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In this work we obtain algebraicity results on special L-values attached to Siegel-Jacobi
modular forms in the spirit of Deligne’s Period Conjectures. Our method relies on a
generalization of the doubling method to the Jacobi group obtained in our previous
work, and on introducing a notion of nearly holomorphicity for Siegel-Jacobi modular
forms.

1. Introduction

This paper should be seen as a continuation of our earlier paper [3] on properties of
the standard L-function attached to a Siegel-Jacobi modular form. Indeed, in [3] we
have established various analytic properties (Euler product decomposition, analytic
continuation and detection of poles) of the standard L-function attached to Siegel-
Jacobi modular forms, and in this paper we turn our attention to algebraicity properties
of some special L-values.

Shintani was the first one to attach an L-function to a Siegel-Jacobi modular form which
is an eigenfunction of a properly defined Hecke algebra. He initiated the study of its
analytic properties by finding an integral representation. His work was left unpublished,
but then was took over by Murase [8, 9] and Arakawa [1] who obtained results on the
analytic properties of this L-function using variants of the doubling method. In our
previous work [3] we extended their results to a very general setting: non-trivial level,
character and a totally real algebraic number field. For this purpose we applied the
doubling method to the Jacobi group, and consequently related Siegel-type Jacobi
Eisenstein series to the standard L-function. This identity has a further application in
the current paper.

Here the starting point of our investigation is a result of Shimura in [11] on the arith-
meticity of Siegel-Jacobi modular forms. Namely, if we let S be a positive definite
half-integral l by l symmetric matrix, and write Mn

k,S for the space of Siegel-Jacobi

modular forms of weight k and index S (see next section for a definition), and of any
congruence subgroup, and we also denote by Mn

k,S(K) the subspace of Mn
k,S consist-

ing of those functions whose Fourier expansion at infinity has Fourier coefficients in
a subfield K of C, then it is shown in (loc. cit.) that Mn

k,S(K) = Mn
k,S(Q) ⊗Q K.
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In particular, for a given f ∈ Mn
k,S and a σ ∈ Aut(C/Q) one can define the element

fσ ∈Mn
k,S by letting σ act on the Fourier coefficients of f .

The main result of this paper is Theorem 4.6. Without going into too much details,
it may be vaguely stated as follows. Denote by L(s, f, χ) the standard L-function
attached to a Siegel-Jacobi cuspidal eigenform f ∈ Mn

k,S(Q), which is twisted by a
Dirichlet character χ, and let

Λ(s, f, χ) := L(2s− n− l/2, f, χ)

{
Lc(2s− l/2, χψS) if l ∈ 2Z,
1 if l /∈ 2Z,

where ψS is the non-trivial quadratic character attached to the extension KS :=

Q(
√

(−1)l/2 det(2S)) if KS 6= Q, and otherwise ψS = 1. Then for certain integers
σ and for k > 2n+ l + 1,

Λ(σ/2, f, χ)

πeσ < f, f >
∈ Q,

for an explicit power eσ ∈ N, and where < f, f > is a Petersson inner product on the
space of cuspidal Siegel-Jacobi modular forms.

To the best of our knowledge these are first results concerning algebraic properties of
the special L-values of Siegel-Jacobi modular forms.

Of course, results of the above form have been proven by many researchers (most
profoundly by Shimura, see for example [13]) in the cases when the standard L-function
is attached to an automorphic form (e.g. a Siegel or Hermitian modular form) associated
to a Shimura variety. Then such results can be also understood in the general framework
of Deligne’s Period Conjectures for critical values of motives [4]. Indeed, according
to the general Langlands conjectures, the standard L-functions of automorphic forms
related to Shimura varieties can be identified with motivic L-functions, and hence
the algebraicity results for the special values of the automorphic L-functions can be
also seen as a confirmation of Deligne’s Period Conjecture, albeit it is usually hard to
actually show that the conjectural motivic period agrees with the automorphic one.

However, Siegel-Jacobi modular forms and - in particular - the algebraicity results
obtained in this paper do not fit in this framework. Indeed, since the Jacobi group
is not reductive, it does not satisfy the necessary properties to be associated with
a Shimura variety, and hence we are not in the situation described in the previous
paragraph. Nevertheless, the Jacobi group can be actually associated with a geometric
object, namely with a mixed Shimura variety, as it is explained for example in [6, 7]. Of
course, we cannot expect that the standard L-function studied here can be in general
identified with a motivic one. However, it is very tempting to speculate that it could
be identified with an L-function of a mixed motive, and hence the theorem above could
be seen as a confirmation of the generalization of Deligne’s Period Conjecture to the
mixed setting as for example stated by Scholl in [10].

Finally, we would like to point out that even though in some cases one can identify the
standard L-function associated to a Siegel-Jacobi form with the standard L-function
associated to a Siegel modular form (see for example the remark on page 252 in [9]),
this is possible under some quite restrictive conditions on both index and level of
the Siegel-Jacobi form. Actually, even in the situation of classical Jacobi forms this



ALGEBRAICITY OF SPECIAL L-VALUES 3

correspondence becomes quite complicated when one considers an index different than
1 and/or non-trivial level, which is very clear for example in the work of [14].

Remark: In an earlier version of [3], which one can find on the arXiv ([2]), we had also
included the results of this paper. However this had resulted in a rather long exposi-
tion, and for this reason we decided to keep the two main results of our investigations
separately. Namely, [3] contains now our results towards the analytic properties of the
standard L function, whereas this paper focuses on the algebraic properties.

2. Preliminaries

2.1. Siegel-Jacobi modular forms. In this section we recall basic facts regarding
Siegel-Jacobi modular forms of higher index and set up the notation. We follow closely
our previous work [3].

Let F be a totally real algebraic number field of degree d, d the different of F , and
o its ring of integers. For two natural numbers l, n, we consider the Jacobi group
G := Gn,l := Hn,l o Spn of degree n and index l over F :

Gn,l(F ) := {g = (λ, µ, κ)g : λ, µ ∈Ml,n(F ), κ ∈ Syml(F ), g ∈ Gn(F )},

where H(F ) := Hn,l(F ) := {(λ, µ, κ)12n ∈ Gn,l(F )} is the Heisenberg group, and

Gn(F ) := Spn(F ) :=
{
g ∈ SL2n(F ) : tg

( −1n
1n

)
g =

( −1n
1n

)}
.

The group law is given by

(λ, µ, κ)g(λ′, µ′, κ′)g′ := (λ+ λ̃, µ+ µ̃, κ+ κ′ + λ tµ̃+ µ̃ tλ+ λ̃ tµ̃− λ′ tµ′)gg′,

where (λ̃ µ̃) := (λ′ µ′)g−1 = (λ′ td − µ′ tc µ′ ta − λ′ tb), and the identity element of
Gn,l(F ) is 1H12n, where 1H := (0, 0, 0) is the identity element of Hn,l(F ) (whenever it
does not lead to any confusion we suppress the indices n, l). For an element g ∈ Spn

we write g =

(
ag bg
cg dg

)
, where ag, bg, cg, dg ∈Mn.

