Beyond Sturmian: a characterization of octagon cutting sequences

Corinna Ulcigrai

(based on joint work with John Smillie
Cornell University)

ICTP, Trieste, 23 July 2018
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides. As an example, in the talk we will consider a regular octagon. Glue opposite sides. Label pairs of sides by $\{A, B, C, D\}$.

Let φ^θ_t be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)
The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is:
Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by \{A, B, C, D\}.

Let φ^θ_t be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)
The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is:
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by $\{A, B, C, D\}$.

Let φ^θ_t be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)

The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is:
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by $\{A, B, C, D\}$.

Let φ^θ_t be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)

The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is:
Consider a regular polygon, for simplicity with $2n$ sides. As an example, in the talk we will consider a regular octagon. Glue opposite sides. Label pairs of sides by $\{A, B, C, D\}$.

Let φ_t^θ be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)

The *cutting sequence* in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ_t^θ consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is:
Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by $\{A, B, C, D\}$.

Let φ_t^θ be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)

The *cutting sequence* in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ_t^θ consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is:
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by \{A, B, C, D\}.

Let φ^θ_t be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)

The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is:
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides. As an example, in the talk we will consider a regular octagon. Glue opposite sides. Label pairs of sides by $\{A, B, C, D\}$.

Let φ^θ_t be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)

The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is:
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by \{A, B, C, D\}.

Let φ^θ_t be the linear flow in direction θ:
trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)
The cutting sequence in \{A, B, C, D\} that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: A
Consider a regular polygon, for simplicity with \(2n\) sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by \(\{A, B, C, D\}\).

Let \(\varphi^\theta_t\) be the linear flow in direction \(\theta\):
trajectories which do not hit singularities are straight lines in direction \(\theta\).

Definition (Cutting sequence)

The cutting sequence in \(\{A, B, C, D\}^\mathbb{Z}\) that codes a bi-infinite linear trajectory of \(\varphi^\theta_t\) consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is: \(A \ B\)
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by $\{A, B, C, D\}$.

Let φ^θ_t be the linear flow in direction θ:
trajectories which do not hit singularities
are straight lines in direction θ.

Definition (Cutting sequence)
The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example
The cutting sequence of the trajectory in the example is: $A B B$
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides. As an example, in the talk we will consider a regular octagon. Glue opposite sides. Label pairs of sides by $\{A, B, C, D\}$.

Let φ^θ_t be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)

The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is: $A \ B \ B \ A$
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by $\{A, B, C, D\}$.

Let φ^θ_t be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)

The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is: $A B B A C$
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by \{A, B, C, D\}.

Let φ_t^θ be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

\textbf{Definition (Cutting sequence)}

The cutting sequence in \{A, B, C, D\} \mathbb{Z} that codes a bi-infinite linear trajectory of φ_t^θ consists of the sequence of labels of the sides hit by the trajectory.

\textbf{Example}

The cutting sequence of the trajectory in the example is: A B B A C D
Linear trajectories and cutting sequences

Consider a regular polygon, for simplicity with $2n$ sides.
As an example, in the talk we will consider a regular octagon.
Glue opposite sides.
Label pairs of sides by $\{A, B, C, D\}$.

Let φ^θ_t be the linear flow in direction θ: trajectories which do not hit singularities are straight lines in direction θ.

Definition (Cutting sequence)

The cutting sequence in $\{A, B, C, D\}^\mathbb{Z}$ that codes a bi-infinite linear trajectory of φ^θ_t consists of the sequence of labels of the sides hit by the trajectory.

Example

The cutting sequence of the trajectory in the example is: $A \ B \ B \ A \ C \ D$
A classical case: Sturmian sequences

Consider the special case in which the polygon is a square.

Minima complessita’

Sturmian sequences are characterized by having the smallest possible complexity among non-periodic sequences.

(Let $P_w(n)$ the number of words of length n which appear in the sequence w: $P_w(n) = n$ iff w is periodic. Sturmian sequences satisfy $P_w(n) = n + 1$.)
A classical case: Sturmian sequences

Consider the special case in which the polygon is a square.

In this case the cutting sequence correspond to the sequence of horizontal (letter A) and vertical (letter B) sides crossed by a line in direction θ in a square grid.
A classical case: Sturmian sequences

Consider the special case in which the polygon is a square.

Square cutting sequences are Sturmian sequences. They were studied since Hedlund and Morse.

Minimal complexity

Sturmian sequences are characterized by having the smallest possible complexity among non-periodic sequences. (Let $P_w(n)$ the number of words of length n which appear in the sequence w: $P_w(n) = n$ iff w is periodic. Sturmian sequences satisfy $P_w(n) = n + 1$.)
A classical case: Sturmian sequences

Consider the special case in which the polygon is a square.

