of p and $\varepsilon > 0$ such that $\forall q \in U \exp_q : B_{\varepsilon}(0_q) \to B_{\varepsilon}(q)$ is a diffeomorphism.

5.4 Hopf-Rinow Theorem

Definition 5.24. A geodesic $c : [a,b] \to M$ is <u>minimal</u> if l(c) = d(c(a), c(b)). A geodesic $c : \mathbb{R} \to M$ is <u>minimal</u> if its restriction $c|_{[a,b]}$ is minimal for each segment $[a,b] \subset \mathbb{R}$.

Example. No minimal geodesics in S^2 , all geodesics in \mathbb{E}^2 are minimal.

Definition 5.25. A Riemannian manifold (M, g) is geodesically complete if every geodesic $c : [a, b] \to M$ can be extended to a geodesic $\tilde{c} : \mathbb{R} \to M$ (i.e. can be extended infinitely in both directions). Equivalently, \exp_p is defined on the whole T_pM for all $p \in M$.

Theorem 5.26 (Hopf-Rinow). Let (M, g) be a connected Riemannian manifold with distance function d. Then the following are equivalent:

- (a) (M, g) is complete (i.e. every Cauchy sequence converges);
- (b) every closed and bounded subset is compact;
- (c) (M,g) is geodesically complete.

Moreover, every of the conditions above implies

(d) for every $p, q \in M$ there exists a minimal geodesic connecting p and q.

Remark. A geodesic in (d) may not be unique. Further, (d) does not imply (c).

Remark. Theorem 5.26 uses the following notions defined in a metric space:

• $\{x_i\}, x_i \in M$, is a Cauchy sequence if $\forall \varepsilon > 0 \exists N \forall m, n > N \ d(x_m, x_n) < \varepsilon$;

- a set $A \subset M$ is <u>bounded</u> if $A \subset B_r(p)$ for some $r > 0, p \in M$;
- a set $A \subset M$ is <u>closed</u> if $\{x_n \in A, x_n \to x\} \Rightarrow x \in A;$
- a set $A \subset M$ is compact if each open cover has a finite subcover;
- a set $A \subset M$ is sequentially compact if each sequence has a converging subsequence.

Some properties:

- 1. A compact set is sequentially compact, bounded, closed.
- 2. A compact metric space is complete.
- 3. In a complete metric space, a sequentially compact set is compact.

Integration on Riemannian manifolds

Definition. A support of a function $f: M \to \mathbb{R}$ is the set $supp(f) := \{x \in M \mid f(x) \neq 0\}$.

Definition. Let (M,g) be a Riemannian manifold (M,g) and a let $f : M \to \mathbb{R}$ be a function. Let $\varphi : U \to V, U \subset M, V \subset \mathbb{R}^n$ be a chart, $\varphi = (x_1, \ldots, x_n)$. Assume that $supp(f) \subset U$. Then

$$\int_{M} f = \int_{M} f d \ Vol = \int_{U} f d \ Vol = \int_{V} f \circ \varphi^{-1}(x) \sqrt{\det(g_{ij} \circ (\varphi^{-1}(x)))} dx,$$

where $g_{ij}(p) = \left\langle \frac{\partial}{\partial x_i} \right|_p, \frac{\partial}{\partial x_j} \right|_p$ is the metric g written in the chart φ .

Remark. The result does not depend on the choice of the chart.

Definition. A <u>volume</u> of a (good) subset $A \subset U \subset M$ is defined by $VolA = \int_{M} 1_A d Vol$, where 1_A is a <u>characteristic function</u> of A: $1_A(p) = 1$ for all $p \in A$ and $1_A(p) = 0$ otherwise. In other words,

$$Vol(A) = \int_{A} d \ Vol = \int_{\varphi(A)} \sqrt{det(g_{ij} \circ \varphi^{-1}(x))} dx.$$

Example. The area of a hyperbolic triangle with all three vertices on the boundary is π (computation in the upper half-plane model).

Remark. If supp(f) does not lie in one chart, one uses the technique of partition of unity which we don't study in this course.