We write {σv : F ↪→ R, v ∈ a} for the set of real embeddings of F , a denoting the
set of archimedean places of F . Each σv induces an embedding G(F ) ↪→ G(R); we
will write (λv, µv, κv)gv for σv(g). The group G(R)a acts on Hn,l := (Hn ×Ml,n(C))a

component wise via

gz = g(τ, w) = (λ, µ, κ)g(τ, w) =
∏
v∈a

(gvτv, wvλ(gv, τv)
−1 + λvgvτv + µv),

where gvτv = (avτv + bv)(cvτv + dv)
−1 and λ(gv, τv) := (cvτv + dv) for gv =

(
av bv
cv dv

)
.

For k ∈ Za and a matrix S ∈ Syml(d
−1) we define the factor of automorphy of weight

k and index S by

Jk,S : Gn,l(F )×Hn,l → C

Jk,S(g, z) = Jk,S(g, (τ, w)) :=
∏
v∈a

j(gv, τv)
kvJSv(gv, τv, wv),

where g = (λ, µ, κ)g, j(gv, τv) = det(cvτv + dv) = det(λ(gv, τv)) and
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JSv(gv, τv, wv) = e(−tr (Svκv) + tr (Sv[wv]λ(gv, τv)
−1cv)

− 2tr ( tλvSvwvλ(gv, τv)
−1)− tr (Sv[λv]gvτv))

with e(x) := e2πix, and we set S[x] := txSx; Jk,S satisfies the usual cocycle relation:

(1) Jk,S(gg′, z) = Jk,S(g, g′ z)Jk,S(g′, z).

For a function f : Hn,l → C we define

(2) (f |k,S g)(z) := Jk,S(g, z)−1f(g z).

A subgroup Γ of G(F ) will be called a congruence subgroup if there exist a frac-
tional ideal b and an integral ideal c of F such that Γ is a subgroup of finite index
of the group G(F ) ∩ gK[b, c]g−1 for some g ∈ Gh :=

∏
v∈hG(Fv), h denoting non-

archimedean places of F . The group K[b, c] is defined as K[b, c] := Kh[b, c]Ga, where
Ga =

∏
v∈aG(Fv), and

Kh[b, c] := Ch[o, b−1, b−1] oDh[b−1, bc] ⊂ Gh,

Ch[o, b−1, b−1] := {(λ, µ, κ) ∈
∏
v∈h

′H(Fv) : ∀v ∈ h
λv∈Ml,n(ov), µv∈Ml,n(b−1

v ),

κv∈Syml(b−1
v )

},

Dh[b−1, bc] :=
∏
v∈h

Dv[b
−1, bc],

Dv[b
−1, bc] :=

{
x =

(
ax bx
cx dx

)
∈ Gv : ax∈Mn(ov), bx∈Mn(b−1

v ),
cx∈Mn(bvcv), dx∈Mn(ov)

}
.

We now consider an S ∈ bd−1Tl where

(3) Tl := {x ∈ Syml(F ) : tr (xy) ∈ o for all y ∈ Syml(o)},

and assume additionally that S is positive definite in the sense that if we write Sv :=
σv(S) ∈ Syml(R) for v ∈ a, then all Sv are positive definite.

Definition 2.1. Let k and S be as above, and Γ a congruence subgroup equipped with
a homorphism χ. A Siegel-Jacobi modular form of weight k ∈ Za, index S, level Γ and
Nebentypus χ is a holomorphic function f : Hn,l → C such that

(1) f |k,S g = χ(g)f for every g ∈ Γ,
(2) for each g ∈ Gn(F ), f |k,S g admits a Fourier expansion of the form

f |k,S g(τ, w) =
∑
t∈L
t≥0

∑
r∈M

c(g; t, r)ea(tr (tτ))ea(tr ( trw)) (∗)

for some appropriate lattices L ⊂ Symn(F ) and M ⊂ Ml,n(F ), where t ≥ 0
means that tv is semi-positive definite for each v ∈ a.

We will denote the space of such functions by Mn
k,S(Γ, χ).

We say that f is a cusp form if in the expansion (∗) above for every g ∈ Gn(F ), we

have c(g; t, r) = 0 unless

(
Sv rv
trv tv

)
is positive definite for every v ∈ a. The space of

cusp forms will be denoted by Snk,S(Γ, χ).
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We define Petersson inner product of Siegel-Jacobi forms f and g of weight k and level
Γ under assumption that one of them is a cusp form as:

< f, g >:= vol(A)−1

∫
A
f(z)g(z)∆S,k(z)dz, A := Γ \ Hn,l,

where for z = (τ, w) ∈ Hn,l, τ = x + iy with x, y ∈ Symn(Fa) and w = u + iv

with u, v ∈ Ml,n(Fa), we set dz := d(τ, w) := det(y)−(l+n+1)dxdydudv and ∆S,k(z) :=

det(y)kea(−4πtr ( tvSvy−1)). In this way the inner product is independent of the group
Γ.

2.2. Adelic Siegel-Jacobi modular forms. Denote by A the adeles of F , and let
Kh[b, c] ⊂ Gh be the subgroup defined in the previous section. Then Jacobi group G
satisfies strong approximation theorem:

G(A) = G(F )Kh[b, c]Ga.

It will be useful to define also groups

K0[b, c] := Kn
0 [b, c] := Kh[b, c]×K∞ and K := Kn := Kh[b, c](Hn,l

a oDa
∞),

where K∞ ' Syml(R)a o Da
∞ ⊂ Hn,l(R)a o Spn(R)a is the stabilizer of the point

i0 := (i, 0) ∈ Hn,l, and D∞ is the maximal compact subgroup of Spn(R). Here i ∈ Ha
n

denotes the point (i1n . . . , i1n) on the Siegel upper space.

Now, we fix once and for all an additive character Ψ : A/F → C× as follows. Write
Ψ =

∏
v∈h Ψv

∏
v∈a Ψv and define

Ψv(xv) :=

{
e(−yv), v ∈ h

e(xv), v ∈ a,

where yv ∈ Q is such that TrFv/Qp(xv) − yv ∈ Zp for p := v ∩ Q. Given a symmetric

matrix S ∈ Syml(F ) we define a character ψS : Syml(A)/Syml(F ) → C× by taking
ψS(κ) := Ψ(tr (Sκ).

Consider an adelic Hecke character χ : A×/F× → C× of F of finite order such that
χv(x) = 1 for all x ∈ o×v with x − 1 ∈ cv. We extend this character to a character of
the group K0[b, c] by setting χ(w) :=

∏
v|c χv(det(ag))

−1 for w = hg ∈ K0[b, c].

Now, let k ∈ Za and S ∈ Syml(F ) be such that S ∈ bd−1Tl with Tl as in (3). Moreover,
let K be an open subgroup of K[b, c] for some b and c.