Square cutting sequences are *Sturmian sequences*. They were studied since Hedlund e Morse.

Minimal complexity

Sturmian sequences are characterized by having the smallest possible *complexity* among non-periodic sequences.

(Let $P_w(n)$ the number of words of length n which appear in the sequence w: $P_w(n) = n$ iff w is periodic. Sturmian sequences satisfy $P_w(n) = n + 1$.)
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- Poligonal Billiards
- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- **Translation surfaces**

 Glueing opposite sides one gets a surface of genus 2, with a flat metric with a singularity (it’s a translation surface); φ_t^θ is the geodesic flow with respect to the flat metric;

- Poligonal Billiards

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- Poligonal Billiards

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$ and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called unfolding is equivalent to the flow φ^0_t in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- *Poligonal Billiards*

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$, and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called *unfolding* is equivalent to the flow φ^θ_t in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- Poligonal Billiards

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$ and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called unfolding is equivalent to the flow φ^θ_t in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- *Poligonal Billiards*

For example: A billiard with angles $\frac{\pi}{2}, \frac{\pi}{8}$ and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called *unfolding* is equivalent to the flow φ_t^θ in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- *Poligonal Billiards*

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$ and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called *unfolding* is equivalent to the flow φ_t^θ in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- *Poligonal Billiards*

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$ and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called *unfolding* is equivalent to the flow φ^t_θ in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- *Poligonal Billiards*

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$ and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called *unfolding* is equivalent to the flow φ_t^θ in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- *Poligonal Billiards*

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$, and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called *unfolding* is equivalent to the flow φ^θ_t in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- *Poligonal Billiards*

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$ and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called *unfolding* is equivalent to the flow φ_t^θ in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- *Poligonal Billiards*

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$ and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called *unfolding* is equivalent to the flow φ^θ_t in the octagon.

- Interval exchange transformations
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- *Poligonal Billiards*

For example: A billiard with angles $\frac{\pi}{2}$, $\frac{\pi}{8}$ and $\frac{3\pi}{8}$ (motion of a particle with elastic reflections at sides) by a procedure called *unfolding* is equivalent to the flow φ^θ_t in the octagon.

- Interval exchange transformations
Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- Poligonal Billiards
- \textit{Interval exchange transformations}

The Poincaré first return map on a section is an interval exchange transformation (IET). As θ changes, one has a one-paramter family which is not generic.
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- Polygonal Billiards
- *Interval exchange transformations*

The Poincaré first return map on a section is an interval exchange transformation (IET). As θ changes, one has a one-parameter family which is not generic.
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- Poligonal Billiards
- Interval exchange transformations

The Poincaré first return map on a section is an interval exchange transformation (IET). As θ changes, one has a one-paramter family which is not generic.
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- Poligonal Billiards
- Interval exchange transformations

Remark
All these systems have entropy zero: cutting sequences have linear complexity.

Remark
Translation surfaces and IETs which come from regular polygons are not generic: techniques that are used for the generic setting do not apply here.
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- Poligonal Billiards
- Interval exchange transformations

Remark
All these systems have entropy zero: cutting sequences have linear complexity.

Remark
Translation surfaces and IETs which come from regular polygons are not generic: techniques that are used for the generic setting do not apply here.
Motivation

Cutting sequences give a symbolic coding of the following systems:

- Translation surfaces
- Poligonal Billiards
- Interval exchange transformations

Remark
All these systems have entropy zero: cutting sequences have linear complexity.

Remark
Translation surfaces and IETs which come from regular polygons are not generic: techniques that are used for the generic setting do not apply here.
Characterization of cutting sequences

Problem:
Describe explicitly the symbolic sequences which are cutting sequences of trajectories.

In particular, answer the following questions:

D1) Which sequences in \(\{A, B, C, D\}^\mathbb{Z} \) are cutting sequences?

D2) Given a cutting sequence, can one recover the direction of the trajectory?
Given a finite piece of a cutting sequence, can one recover a sector of possible directions?

D3) Given a direction or more in general a sector of directions, can one produce all cutting sequences of trajectories in that direction or sector?
Characterization of cutting sequences

Problem:
Describe explicitly the symbolic sequences which are cutting sequences of trajectories.

In particular, answer the following questions:

D1) Which sequences in \(\{A, B, C, D\}^\mathbb{Z} \) are cutting sequences?

D2) Given a cutting sequence, can one recover the direction of the trajectory?
Given a \(finite \) piece of a cutting sequence, can one recover a sector of possible directions?

D3) Given a direction or more in general a sector of directions, can one produce all cutting sequences of trajectories in that direction or sector?
Characterization of cutting sequences

Problem:
Describe explicitly the symbolic sequences which are cutting sequences of trajectories.

