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1. Quiver mutation

• Quiver is a directed graph without loops and 2-cycles.

• Mutation µk of quivers:

- reverse all arrows incident to k;

- for every oriented path through k do

kk

p pq q

r r′ = pq − r

µk

Example:
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1. Quiver mutation

Iterated mutations −→ many other quivers

Q −→ its mutation class

Property: µk ◦ µk(Q) = Q for any quiver Q.

Q
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µ6

Definition. A quiver is of finite mutation type

if its mutation class contains finitely many quivers.

Question. Which quivers are of finite mutation type?
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1. Quiver mutation

Question. Which quivers are of finite mutation type?

Quick answer. Not many:

If Q is connected, |Q| ≥ 3 and Q contains arrow
p−→ with p > 2,

then Q is mutation infinite.

Why: if q > r > 0, p > 2 then r′ = pq − r > q > r,

so the weghts grow under alternating mutations µ1, µ2.

11

22

p pq q

r r′ = pq − r

µ1 µ2



2. Cluster algebra: seed mutation

A seed is a pair (Q,u) where

Q is a quiver with n := |Q| veritices,

u = (u1, . . . , un) is a set of rational functions

in variables (x1, . . . , xn).

Initial seed: (Q0,u0), where u0 = (x1, . . . , xn).

Seed mutation: µk(Q, (u1, . . . , un)) = (µk(Q), (u′1, . . . , u
′
n))

where u′k =
1
uk
(
∏
i→k

ui +
∏
k→j

uj)
products over all
incoming/outgoing arrows

u′i = ui if i 6= k.

Cluster variable: a function ui in one of the seeds.

Cluster algebra: Q-subalgebra of Q(x1, . . . , xn) generated by all cluster variables.
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2. Cluster algebra: finite type

A cluster algebra is of finite type

if it contains finitely many cluster variables.

Theorem. (Fomin, Zelevinsky’ 2002)

A cluster algebra A(Q) is of finite type iff

Q is mutation-equivalent to an orientation

of a Dynkin diagram An, Dn, E6, E7, E8.

Note: Dynkin diagrams describe:

finite reflection groups, semisimple Lie algebras, surface singularities...
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2. Cluster algebra: finite mutation type

A cluster algebra A(Q) is of finite mutation type

if Q is of finite mutation type.

finite type

finite mutation type

general quiver

mutation cluster
class variables

< ∞ < ∞
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< ∞ < ∞————————



3. Finite mutation type: examples

1. n = 2.

2. Quivers arising from triangulated surfaces.

3. Finitely many except that.

(conjectured by Fomin, Shapiro, Thurston)



4. Quivers from triangulated surfaces

Triangulated surface −→ Quiver

edge of triangulation vertex of quiver

two edges of one triangle arrow of quiver

flip of triangulation mutation of quiver
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Remark. Q from a triangulation ⇒ weights of arrows ≤ 2.

(as every arc lies at most in two triangles)

Theorem. (Hatcher) Every two triangulations of the same surface

are connected by a sequence of flips.(Hatcher, Harer)

Corollary. (a) Quivers from triangulations of the same surface are

mutation-equivalent (and form the whole mutation class).

(b) Quivers from triangulations are mutation-finite.

Question. What else is mutation finite?
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4. Quivers from triangulations: description

(Fomin-Shapiro-Thurston)

Any triangulated surface can be glued of:

The corresponding quiver can be glued of blocks:

Proposition. (Fomin-Shapiro-Thurston)

{Q is from triangualation } ⇔ {Q is block-decomposable }

Question: How to find all mutation-finite

but not block-decomposable quivers?
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How to to classify discrete reflection groups in hyperbolic space?

1. They correspond to some polytopes (described by some diagrams);
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a. subdiagrams corresponding to finite subgroups (classified) ;

b. minimal subdiagrams correponding to infinite subgroups.
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Lemma 1. If Q is a minimal non-decomposable quiver then |Q| ≤ 7.

Lemma 2. If Q is a minimal non-decomposable mutation-finite quiver

then is mutation equivalent to one of

2 2

Now: - add vertices to these quivers (and their mutations) one by one

- check the obtained quiver is still mutation-finite.



Theorem 1. (A.F, M.Shapiro, P.Tumarkin’ 2008)

Let Q be a connected quiver of finite mutation type. Then

- either |Q| = 2;

- or Q is obtained from a triangulated surface;

- or Q is mut.-equivalent to one of the following 11 quivers:

2 2 2

2

2

2

2

2



Proof:
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Example. Logic scheme for a proof of some small lemma:
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