Definition 2.2. An adelic Siegel-Jacobi modular form of degree n, weight k, index S
and character χ, with respect to the congruence subgroup K is a function f : G(A)→ C
such that

(1) f ((0, 0, κ)γgw) = χ(w)Jk,S(w, i0)−1ψS(κ)f(g), for all κ ∈ Syml(A), γ ∈ G(F ),
g ∈ G(A) and w ∈ K ∩K0[b, c];

(2) for every g ∈ Gh the function fg on Hn,l defined by the relation

(fg|k,Sy)(i0) := f(gy) for all y ∈ Ga

is a Siegel-Jacobi modular form for the congruence group Γg := G(F )∩gKg−1.
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We denote the space of adelic Siegel-Jacobi modular forms by Mn
k,S(K,χ). For any

given g ∈ Gh there exists a bijection

(4) Mn
k,S(K,χ)→Mn

k,S(Γg, χg), f 7→ fg,

where χg is the character on Γg defined as χg(γ) := χ(g−1γg). We say that f is a
cusp form, and we denote this space by Snk,l(K,χ), if in the above notation fg is a cusp
form for all g ∈ Gh. If g = 1, we will write f for the Siegel-Jacobi modular form
corresponding to f via (4).

3. The standard L-function and the doubling method identity

In this section we recall some results and notation from [3] which will be necessary to
establish results in the next section.

3.1. The L-function. We start by fixing some notation. For a fractional ideal b, and
an integral ideal c we let

D := {(λ, µ, κ)x ∈ Cv[o, b−1, b−1]Dv[b
−1c, bc] : (ax − 1n)v ∈Mn(cv) for every v|c},

Γ := Γ1(c) := Gn(F ) ∩D,

Q(c) := {r ∈ GLn(Ah) ∩
∏
v∈h

Mn(ov) : rv = 1n for every v|c},

R(c) := {diag[r̃, r] : r ∈ Q(c)}.

For r ∈ Q(c) and f ∈Mn
k,S(Γ) we define a linear operator Tr : Mn

k,S(Γ)→Mn
k,S(Γ) by

(5) f |Tr :=
∑
α∈A

f |k,Sα,

where A ⊂ Gn(F ) is such that Gn(F ) ∩Ddiag[r̃, r]D =
∐
α∈A Γα. Further, for an

integral ideal a of F we put

f |T (a) :=
∑
r∈Q(c)

det(r)o=a

f |Tr,

where we sum over all those r for which the cosets
∏
v∈h GLn(ov) r

∏
v∈h GLn(ov) are

distinct.

Note that if f |Tr is the adelic Siegel-Jacobi form associated to f |Tr by the bijection
given in (4) with g = 1, then

(f |Tr)(x) =
∑
α∈A

f(xα−1), x ∈ Gn(A),

where Ddiag[r̃, r]D =
∐
α∈ADα with A ⊂ Gh; we define f |T (a) in a similar way.

We now consider a nonzero f ∈ Snk,S(D) such that f |T (a) = λ(a)f for all integral ideals
a of F . For a Hecke character χ of F , and denoting by χ∗ the corresponding ideal
character, we define an absolutely convergent series

D(s, f , χ) :=
∑
a

λ(a)χ∗(a)N(a)−s, Re(s) > 2n+ l + 1.
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In [3] we proved the following theorem regarding the Euler product representation of
this Dirichlet series. For the condition M+

p for primes away from c we refer to [3].

Theorem 3.1 (Theorem 7.1, [3]). Let 0 6= f ∈ Snk,S(D) be such that f |T (a) = λ(a)f

for all integral ideals a of F . Assume that the matrix S satisfies the condition M+
p for

every prime ideal p with (p, c) = 1. Then

L(χ, s)D(s+ n+ l/2, f , χ) = L(s, f , χ) :=
∏
p

Lp(χ
∗(p)N(p)−s)−s,

where for every prime ideal p of F

Lp(X) =

{∏n
i=1

(
(1− µp,iX)(1− µ−1

p,iX)
)
, µp,i ∈ C× if (p, c) = 1,

1 if (p, c) 6= 1.

Moreover, L(χ, s) =
∏

(p,c)=1 Lp(χ, s), where

Lp(χ, s) := Gp(χ, s) ·

{∏n
i=1 Lp(2s+ 2n− 2i, χ2) if l ∈ 2Z∏n
i=1 Lp(2s+ 2n− 2i+ 1, χ2) if l 6∈ 2Z

and Gp(χ, s) is a ratio of Euler factors which for almost all p is equal to one. In
particular, the function L(s, f , χ) is absolutely convergent for Re(s) > n+ l/2 + 1.

We note here that the Euler product expression implies that

(6) L(s, f , χ) 6= 0, Re(s) > n+ l/2 + 1.

We set f c(z) := f(−z), where f corresponds to f ∈ Snk,S(D) via (4). We write f c for
the adelic form corresponding to f c. Then

Proposition 3.2 (Proposition 7.9, [3]). Let f ∈ Snk,S(Γ) be an eigenform with f |T (a) =

λ(a)f for all fractional ideals a prime to c. Then so is f c. In particular, f c|T (a) =
λ(a)f c and L(s, f , χ) = L(s, f c, χ).

3.2. Doubling method. The L-function introduced above may be also obtained via
a doubling method. We chose to take Arakawa’s approach [1] and considered a homo-
morphism

ιA : Gm,l ×Gn,l → Gm+n,l,

ιA((λ, µ, κ)g)× (λ′, µ′, κ′)g′)) := ((λλ′), (µµ′), κ+ κ′)ιS(g × g′),
where

ιS : Gm ×Gn ↪→ Gm+n, ιS
((

a b
c d

)
×
(
a′ b′

c′ d′

))
:=

(
a b
a′ b′

c d
c′ d′

)
.

The map ιA induces an embedding

Hm,l ×Hn,l ↪→ Hn+m,l, z1 × z2 7→ diag[z1, z2],

defined by
(τ1, w1)× (τ2, w2) 7→ (diag[τ1, τ2], (w1w2)).

The doubling method suggests that computation of the Petersson inner product of a
cuspidal Siegel-Jacobi modular form f on Hn,l against a Siegel-type Eisenstein series
pull-backed from Hn+m,l leads to an L-function associated with f . Before we state the
result, we need to define an Eisenstein series.
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Fix a weight k ∈ Za and consider a Hecke character χ such that for a fixed integral
ideal c of F we have

(1) χv(x) = 1 for all x ∈ o×v with x− 1 ∈ cv, v ∈ h,

(2) χa(xa) = sgn(xa)k :=
∏
v∈a

(
xv
|xv |

)kv
, for xa ∈ Aa;

we will also write χc :=
∏
v|c χv. We define an absolutely convergent adelic Eisenstein

series of Siegel type on a Jacobi group with a parabolic subgroup

P n(F ) := {(0, µ, κ)g : µ ∈Ml,n(F ), κ ∈ Syml(F ), g ∈ Pn(F )} ,

where Pn(F ) is a Siegel subgroup of Gn(F ) as follows:

E(x, s;χ) :=
∑

γ∈Pn(F )\Gn(F )

φ(γx, s;χ), Re(s) >
1

2
(n+ l + 1) ,

where φ(x, s;χ) := 0 if x /∈ P n(A)Kn and otherwise, if x = pw with p ∈ P n(A) and
w ∈ Kn, we set

φ(x, s;χ) := χ(det(dp))
−1χc(det(dw))−1Jk,S(w, i0)−1| det(dp)|−2s

A ,

where p, w ∈ Spn(A) denote symplectic parts of p,w, respectively. The classical
Eisenstein series which corresponds to E(x, s;χ) via bijection (4) will be denoted by
E(z, s;χ).