In particular, answer the following questions:

D1) Which sequences in \(\{A, B, C, D\}^\mathbb{Z} \) are cutting sequences?

D2) Given a cutting sequence, can one recover the direction of the trajectory?
 Given a \textit{finite} piece of a cutting sequence, can one recover a sector of possible directions?

D3) Given a direction or more in general a sector of directions, can one produce all cutting sequences of trajectories in that direction or sector?
Problem:
Describe explicitly the symbolic sequences which are cutting sequences of trajectories.

In particular, answer the following questions:

D1) Which sequences in \{A, B, C, D\}^\mathbb{Z} are cutting sequences?

D2) Given a cutting sequence, can one recover the direction of the trajectory?
 Given a finite piece of a cutting sequence, can one recover a sector of possible directions?

D3) Given a direction or more in general a sector of directions, can one produce all cutting sequences of trajectories in that direction or sector?
Characterization of cutting sequences

Problem:
Describe explicitly the symbolic sequences which are cutting sequences of trajectories.

In particular, answer the following questions:

D1) Which sequences in \(\{A, B, C, D\}^\mathbb{Z} \) are cutting sequences?

D2) Given a cutting sequence, can one recover the direction of the trajectory?
Given a finite piece of a cutting sequence, can one recover a sector of possible directions?

D3) Given a direction or more in general a sector of directions, can one produce all cutting sequences of trajectories in that direction or sector?
Problem:
Describe explicitly the symbolic sequences which are cutting sequences of trajectories.

In particular, answer the following questions:

D1) Which sequences in \(\{A, B, C, D\}^\mathbb{Z} \) are cutting sequences?

D2) Given a cutting sequence, can one recover the direction of the trajectory?
Given a finite piece of a cutting sequence, can one recover a sector of possible directions?

D3) Given a direction or more in general a sector of directions, can one produce all cutting sequences of trajectories in that direction or sector?
Seminar outline:

▶ The classical case: the square (Sturmian sequences)
 ▶ Characterization of Sturmian sequences;
 (revisiting Caroline Series work)
 ▶ Connection with Continued Fractions;
 ▶ Sketch of proof for the square;

▶ Regular polygons with $2n$ lati:

 joint work with John Smillie (Cornell University)
 ▶ Formulation of results in the case of the octagon;
 ▶ Continued Fractions for regular polygons;

▶ Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

▶ The classical case: the square (Sturmian sequences)
 ▶ Caracterization of Sturmian sequences;
 (revisiting Caroline Series work)
 ▶ Connection with Continued Fractions;
 ▶ Sketch of proof for the square;

▶ Regular polygons with 2n lati:
 joint work with John Smillie (Cornell University)
 ▶ Formulation of results in the case of the octagon;
 ▶ Continued Fractions for regular polygons;

▶ Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

▶ The classical case: the square (Sturmian sequences)
 ▶ Characterization of Sturmian sequences;
 (revisiting Caroline Series work)
 ▶ Connection with Continued Fractions;
 ▶ Sketch of proof for the square;

▶ Regular polygons with $2n$ lati:

 joint work with John Smillie (Cornell University)
 ▶ Formulation of results in the case of the octagon;
 ▶ Continued Fractions for regular polygons;

▶ Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

▶ The classical case: the square (Sturmian sequences)
 ▶ Characterization of Sturmian sequences;
 (revisiting Caroline Series work)
 ▶ Connection with Continued Fractions;
 ▶ Sketch of proof for the square;

▶ Regular polygons with $2n$ lati:

 joint work with John Smillie (Cornell University)
 ▶ Formulation of results in the case of the octagon;
 ▶ Continued Fractions for regular polygons;

▶ Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

▶ The classical case: the square (Sturmian sequences)
 ▶ Characterization of Sturmian sequences;
 (revisiting Caroline Series work)
 ▶ Connection with Continued Fractions;
 ▶ Sketch of proof for the square;

▶ Regular polygons with $2n$ lati:

 joint work with John Smillie (Cornell University)
 ▶ Formulation of results in the case of the octagon;
 ▶ Continued Fractions for regular polygons;

▶ Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

- The classical case: the square (Sturmian sequences)
 - Characterization of Sturmian sequences;
 (revisiting Caroline Series work)
 - Connection with Continued Fractions;
 - Sketch of proof for the square;

- Regular polygons with $2n$ lati:
 joint work with John Smillie (Cornell University)
 - Formulation of results in the case of the octagon;
 - Continued Fractions for regular polygons;

- Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

- The classical case: the square (Sturmian sequences)
 - Characterization of Sturmian sequences;
 (revisiting Caroline Series work)
 - Connection with Continued Fractions;
 - Sketch of proof for the square;

- Regular polygons with $2n$ lati:

 joint work with John Smillie (Cornell University)
 - Formulation of results in the case of the octagon;
 - Continued Fractions for regular polygons;

- Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

- The classical case: the square (Sturmian sequences)
 - Characterization of Sturmian sequences;
 (revisiting Caroline Series work)
 - Connection with Continued Fractions;
 - Sketch of proof for the square;

- Regular polygons with $2n$ lati:
 - \textit{joint work with John Smillie (Cornell University)}
 - Formulation of results in the case of the octagon;
 - Continued Fractions for regular polygons;

- Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

▶ The classical case: the square (Sturmian sequences)
 ▶ Characterization of Sturmian sequences;
 (revisiting Caroline Series work)
 ▶ Connection with Continued Fractions;
 ▶ Sketch of proof for the square;

▶ Regular polygons with $2n$ lati:

 joint work with John Smillie (Cornell University)
 ▶ Formulation of results in the case of the octagon;
 ▶ Continued Fractions for regular polygons;

▶ Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

- The classical case: the square (Sturmian sequences)
 - Characterization of Sturmian sequences;
 (revisiting Caroline Series work)
 - Connection with Continued Fractions;
 - Sketch of proof for the square;

- Regular polygons with $2n$ lati:

 \textit{joint work with John Smillie (Cornell University)}

 - Formulation of results in the case of the octagon;
 - Continued Fractions for regular polygons;

- Renormalization, Fuchsian groups and Teichmüller flow;
Seminar outline:

▶ The classical case: the square (Sturmian sequences)
 ▶ Caracterization of Sturmian sequences;
 (revisiting Caroline Series work)
 ▶ Connection with Continued Fractions;
 ▶ Sketch of proof for the square;

▶ Regular polygons with $2n$ lati:

 joint work with John Smillie (Cornell University)
 ▶ Formulation of results in the case of the octagon;
 ▶ Continued Fractions for regular polygons;

▶ Renormalization, Fuchsian groups and Teichmüller flow;
The octagon: isometries and sectors

Let D_8 be the isometries group of the octagon. The letters $\{A, B, C, D\}$ are invariant with respect to a central symmetry. The other elements induce permutations of $\{A, B, C, D\}$ for example:

$A \mapsto C$, $C \mapsto A$, $B \mapsto B$, $D \mapsto D$.

Let us assume that the direction of the trajectory is $\theta \in [0, \frac{\pi}{8}]$. A fundamental domain for D_8 is $\Sigma_0 := [0, \frac{\pi}{8}]$. Thus, acting by an element of D_8, up to a permutation of the letters $\{A, B, C, D\}$, we can consider $\theta \in \Sigma_0 := [0, \frac{\pi}{8}]$.

The other sectors of angle $\pi/8$ are in order $\Sigma_1, \Sigma_2, \ldots, \Sigma_7$.
The octagon: isometries and sectors

Let \(D_8 \) be the isometries group of the octagon.
The letters \(\{A, B, C, D\} \) are invariant with respect to a central symmetry. The other elements induce permutations of \(\{A, B, C, D\} \). For example:
\[
A \mapsto C, \quad C \mapsto A, \quad B \mapsto B, \quad D \mapsto D.
\]

Let us assume that the direction of the trajectory is \(\theta \in [0, \frac{\pi}{8}] \).
A fundamental domain for \(D_8 \) is \(\Sigma_0 := [0, \frac{\pi}{8}] \). Thus, acting by an element of \(D_8 \), up to a permutation of the letters \(\{A, B, C, D\} \), we can consider \(\theta \in \Sigma_0 := [0, \frac{\pi}{8}] \).

The other sectors of angle \(\pi/8 \) are in order \(\Sigma_1, \Sigma_2, \ldots, \Sigma_7 \).
The octagon: isometries and sectors

Let D_8 be the isometries group of the octagon. The letters $\{A, B, C, D\}$ are invariant with respect to a central symmetry. The other elements induce permutations of $\{A, B, C, D\}$ for example:

$A \mapsto C, \ C \mapsto A, \ B \mapsto B, \ D \mapsto D$.

Let us assume that the direction of the trajectory is $\theta \in [0, \frac{\pi}{8}]$. A fundamental domain for D_8 is $\Sigma_0 := [0, \frac{\pi}{8}]$. Thus, acting by an element of D_8, up to a permutation of the letters $\{A, B, C, D\}$, we can consider $\theta \in \Sigma_0 := [0, \frac{\pi}{8}]$.