Theorem 3.3 ([3]). Let f ∈ Snk,S(Γ) be a Hecke eigenform and E(z, s;χ) an Eisenstein
series defined above. Then:

G(χ, 2s− n− l/2)N(b)2nsχh(θ)−n(−1)n(s−k/2)vol(A)Λ2n
k−l/2,c(s− l/4, χψS)

· < (E|k,Sρ)(diag[z1, z2], s;χ), (fk,S |ηn)c(z2) >

= νecS,k(s− k/2)Λ(s, f, χ)f(z1),(7)

where

Λ2n
k−l/2,c(s, χψS) :=

{
Lc(2s− l/2, χψS)

∏n
i=1 Lc(4s− l − 2i, χ2) if l ∈ 2Z,∏[(2n+1)/2]

i=1 Lc(4s− l − 2i+ 1, χ2) if l /∈ 2Z,

Λ(s, f, χ) :=L(2s−n−l/2, f , χ)

{
Lc(2s− l/2, χψS)

∏n
i=n+1Lc(4s− l − 2i, χ2), l ∈ 2Z,∏[(2n+1)/2]

i=n+1 Lc(4s− l − 2i+ 1, χ2), l /∈ 2Z,

(8) G(χ, 2s− n− l/2) :=
∏

(p,c)=1

Gp(χ, 2s− n− l/2),

and the rest of notation is as in [3, Section 6]; in particular: ηn = 1H
( −1n

1n

)
,

cS,k(s) =
∏
ν∈a

(
±det(2Sν)−n2n(n+3)/2−4sν−nkνπn(n+1)/2 Γn(sν + kν − l

2 −
n+1

2 )

Γn(sν + kν − l
2)

)
and Γn(s) := πn(n−1)/4

∏n−1
i=0 Γ(s− i

2).

Statement of the above theorem expresses a combination of equations (30) and (31)
from [3, Section 9] before multiplying them by the factor Gk−l/2,2n(s− l/4).
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Remark 3.4. In fact, the results proved in [3] are more general than the ones presented
above. Indeed, we worked with congruence subgroups of the form

D := {(λ, µ, κ)x ∈ Cv[o, b−1, b−1]Dv[b
−1e, bc] : (ax − 1n)v ∈Mn(ev) for every v|e},

where e is an integral ideal such that c ⊂ e and e is prime to e−1c. If we set

Γ := Gn(F ) ∩D,
then Γ1(c) ⊆ Γ ⊆ Γ0(c) where the last group is obtained by setting e = o. However, in
this paper we decided to work with e = c, because for simplicity reasons we restricted
the proof of our main theorem to this case.

4. Arithmetic properties of Siegel-Jacobi modular forms

As we indicated in the introduction, assuming that one can define a sensible algebraic
structure on the space of Siegel-Jacobi modular forms, it is natural to ask whether
a “Deligne’s Conjecture”-style result may hold for some values of the standard L-
function, which are often called special L-values. This is indeed the case for Siegel
modular forms, as shown for example in [13, 15]. Indeed, by using the theory of
canonical models for the Siegel modular varieties (as it is explained in [13, Chapter
2]), one can define an algebraic structure on the space of Siegel modular forms, and for
an algebraic eigenfunction establish algebraicity results for the special L-values of the
attached standard L-function (see for example Theorem 28.8 in [13]). Furthermore,
one can, conjecturally, attach a motive to such a Siegel modular form, such that the
associated motivic L-function can be identified with the standard L-function (see for
example [16]). Then the special values of the standard L-function can be identified
with the critical values of the motivic L-function and then the algebraicity results can
be seen in the light of Deligne’s Period conjectures [4] (up to the difficult issue of
comparing motivic and automorphic period).

It is then quite natural to ask whether the picture described above holds also for Siegel-
Jacobi forms; that is, whether we can establish results towards the algebraicity of special
L-values of Siegel-Jacobi modular forms. The starting point of our investigation is the
paper of Shimura [11], where the arithmetic nature of Siegel-Jacobi modular forms is
studied. We should remark right away that the paper of Shimura is written for F = Q,
but it is not very hard to see that almost everything there can be generalized to the
situation of any totally real field F . Indeed, in what follows, whenever we state a result
from that paper, we always comment on what is needed to extend it to the case of a
totally real field.

In this section we change our convention: we will write f (instead of f) for Siegel-Jacobi
modular forms, f will still denote the corresponding adelic form, and f will be used for
other types of forms.

For a congruence subgroup Γ of G(F ) as in the previous section and a subfield K of C
we define the set

Mn
k,S(Γ,K) := {f ∈Mn

k,S(Γ) : f(τ, w) =
∑
t,r

c(t, r)ea(tr (tτ + trw)), c(t, r) ∈ K};

the subspace Snk,S(Γ,K) consisting of cusp forms is defined in a similar way. Moreover,

we write Mn
k,S(K) for the union of all spaces Mn

k,S(Γ1(b, c),K) for all integral ideals c
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and fractional ideals b, where Γ1(b, c) := Gn(F ) ∩D1(b, c), and

D1(b, c) := {(λ, µ, κ)x ∈ C[o, b−1, b−1]D[b−1c, bc] : (ax − 1n)v ∈Mn(cv) for every v|c}.

For an element σ ∈ Aut(C) and an element k = (kv) ∈ Za we define kσ := (kvσ) ∈ Za,

where vσ is the archimedean place corresponding to the embedding K
τv
↪→ C σ→ C, if τv

is the embedding in C corresponding to the archimedean place v.

Proposition 4.1. Let k ∈ Za, and let Φ be the Galois closure of F in Q, and Φk the
subfield of Φ such that

Gal(Φ/Φk) := {σ ∈ Gal(Φ/F ) : kσ = k} .
Then Mn

k,S(C) = Mn
k,S(Φk)⊗Φk C.

Proof. If F = Q, this is [11, Proposition 3.8]. A careful examination of the proof [11,
page 60] shows that the proof is eventually reduced to the corresponding statement
for Siegel modular forms of integral (if l is even) or half-integral (if l is odd) weight.
However, in both cases the needed statement does generalize to the case of totally real
fields, as it was established in [13, Theorems 10.4 and 10.7]. �

Given an f ∈Mn
k,S(C), we define

f∗(τ, w) := ea(Sw(τ − τ)−1tw)f(τ, w)

and write Qab for the maximal abelian extension of Q. Moreover, for k ∈ 1
2Z

a such that

kv− 1
2 ∈ Z for all v ∈ a we write Mn

k for the space of Siegel modular forms of weight k,
and of any congruence subgroup, and Mn

k (K) for those with the property that all their
Fourier coefficients at infinity lie in K (see for example [13, Chapter 2] for a detailed
study of these sets).

Proposition 4.2. Let K be a field that contains Qab and Φ as above. Then

(1) f ∈ Mn
k,S(K) if and only if f∗(τ, vΩτ ) ∈ Mn

k (K), where Ωτ := t(τ 1n), and

v ∈Ml,2n(F ).
(2) For any element γ ∈ Spn(F ) ↪→ Gn(F ) and f ∈Mn

k,S(K), we have

f |k,Sγ ∈Mn
k,S(K).

Moreover if f ∈ Mn
k,S(Γ,K), it follows that f |Tr ∈ Mn

k,S(Γ,K) for any r ∈
Q(c).

Proof. If F = Q, this is [11, Proposition 3.2]. It is easy to see that the proof generalizes
to the case of any totally real field. Indeed, the first part of the proof is a direct
generalization of the argument used by Shimura. The second part requires the fact
that the space Mn

k (K) is stable under the action of elements in Spn(F ), which is true
for any totally real field, as it is proved in [13, Theorem 10.7 (6)]. The last statement
follows from the definition of the Hecke operator Tr,ψ. �

For a symmetric matrix S ∈ Syml(F ), h ∈ Ml,n(F ) and a lattice L ⊂ Ml,n(F ) we
define the Jacobi theta series of characteristic h by

ΘS,L,h(τ, w) =
∑
x∈L

ea(tr (S(
1

2
t(x+ h)τ(x+ h) + (x+ h)w))).
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Theorem 4.3. Assume that n > 1 or F 6= Q, and let K be any subfield of C.
Let A ∈ GLl(F ) be such that AS tA = diag[s1, . . . , sl], and define the lattices Λ1 :=
AMl,n(o) ⊂ Ml,n(F ) and Λ2 := 2diag[s−1

1 , . . . , s−1
l ]Ml,n(o) ⊂ Ml,n(F ). Then there is

an isomorphism

Φ : Mn
k,S(K) ∼=

⊕
h∈Λ1/Λ2

Mn
k−l/2(K)

given by f 7→ (fh)h, where the fh ∈Mn
k−l/2(K) are defined by the expression

f(τ, w) =
∑

h∈Λ1/Λ2

fh(τ)Θ2S,Λ2,h(τ, w).

Moreover, under the above isomorphism,

Φ−1

 ⊕
h∈Λ1/Λ2

Snk−l/2(K)

 ⊂ Snk,S(K).

Remark 4.4. We remark here that the assumption of n > 1 or F 6= Q is needed to
guarantee that the fh’s are holomorphic at the cusps, which follows from the Köcher
principle. However, even in the case of F = Q and n = 1, if we take f to be of trivial
level, then the fh’s are holomorphic at infinity (see for example [5, page 59]).

Proof of Theorem 4.3. The first statement is [11, Proposition 3.5] for F = Q and it
easily generalizes to the case of any totally real field. We explain the statement about
cusp forms.

Consider first expansions around the cusp at infinity. Fix h ∈ Λ1/Λ2 and let fh(τ) =∑
t2>0 c(t2)ea(tr (t2τ)). It is known that Fourier coefficients c(t1, r) of a Jacobi theta

series

Θ2S,Λ2,h(τ, w) =
∑
t1,r

c(t1, r)ea(tr (t1τ))ea(tr ( trw))

are nonzero only if 4t1 = rS−1tr (see [17, p. 210]). Hence, the coefficients of

fh(τ)Θ2S,Λ2,h(τ, w) =
∑
t,r

( ∑
t1+t2=t

c(t1, r)c(t2)

)
ea(tr (tτ))ea(tr ( trw))

are nonzero only if 4t = 4(t1 + t2) = rS−1tr + 4t2 > rS−1tr. This means that the
function fh(τ)Θ2S,Λ2,h(τ, w) satisfies cuspidality condition at infinity.

Now let γ be any element in Spn(F ). The first statement in the Theorem states that
for every h1 ∈ Λ1/Λ2 there exist fh1,h2 ∈Mn

k−l/2(K), h2 ∈ Λ1/Λ2, such that

Θ2S,Λ2,h1 |k,Sγ(τ, w) =
∑
h2

fh1,h2(τ)Θ2S,Λ2,h2(τ, w).

Hence, for some cusp forms fh1 ∈ Snk−l/2(K),

f |k,Sγ(τ, w) :=
∑
h1

fh1 |kγ(τ)

∑
h2

fh1,h2(τ)Θ2S,Λ2,h2(τ, w)
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=
∑
h2

∑
h1

fh1 |kγ(τ)fh1,h2(τ)

Θ2S,Λ2,h2(τ, w).

The same argument as used for the cusp at infinity implies that the functions f |k,Sγ(τ, w)
and

∑
h1
fh1 |kγ(τ)fh1,h2(τ) are cuspidal. This finishes the proof. �

Note that the above theorem does not state that Φ−1
(⊕

h∈Λ1/Λ2
Snk−l/2(K)

)
= Snk,S(K).

For this reason we make the following definition.

Property A. We say that a cusp form f ∈ Snk,S(K) has the Property A if

Φ(f) ∈
⊕

h∈Λ1/Λ2

Snk−l/2(K).

Examples of Siegel-Jacobi forms that satisfy the Property A:

(1) Siegel-Jacobi forms over a field F of class number one, and with trivial level, i.e.
with c = o. Note that in this situation there is only one cusp. Then, keeping the
notation as in the proof of the theorem above we need to verify that if f(τ, w) =∑

t,r cf (t, r)ea(tr (tτ))ea(tr ( trw)) with 4t > rS−1tr whenever c(t, r) 6= 0, then

the fh have to be cuspidal. Observe first that if h1, h2 ∈ Λ1/Λ2 are differ-
ent, Θ2S,Λ2,h1(τ, w) =

∑
t,r c1(t, r)ea(tr (tτ))ea(tr ( trw)), and Θ2S,Λ2,h2(τ, w) =∑

t,r c2(t, r)ea(tr (tτ))ea(tr ( trw)), then there is no r such that at the same time

c1(t, r) 6= 0 and c2(t, r) 6= 0. Indeed, if it was not the case then there would be
λ1, λ2 ∈ Λ2 such that tr = 2S(λ1 + h1) and tr = 2S(λ2 + h2), that is, λ1 + h1 =
λ2 + h2 or, equivalently, h1 − h2 ∈ Λ2; contradiction. Hence, for any given r
there is a unique h ∈ Λ1/Λ2 such that Θ2S,Λ2,h has a nonzero coefficient c(t, r).
This means that there exists a unique h such that cf (t, r) is the Fourier coeffi-
cient of fh(τ)Θ2S,Λ2,h(τ, w) =

∑
t,r

∑
t1+t2=t c(t1, r)c(t2)ea(tr (tτ))ea(tr ( trw)).

But then rS−1tr < 4t = 4(t1 + t2) = rS−1tr + 4t2 and so t2 > 0, which proves
that fh is cuspidal.

(2) Siegel-Jacobi forms of index S such that det(2S) ∈ o×, as in this case the
lattices Λ1 and Λ2 from Theorem 4.3 are equal.

(3) Siegel-Jacobi forms of non-parallel weight, that is, if there exist distinct v, v′ ∈ a
such that kv 6= kv′ . Indeed, in this case Mn

k−l/2(K) = Snk−l/2(K) for all h ∈
Λ1/Λ2 (see [12, Proposition 10.6]).

Let us now explain the significance of the Property A. Recall first that we have defined
a Petersson inner product < f , g > when f , g ∈ Mn

k,S(K) and one of them, say, f is
cuspidal. If f satisfies the Property A, then we claim that

< f , g >= N(det(4S))−n/2
∑

h∈Λ1/Λ2

< fh, gh > .