The other sectors of angle $\pi/8$ are in order $\Sigma_1, \Sigma_2, \ldots, \Sigma_7$.
The octagon: isometries and sectors

Let D_8 be the isometries group of the octagon. The letters $\{A, B, C, D\}$ are invariant with respect to a central symmetry. The other elements induce permutations of $\{A, B, C, D\}$ for example:

$$A \mapsto C, \quad C \mapsto A, \quad B \mapsto B, \quad D \mapsto D.$$

Let us assume that the direction of the trajectory is $\theta \in \left[0, \frac{\pi}{8}\right]$. A fundamental domain for D_8 is $\Sigma_0 := \left[0, \frac{\pi}{8}\right]$. Thus, acting by an element of D_8, up to a permutation of the letters $\{A, B, C, D\}$, we can consider $\theta \in \Sigma_0 := \left[0, \frac{\pi}{8}\right]$.

The other sectors of angle $\pi/8$ are in order $\Sigma_1, \Sigma_2, \ldots, \Sigma_7$.
Let D_8 be the isometries group of the octagon. The letters $\{A, B, C, D\}$ are invariant with respect to a central symmetry. The other elements induce permutations of $\{A, B, C, D\}$ for example:

\[
\begin{align*}
A & \mapsto C, \\
C & \mapsto A, \\
B & \mapsto B, \\
D & \mapsto D.
\end{align*}
\]

Let us assume that the direction of the trajectory is $\theta \in \left[0, \frac{\pi}{8}\right]$. A fundamental domain for D_8 is $\Sigma_0 := \left[0, \frac{\pi}{8}\right]$. Thus, acting by an element of D_8, up to a permutation of the letters $\{A, B, C, D\}$, we can consider $\theta \in \Sigma_0 := \left[0, \frac{\pi}{8}\right]$.

The other sectors of angle $\pi/8$ are in order $\Sigma_1, \Sigma_2, \ldots, \Sigma_7$.
Let D_8 be the isometries group of the octagon. The letters $\{A, B, C, D\}$ are invariant with respect to a central symmetry. The other elements induce permutations of $\{A, B, C, D\}$ for example:

$A \mapsto C$, $C \mapsto A$, $B \mapsto B$, $D \mapsto D$.

Let us assume that the direction of the trajectory is $\theta \in [0, \frac{\pi}{8}]$. A fundamental domain for D_8 is $\Sigma_0 := [0, \frac{\pi}{8}]$. Thus, acting by an element of D_8, up to a permutation of the letters $\{A, B, C, D\}$, we can consider $\theta \in \Sigma_0 := [0, \frac{\pi}{8}]$.

The other sectors of angle $\pi/8$ are in order $\Sigma_1, \Sigma_2, \ldots, \Sigma_7$.

The octagon: isometries and sectors
Let D_8 be the isometries group of the octagon. The letters $\{A, B, C, D\}$ are invariant with respect to a central symmetry. The other elements induce permutations of $\{A, B, C, D\}$ for example:

$A \mapsto C$, $C \mapsto A$, $B \mapsto B$, $D \mapsto D$.

Let us assume that the direction of the trajectory is $\theta \in [0, \frac{\pi}{8}]$. A fundamental domain for D_8 is $\Sigma_0 := [0, \frac{\pi}{8}]$. Thus, acting by an element of D_8, up to a permutation of the letters $\{A, B, C, D\}$, we can consider $\theta \in \Sigma_0 := [0, \frac{\pi}{8}]$.

The other sectors of angle $\pi/8$ are in order $\Sigma_1, \Sigma_2, \ldots, \Sigma_7$.
The octagon: allowed transitions in Σ_0

Let $\theta \in \Sigma_0 := \left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $\theta \in \Sigma_0$ determines a path in the diagram in Figure.
The octagon: allowed transitions in Σ_0

Let $\theta \in \Sigma_0 := [0, \frac{\pi}{8}]$.

The *transitions* (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $\theta \in \Sigma_0$ determines a path in the diagram in Figure.
Let $\theta \in \Sigma_0 := \left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $\theta \in \Sigma_0$ determines a path in the diagram in Figure.
The octagon: allowed transitions in Σ_0

Let $\theta \in \Sigma_0 := [0, \frac{\pi}{8}]$.

The *transitions* (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $\theta \in \Sigma_0$ determines a path in the diagram in Figure.
Let $\theta \in \Sigma_0 := \left[0, \frac{\pi}{8}\right]$.

The transitions (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $\theta \in \Sigma_0$ determines a path in the diagram in Figure.
The octagon: allowed transitions in Σ_0

Let $\theta \in \Sigma_0 := [0, \frac{\pi}{8}]$.

The *transitions* (pairs of consecutive letters) which can appear are:

Each octagon cutting sequence of a trajectory in direction $\theta \in \Sigma_0$ determines a path in the diagram in Figure.
The octagon: possible transitions

Permuting the letters we obtain the diagrams corresponding to the other sectors:

- A → D → B → C
- C → B → D → A
- D → A → C → B
- B → C → A → D
- C → B → D → A
- B → A → C → D
- C → D → B → A
- A → B → D → C
Admissible sequences

Definition
A sequence $w \in \{A, B\}^\mathbb{Z}$ is *admissible* if it gives an infinite path on one of the following diagrams:

D_0

D_1

D_2

D_3

D_4

D_5

D_6

D_7

Lemma
An octagon cutting sequence is admissible.
Admissible sequences

Definition
A sequence $w \in \{A, B\}^\mathbb{Z}$ is admissible if it gives an infinite path on one of the following diagrams:

- \mathcal{D}_0: A \rightarrow D \rightarrow B \rightarrow C
- \mathcal{D}_1: D \rightarrow A \rightarrow C \rightarrow B
- \mathcal{D}_2: D \rightarrow C \rightarrow A \rightarrow B
- \mathcal{D}_3: C \rightarrow D \rightarrow B \rightarrow A
- \mathcal{D}_4: C \rightarrow B \rightarrow D \rightarrow A
- \mathcal{D}_5: B \rightarrow C \rightarrow A \rightarrow D
- \mathcal{D}_6: B \rightarrow A \rightarrow C \rightarrow D
- \mathcal{D}_7: A \rightarrow B \rightarrow D \rightarrow C

Lemma
An octagon cutting sequence is admissible.
Derived sequences

Definition
A letter in \{A, B, C, D\} is *sandwiched* if it is preceded and followed by the same letter.

Example
In D B B C B A A D the letter C is *sandwiched* between to Bs.

Definition (Derived sequence)
If \(w \) is an octagon cutting sequence, the derived sequence \(w' \) is obtained erasing all letters which are *NOT sandwiched*.

Example
If \(w = \ldots D A D B C C B C C B D A D B C B D B D B C B D \ldots \),
\[w' = \ldots A \]

Definition (Derivable sequences)
A sequence \(w \in \{A, B, C, D\}^\mathbb{Z} \) is *derivable* if it is admissible and its derivative is still admissible. The sequence \(w \) is *infinitely derivable* if each of its derivatives is derivable.
Derived sequences

Definition
A letter in \(\{A, B, C, D\} \) is *sandwitched* if it is preceeded and followed by the same letter.

Example
In D B B C B A A D the letter C is *sandwitched* between to Bs.

Definition (Derived sequence)
If \(w \) is an octagon cutting sequence, the derived sequence \(w' \) is obtained erasing all letters which are *NOT sandwitched*.

Example
If \(w = \ldots D A D B C C B C C B D A D B C B D B D B C B D \ldots \), \(w' = \ldots A \)

Definition (Derivable sequences)
A sequence \(w \in \{A, B, C, D\}^\mathbb{Z} \) is *derivable* if it is admissible and its derivative is still admissible. The sequence \(w \) is *infinitely derivable* if each of its derivatives is derivable.
Derived sequences

Definition
A letter in \{A, B, C, D\} is *sandwiched* if it is preceded and followed by the same letter.

Example
In D B B C B A A D the letter C is *sandwiched* between two Bs.

Definition (Derived sequence)
If \(w\) is an octagon cutting sequence, the derived sequence \(w'\) is obtained by erasing all letters which are *NOT sandwiched*.

Example
If \(w = \ldots D \underline{A} D B C C B C C B D A D B C B D B D B C B D \ldots\),
\(w' = \ldots A\)

Definition (Derivable sequences)
A sequence \(w \in \{A, B, C, D\}^\mathbb{Z}\) is *derivable* if it is admissible and its derivative is still admissible. The sequence \(w\) is *infinitely derivable* if each of its derivatives is derivable.
Derived sequences

Definition
A letter in \{A, B, C, D\} is *sandwitched* if it is preceeded and followed by the same letter.

Example
In D B B C B A A D the letter C is *sandwitched* between to Bs.

Definition (Derived sequence)
If \(w\) is an octagon cutting sequence, the derived sequence \(w'\) is obtained erasing all letters which are NOT *sandwitched*.

Example
If \(w = \ldots D \underline{A} \underline{D} B C C \underline{B} C C B D A D B C B D B D B C B D \ldots\),
\(w' = \ldots \) \(\underline{A} \underline{B}\)

Definition (Derivable sequences)
A sequence \(w \in \{A, B, C, D\}^\mathbb{Z}\) is *derivable* if it is admissible and its derivative is still admissible. The sequence \(w\) is *infinitely derivable* if each of its derivatives is derivable.
Derived sequences

Definition
A letter in \(\{A, B, C, D\} \) is *sandwitched* if it is preceded and followed by the same letter.

Example
In \(DBBCCBAAD \) the letter \(C \) is *sandwitched* between two \(B \)s.

Definition (Derived sequence)
If \(w \) is an octagon cutting sequence, the derived sequence \(w' \) is obtained erasing all letters which are *NOT sandwitched*.