Indeed, as in [17, Lemma 3.4],

< f , g >= N(det(4S))−n/2vol(A)−1

∫
A

∑
h∈Λ1/Λ2

fh(τ)gh(τ) det(Im(τ))k−l/2−(n+1)dτ,
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where A = Γ\Ha
n and a congruence subgroup Γ is deep enough. We obtain the claimed

equality after exchanging the order of integration and summation. This can be done
exactly because each fh is cuspidal, which makes each individual integral well defined.

Lemma 4.5. Assume that n > 1 or F 6= Q and that f ∈ Snk,S(Q) satisfies the Property
A and one of the following two conditions holds:

(i) there exist v, v′ ∈ a such that kv 6= kv′;
(ii) k = µa = (µ, . . . , µ) ∈ Za, with µ ∈ Z depending on n and F in the following

way:
n > 2 n = 2, F = Q n = 2, F 6= Q n = 1 .

µ > 3n/2 + l/2 µ > 3 µ > 2 µ ≥ 1/2

Then for any g ∈Mn
k,S(Q) there exists g̃ := q(g) ∈ Snk,S(Q) such that

< f , g >=< f , g̃ > .

Proof. There is nothing to show in the case of non-parallel weight, since as it was
mentioned above there is no (holomorphic) Eisenstein part in this case. In the parallel

weight case, since f has the Property A, < f , g >= N(det(4S))−n/2
∑

h∈Λ1/Λ2
<

fh, gh >. Let q̃ : Mn
k−l/2(Q) → Snk−l/2(Q) be the projection operator defined in [13,

Theorem 27.14]. Then, if we put g̃h := q̃(gh) for all h ∈ Λ1/Λ2, it follows that

< f , g >= N(det(4S))−n/2
∑

h∈Λ1/Λ2

< fh, gh >= N(det(4S))−n/2
∑

h∈Λ1/Λ2

< fh, g̃h > .

In particular, if we set g̃ := Φ−1((g̃h)h), we obtain the statement of the lemma. �

We consider now a non-zero f ∈ Snk,S(Γ,Q) with Γ := G ∩D, where

D := {(λ, µ, κ)x ∈ C[o, b−1, b−1]D[b−1cf , bcf ] : (ax−1n)v ∈Mn((cf )v) for every v|cf}.
We assume that f is an eigenfunction of the operators T (a) for all integral ideals a,
write f |T (a) = λ(a)f and define the space

V (f) := {f̃ ∈ Snk,S(Γ,Q) : f̃ |T (a) = λ(a)f̃ for all a}.

We are now ready to state the main theorem of this paper on algebraic properties of

Λ(s,f , χ) = L(2s− n− l/2,f , χ)

{
Lc(2s− l/2, χψS) if l ∈ 2Z,
1 if l 6∈ 2Z.

Theorem 4.6. Assume n > 1 or F 6= Q. Let χ be a Hecke character of F such
that χa(x) = sgna(x)k, and 0 6= f ∈ Snk,S(Γ,Q) an eigenfunction of all T (a). Set
µ := minv kv and assume that

(1) µ > 2n+ l + 1,

(2) Property A holds for all f̃ ∈ V (f),
(3) kv ≡ kv′ mod 2 for all v, v′ ∈ a.

Let σ ∈ Z be such that

(1) 2n+ 1− (kv − l/2) ≤ σ − l/2 ≤ kv − l/2 for all v ∈ a,
(2) |σ − l

2 −
2n+1

2 |+
2n+1

2 − (kv − l/2) ∈ 2Z for all v ∈ a,
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(3) kv > l/2 + n(1 + kv − l/2− |σ − l/2− (2n+ 1)/2| − (2n+ 1)/2) for all v ∈ a,

but exclude the cases

(1) σ = n+ 1 + l/2, F = Q and χ2ψ2
i = 1 for some ψi,

(2) σ = l/2, c = o and χψSψi = 1 for some ψi,
(3) 0 < σ − l/2 ≤ n, c = o and χ2ψ2

i = 1 for some ψi.
(4) σ ≤ l + n in case F has class number larger than one.

Under these conditions
Λ(σ/2,f , χ)

πeσ < f ,f >
∈ Q,

where

eσ = n
∑
v∈a

(kv−l+σ)−de, e :=

{
n2 + n− σ + l/2, if 2σ − l ∈ 2Z and σ ≥ 2n+ l/2,

n2, otherwise.

This theorem will be proved at the end of the next section. First we need to introduce
the notion of nearly holomorphic Siegel-Jacobi modular forms Nn,r

k,S(Γ) for r ∈ Za.

5. Nearly holomorphic Siegel-Jacobi modular forms and algebraicity of
special L-values

Definition 5.1. A C∞ function f(τ, w) : Hn,l → C is said to be a nearly holomorphic
Siegel-Jacobi modular form (of weight k and index S) for the congruence subgroup Γ
if

(1) f is holomorphic with respect to the variable w and nearly holomorphic with
respect to the variable τ , that is, f belongs to the space N r(Hd

n) for some r ∈ N
defined in [13, page 99];

(2) f |k,Sγ = f for all γ ∈ Γ.

We denote this space by Nn,r
k,S(Γ) and write Nn,r

k,S :=
⋃

ΓN
n,r
k,S(Γ) for the space of all

nearly holomorphic Siegel-Jacobi modular forms of weight k and index S.

We note that if f ∈ Nn,r
k,S , then f∗(τ, v Ωτ ) ∈ Nn,r

k , the space of nearly holomorphic

Siegel modular forms, where recall Ωτ := t(τ 1n), and v ∈ Ml,2n(F ). Below we extend
Theorem 4.3 to the nearly-holomorphic situaton.

Theorem 5.2. Assume that n > 1 or F 6= Q. Let A ∈ GLl(F ) be such that
AS tA = diag[s1, . . . , sl], and define the lattices Λ1 := AMl,n(o) ⊂ Ml,n(F ) and Λ2 :=

2diag[s−1
1 , . . . , s−1

l ]Ml,n(o) ⊂Ml,n(F ). Then there is an isomorphism

Φ : Nn,r
k,S
∼=

⊕
h∈Λ1/Λ2

Nn,r
k−l/2

given by f 7→ (fh)h, where the fh ∈ Nn,r
k−l/2 are defined by the expression

f(τ, w) =
∑

h∈Λ1/Λ2

fh(τ)Θ2S,Λ2,h(τ, w).
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Proof. Given an f ∈ Nn,r
k,S , the modularity properties with respect to the variable w

show that (see for example [11, proof of Proposition 3.5]) we may write

f(τ, w) =
∑

h∈Λ1/Λ2

fh(τ)Θ2S,Λ2,h(τ, w)

for some functions fh(τ) with the needed modularity properties. In order to establish
that they are actually nearly holomorphic one argues similarly to the holomorphic case.
Indeed, a close look at the proof of [11, Lemma 3.4] shows that the functions fh have the
same properties (real analytic, holomorphic, nearly holomorphic, meromorphic, etc.)
with respect to the variable τ as f(τ, w), since everything is reduced to a linear system
of the form

f(τ, wi) =
∑

h∈Λ1/Λ2

fh(τ)Θ2S,Λ2,h(τ, wi), i = 1, . . . , ]Λ1/Λ2,

for some {wi} such that det(Θ2S,Λ2,h(τ, wi)) 6= 0. In particular, after solving the linear
system of equations we see that the nearly holomorphicity of fh follows from that of f
since the Θ2S,Λ2,h(τ, wi) are holomorphic with respect to the variable τ . �

The above theorem immediately implies the following.

Corollary 5.3. For a congruence subgroup Γ, Nn,r
k,S(Γ) is a finite dimensional C vector

space.

Proof. The theorem above states that Nn,r
k,S(Γ) ∼=

⊕
hN

n,r
k−l/2(Γh) for some congruence

subgroups Γh, which are known to be finite dimensional (see [13, Lemma 14.3]). �

Given an automorphism σ ∈ Aut(C) and f ∈ Nn,r
k,S , we define

fσ(τ, w) :=
∑

h∈Λ1/Λ2

fσh (τ)Θ2S,Λ2,h(τ, w),

where fh ∈ Nn,r
k−l/2, and fσh is defined as in [13, page 117]. Also, for a subfield K

of C, define the space Nn,r
k,S(K) to be the subspace of Nn,r

k,S such that Φ(Nn,r
k,S(K)) =⊕

h∈Λ1/Λ2
Nn
k−l/2(K). In particular, f ∈ Nn,r

k,S belongs to Nn,r
k,S(K) if and only if fσ = f

for all σ ∈ Aut(C/K). Moreover, if K contains the Galois closure of F in Q and Qab,
then Nn,r

k,S = Nn,r
k,S(K) ⊗K C as the same statement holds for Nn,r

k−l/2. Similarly it fol-

lows that if f ∈ Nn,r
k,S(Q), then f |k,Sγ ∈ Nn,r

k,S(Q) for all γ ∈ G(F ). At this point we

also remark that for an f ∈ Mn
k,S the f c defined before is nothing else than fρ where

1 6= ρ ∈ Gal(C/R) i.e. a complex conjugation.

We now define a variant of the holomorphic projection in the Siegel-Jacobi case. We
define a map p : Nn,r

k,S(Q)→Mn
k,S(Q) whenever kv > n+ rv for all v ∈ a by

p(f) := p

 ∑
h∈Λ1/Λ2

fh(τ)Θ2S,Λ2,h(τ, w)

 :=
∑

h∈Λ1/Λ2

p̃(fh(τ))Θ2S,Λ2,h(τ, w),
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where p̃ : Nn,r
k−l/2(Q) → Mn

k−l/2(Q) is the holomorphic projection operator defined for

example in [13, Chapter III, section 15].

Lemma 5.4. Assume n > 1 or F 6= Q and that f ∈ Snk,S satisfies the Property A, and

kv > n+ rv for all v ∈ a. Then for any g ∈ Nn,r
k,S(Q),

< f , g >=< f , p(g) > .

Proof. This follows from the fact that the above property holds for nearly holomorphic
Siegel modular forms, and the fact that the Property A allows us to write the Petersson
inner product of Siegel-Jacobi forms as a sum of Petersson inner products of Siegel
modular forms, in a similar way as we did in the proof of Lemma 4.5. �

Let us write F1 for the Hilbert class field extension of F and denote by {ψi} the ideal
characters corresponding to the characters of Gal(F1/F ). We can now state a theorem
regarding the nearly holomorphicity of Siegel-type Jacobi Eisenstein series.

Theorem 5.5. Consider the normalized Siegel-type Jacobi-Eisenstein series

D(s) := D(z, s; k, χ) := Λnk−l/2,c(s− l/4, χψS)E(z, χ, s).

Let µ ∈ Z be such that

(1) n+ 1− (kv − l/2) ≤ µ− l/2 ≤ kv − l/2 for all v ∈ a, and
(2) |µ− l/2− n+1

2 |+
n+1

2 − kv + l/2 ∈ 2Z,

but exclude the cases

(1) µ = n+2
2 + l/2, F = Q and χ2ψ2

i = 1 for some ψi,
(2) µ = l/2, c = o and χψSψi = 1 for some ψi,
(3) 0 < µ− l/2 ≤ n/2, c = o and χ2ψ2

i = 1 for some ψi.
(4) µ ≤ l + n if F has class number larger than one.

Then

D(µ/2) ∈ πβNn,r
k,S(Q),

where

r =


n(k−µ+2)

2 if µ = n+2
2 + l

2 , F = Q, χ2 = 1,
k
2 −

l
4 if n = 1, µ = 2 + l

2 , F = Q, χψS = 1,
n
2 (k − l

2 − |µ−
l
2 −

n+1
2 |a−

n+1
2 a) otherwise.

Moreover, β = n
2

∑
v∈a(kv − l + µ)− de, where

e :=

{
[ (n+1)2

4 ]− µ+ l
2 if 2µ− l + n ∈ 2Z, µ ≥ n+ l

2 ,

[n
2

4 ] otherwise.

Proof. The proof is similar to the proof of Theorem 8.3 in [3], where the analytic
properties of this series were established. As in there, we can read off the nearly
holomorphicity of the Jacobi Eisenstein series from the classical Siegel Eisenstein series,
which are given in [13, Theorem 17.9]; to be more precise, from the Siegel-type series
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E(τ, s− l/4;χψSψi, k − l/2) (with the notation as in [3]), where ψi’s vary over all the
Hilbert characters. Indeed, the series

Λnk−l/2,c(µ/2− l/4, χψS)

Λnk−l/2,c(µ/2− l/4, χψSψi)
Λnk−l/2,c(µ/2− l/4, χψSψi)E(τ, s− l/4;χψSψi, k − l/2)

has the same algebraic properties as the normalized series

Λnk−l/2,c(µ/2− l/4, χψSψi)E(τ, s− l/4;χψSψi, k − l/2),

if we exclude the cases where the factor
Λn
k−l/2,c(µ/2−l/4,χψS)

Λn
k−l/2,c(µ/2−l/4,χψSψi)

has a pole. Therefore all

we need to check is that

Λnk−l/2(µ/2− l/4, χψS)

Λnk−l/2(µ/2− l/4, χψSψi)
∈ Q.

This should follow from the general Bellinson conjectures for motives associated to
finite Hecke characters over totally real fields (see for example [10]). However this is
not known in general, and hence we are forced to set the condition µ > n+ l in case F
has class number larger than one, in which case we obtain values whose ratio is known
to be algebraic, since we are then considering critical values. �

Lemma 5.6. Consider the embedding

∆ : Hn,l ×Hm,l ↪→ Hn+m,l, (τ1, w1)× (τ2, w2) 7→ (diag[τ1, τ2], (w1 w2)).

Then the pullback

∆∗
(
Nn+m,r
k,S (Q)

)
⊂ Nn,r

k,S(Q)⊗Q N
m,r
k,S (Q).