Example
If \(w = \ldots D_{\text{A}} D_{\text{A}} D_{\text{B}} C_{\text{C}} C_{\text{B}} B_{\text{C}} C_{\text{B}} C_{\text{B}} D_{\text{A}} D_{\text{B}} C_{\text{B}} B_{\text{D}} B_{\text{D}} B_{\text{D}} B_{\text{D}} C_{\text{B}} B_{\text{D}} \ldots, \)
\(w' = \ldots A_{\text{A}} B_{\text{B}} A_{\text{A}} \)

Definition (Derivable sequences)
A sequence \(w \in \{A, B, C, D\}^\mathbb{Z} \) is *derivable* if it is admissible and its derivative is still admissible. The sequence \(w \) is *infinitely derivable* if each of its derivatives is derivable.
Derived sequences

Definition
A letter in \{A, B, C, D\} is *sandwiched* if it is preceded and followed by the same letter.

Example
In D B B C B A A D the letter C is *sandwiched* between two Bs.

Definition (Derived sequence)
If \(w \) is an octagon cutting sequence, the derived sequence \(w' \) is obtained by erasing all letters which are *NOT sandwiched*.

Example
If \(w = \ldots \ D \ A \ D \ B \ C \ C \ B \ C \ C \ B \ D \ A \ D \ B \ C \ B \ D \ B \ D \ B \ C \ B \ D \ldots \),
\(w' = \ldots \ A \ B \ A \ C \ D \ D \ C \)

Definition (Derivable sequences)
A sequence \(w \in \{A, B, C, D\}^\mathbb{Z} \) is *derivable* if it is admissible and its derivative is still admissible. The sequence \(w \) is *infinitely derivable* if each of its derivatives is derivable.
Derived sequences

Definition
A letter in \{A, B, C, D\} is *sandwiched* if it is preceded and followed by the same letter.

Example
In D B B C B A A D the letter C is *sandwiched* between to Bs.

Definition (Derived sequence)
If \(w\) is an octagon cutting sequence, the derived sequence \(w'\) is obtained erasing all letters which are *NOT sandwiched*.

Example
If \(w = \ldots D \underline{A} D B C C \underline{B} C C B D A D B C B D B D B C B D \ldots\),
\(w' = \ldots A \underline{B} A C D D C \ldots\).

Definition (Derivable sequences)
A sequence \(w \in \{A, B, C, D\}^\mathbb{Z}\) is *derivable* if it is admissible and its derivative is still admissible. The sequence \(w\) is *infinitely derivable* if each of its derivatives is derivable.
Necessary condition and sequence of sectors

Theorem

An octagon cutting sequence is infinitely derivable.

The converse is not true, but we can describe exactly the condition which one needs to add.

Definition

Let w be infinitely derivable and let $w^{(n)}$ be the nth derived sequence. The sequence $\{s_k\}_{k \in \mathbb{N}} \in \{0, 1, \ldots, 7\}^\mathbb{N}$ is a sequence of sectors for w if for each k, $w^{(k)}$ gives a path on the diagram D_{s_k}.

Example

\[
\begin{align*}
w &= \text{C C C B C C B D B} \\
&\quad s_0 = 0 \\
&\quad w' = \text{C B D B D} \\
&\quad s_1 = 4
\end{align*}
\]
Necessary condition and sequence of sectors

Theorem

An octagon cutting sequence is infinitely derivable.

The converse is not true, but we can describe exactly the condition which one needs to add.

Definition

Let \(w \) be infinitely derivable and let \(w^{(n)} \) be the \(n^{th} \) derived sequence. The sequence \(\{s_k\}_{k \in \mathbb{N}} \in \{0, 1, \ldots, 7\}^\mathbb{N} \) is a sequence of sectors for \(w \) if for each \(k \), \(w^{(k)} \) gives a path on the diagram \(D_{s_k} \).

Example

\[
\begin{align*}
 w &= \text{C C C B C C B D B} \\
 s_0 &= 0 \\
 w' &= \text{C B D B D} \\
 s_1 &= 4
\end{align*}
\]
Necessary condition and sequence of sectors

Theorem

An octagon cutting sequence is infinitely derivable.

The converse is not true, but we can describe exactly the condition which one needs to add.

Definition

Let w be infinitely derivable and let $w^{(n)}$ be the n^{th} derived sequence. The sequence $\{s_k\}_{k \in \mathbb{N}} \in \{0, 1, \ldots, 7\}^\mathbb{N}$ is a *sequence of sectors* for w if for each k, $w^{(k)}$ gives a path on the diagram \mathcal{D}_{s_k}.

Example

\[
\begin{align*}
w &= \text{C C C B C C B D B} \\
s_0 &= 0 \\
\text{w'} &= \text{C B D B D} \\
s_1 &= 4
\end{align*}
\]
Necessary condition and sequence of sectors

Theorem

An octagon cutting sequence is infinitely derivable.