Proof. The proof of this lemma is identical to the Siegel modular form case (see [13,

Lemma 24.11]). Let f ∈ Nn+m,r
k,S (Γn+m,Q) for a sufficiently deep congruence subgroup

Γn+m. Note that the function g(z1, z2) := ∆∗f(diag[z1, z2]) is in Nn,r
k,S(Γn) as a function

in z1 and in Nm,r
k,S (Γm) as a function in z2 for appropriate congruence subgroups Γn

and Γm. Hence, by Corollary 5.3 and the fact that Nn,r
k,S = Nn,r

k,S(Q)⊗QC, for each fixed
z1 we may write

g(z1, z2) =
∑
i

gi(z1)hi(z2),

where gi(z1) ∈ C, and hi ∈ Nn,r
k,S(Q) form a basis of the space. The general argument

used in [13, Lemma 24.11], which is based on the linear independence of the basis hi,
shows that the functions gi(z1) have the same properties as the function g when viewed
as a function of the variable z1. Hence, gi ∈ N

n,r
k,S . Now, for any σ ∈ Aut(C/Q),

g(z1, z2) = gσ(z1, z2) =
∑
i

gσi (z1)hσi (z2) =
∑
i

gσi (z1)hi(z2).

Hence, gσi (z2) = gi(z2) for all σ ∈ Aut(C/Q), and thus gi ∈ N
n,r
k,S(Q). �

We can now establish a theorem which is the key result towards Theorem 4.6.
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Theorem 5.7. Assume n > 1 or F 6= Q. Let 0 6= f ∈ Snk,S(Γ,Q) be an eigenfunction

of T (a) for all integral ideas a with (a, cf ) = 1. Define µ := minv∈a {kv} and assume
that

(1) µ > 2n+ l + 1,

(2) Property A holds for all f̃ ∈ V (f),
(3) kv ≡ kv′ mod 2 for all v, v′ ∈ a.
(4) kv > l/2 + n(1 + kv − µ) for all v ∈ a.

Then for any g ∈Mn
k,S(Q),

< f , g >

< f ,f >
∈ Q

Proof. By Lemma 4.5 it suffices to prove this theorem for g ∈ Snk,S(Q). Furthermore,

as it was shown in [3, section 7.4], the Hecke operators are normal and Proposition
4.2 states that the Hecke operators T (a) preserve Snk,S(Γ,Q). That is, we have a
decomposition

Snk,S(Γ,Q) = V (f)⊕U ,
where U is a Q-vector space orthogonal to V (f). Therefore, without loss of generality,
we may assume that g ∈ V (f).

Now consider a character χ of conductor fχ 6= o such that χa(x) = sgna(x)k, χ2 6= 1

and G(χ, µ−n− l/2) ∈ Q×, where G(χ, µ−n− l/2) is as in equation (8). The existence
of such a character follows from the fact that G(χ, 2s−n− l/2) is the ratio of products
of finitely many Euler polynomials.

We recall that if f̃ ∈ V (f), then so is f̃
c ∈ V (f) and their L-functions agree. In

particular, up to some non-zero algebraic number, the identity (7) becomes:

Λ2n
k−l/2,c(µ/2− l/4, χψS)vol(A) < (E|k,Sρ)(diag[z1, z2], µ/2;χ), (f̃

c|k,Sηn)c(z2) >

= Q×cS,k(µ/2− k/2)Λ(µ/2,f , χ)f̃
c
(z1).

By Theorem 5.5, Λ2n
k−l/2,c(µ/2 − l/4, χψS)E(z, µ/2;χ) ∈ πβN2n,r

k,S (Q) for β ∈ N, and

hence the same holds for

Λ2n
k−l/2,c(µ/2− l/4, χψS)E(z, µ/2;χ)|k,Sρ.

In particular,

π−βΛ2n
k−l/2,c(µ/2− l/4, χψS)(E|k,Sρ)(diag[z1, z2], µ/2;χ) =

∑
i

f i(z1)gi(z2),

where f i, gi ∈ Nn,r
k,S(Q) by Lemma 5.6. Moreover, vol(A) = πd0Q×, where d0 is the

dimension of Hd
n since the volume of the Heisenberg part is normalized to one. Fur-

thermore,

cS,k(µ/2− k/2) ∈ πδQ×, δ ∈ 1

2
Z.

Altogether we obtain∑
i

f i(z1) < gi(z2), g(z2) >= Q×πδ−d0+βΛ(µ/2,f , χ)f̃
c
(z1),
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where g := (f̃
c|k,Sηn)c = f̃ |k,Sη−1

n ∈ Snk,S(Q). Considering the Fourier expansion of

f i’s and f , and comparing any (r, t) coefficients for which c(r, t; f̃
c
) 6= 0, we find that

<
∑
i

αi,r,tgi(z2), g(z2) >= Q×πδ−d0+βΛ(µ/2,f , χ) 6= 0

for some αi,r,t ∈ Q, where the non-vanishing follows from (6), a corollary to Theorem

3.1. Setting hr,t(z2) :=
∑

i αi,r,tgi(z2) ∈ Nn,r
k,S(Q), we obtain

< hr,t(z2), g(z2) >= Q×πδ−d0+βΛ(µ/2,f , χ) 6= 0,

or,

< p0(hr,t|k,Sηn)(z2), f̃(z2) >= Q×πδ−d0+βΛ(µ/2,f , χ) 6= 0,

where

p0 :=

{
p, k not parallel,

q ◦ p, k parallel.

That is, since f̃ ∈ V (f) was arbitrary, the forms h̃r,t := p0(hr,t|k,Sηn) ∈ Snk,S(Q) (or

rather their projections to V (f)) for the various (r, t) span the space V (f) over Q and

< h̃r,t, f̃ >∈ πδ−d0+βΛ(µ/2,f , χ)Q×.

That is, for any g ∈ V (f) we have < g,f >∈ πδ−d0+βΛ(µ/2,f , χ)Q×. In particular,
the same holds for g = f , and that concludes the proof. �

Proof of Theorem 4.6. We follow the same steps as in the proof of Theorem 5.7 but
this time we set s = σ/2. In exactly the same way as above we obtain

< hr,t(z2),f(z2) >= Q×πδ−d0+βΛ(σ/2,f , χ),

for some hr,t ∈ Nn
k,S(Q). Thanks to Theorem 5.7 the proof will be finished after

dividing the above equality by < f ,f > if we make the powers of π precise. Recall
that

cS,k(σ/2− k/2) = Q×πdn(n+1)/2
∏
v∈a

Γn(σ/2 + kv − l/2− (n+ 1)/2)

Γn(σ/2 + kv − l/2)

= πdn(n+1)/2
∏
v∈a

∏n−1
i=0 Γ(σ/2 + kv − l/2− (n+ 1)/2− i/2)∏n−1

i=0 Γ(σ/2 + kv − l/2− i/2)
= Q×πdn(n+1)/2.

Hence, δ = dn(n+ 1)/2. However, this is also equal to the dimension of the space Hd
n,

which we denoted by d0. We are then left only with β, which is provided by Theorem
5.5; namely,

β = n
∑
v∈a

(kv − l + σ)− de,

where e := n2 + n − σ + l/2 if 2σ − l ∈ 2Z and σ ≥ 2n + l/2, and e := n2 otherwise.
This concludes the proof of the theorem. �
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