The converse is not true, but we can describe exactly the condition which one needs to add.

Definition

Let w be infinitely derivable and let $w^{(n)}$ be the n^{th} derived sequence. The sequence $\{s_k\}_{k \in \mathbb{N}} \in \{0, 1, \ldots, 7\}^\mathbb{N}$ is a sequence of sectors for w if for each k, $w^{(k)}$ gives a path on the diagram D_{s_k}.

Example

$$w = \text{C } \text{C } \text{C } \text{B } \text{C } \text{C } \text{B } \text{D } \text{B}$$

$$s_0 = 0$$

$$w' = \text{C } \text{B } \text{D } \text{B } \text{D}$$

$$s_1 = 4$$
Necessary condition and sequence of sectors

Theorem
An octagon cutting sequence is infinitely derivable.
The converse is not true, but we can describe exactly the condition which one needs to add.

Definition
Let w be infinitely derivable and let $w^{(n)}$ be the n^{th} derived sequence. The sequence $\{s_k\}_{k \in \mathbb{N}} \in \{0, 1, \ldots, 7\}^{\mathbb{N}}$ is a sequence of sectors for w if for each k, $w^{(k)}$ gives a path on the diagram D_{s_k}.

Example

\begin{align*}
 w &= C \quad C \quad C \quad B \quad C \quad C \quad B \quad D \quad B \\
 s_0 &= 0 \\
\end{align*}

\begin{align*}
 w' &= C \quad B \quad D \quad B \quad D \\
 s_1 &= 4
\end{align*}
Theorem

An octagon cutting sequence is infinitely derivable.

The converse is not true, but we can describe exactly the condition which one needs to add.

Definition

Let \(w \) be infinitely derivable and let \(w^{(n)} \) be the \(n^{th} \) derived sequence. The sequence \(\{s_k\}_{k \in \mathbb{N}} \in \{0, 1, \ldots, 7\}^{\mathbb{N}} \) is a sequence of sectors for \(w \) if for each \(k \), \(w^{(k)} \) gives a path on the diagram \(D_{s_k} \).

Example

\[
\begin{align*}
\text{w} &= \text{C C C B C C B D B} \\
 & \quad s_0 = 0 \\
\text{w'} &= \text{C B D B D} \\
 & \quad s_1 = 4
\end{align*}
\]
Theorem

An octagon cutting sequence is infinitly derivable.

The converse is not true, but we can describe exactly the condition which one needs to add.

Definition

Let \(w \) be infinitly derivable and let \(w^{(n)} \) be the \(n^{th} \) derived sequence. The sequence \(\{s_k\}_{k \in \mathbb{N}} \in \{0, 1, \ldots, 7\}^\mathbb{N} \) is a sequence of sectors for \(w \) if for each \(k \), \(w^{(k)} \) gives a path on the diagram \(D_{s_k} \).

Example

\[
\begin{align*}
\text{w} &= C \ C \ C \ B \ C \ C \ B \ D \ B \\
s_0 &= 0 \\
\text{w}' &= C \ B \ D \ B \ D \\
s_1 &= 4
\end{align*}
\]
Octagon Continued Fractions

Let $F : [0, \pi] \rightarrow [\pi/8, \pi]$ the following map, that we call Octagon Farey map:

Definition
The octagon continued fraction expansion of θ is

$$\theta = [s_0, s_1, s_2, \ldots, s_k, \ldots] \text{ iff } \{\theta\} = \cap_k F_{s_0}^{-1}F_{s_1}^{-1} \ldots F_{s_k}^{-1}[0, \pi].$$

In this case we have $F^k(\theta) \in \Sigma_{s_k}$ per tutti i k.
Octagon Continued Fractions

Let $F : [0, \pi] \to [\pi/8, \pi]$ the following map, that we call *Octagon Farey map*:

Definition
The octagon continued fraction expansion of θ is

$$\theta = [s_0, s_1, s_2, \ldots, s_k, \ldots] \quad \text{iff} \quad \{\theta\} = \bigcap_k F_{s_0}^{-1}F_{s_1}^{-1}\ldots F_{s_k}^{-1}[0, \pi].$$

In this case we have $F^k(\theta) \in \Sigma_{s_k}$ per tutti i k.
Let w be an octagon cutting sequence.

Lemma
If w is not a periodic sequence, the sequence of sectors $\{s_k\}_{k \in \mathbb{N}}$ is univoquely determined. In particular, each derivative $w^{(k)}$ is admissible in an unique \mathcal{D}_{s_k}.

Theorem
If w is not periodic, there is a unique sequence of sectors $\{s_k\}_{k \in \mathbb{N}}$ for w and the direction of the trajectories with cutting sequence w is given by

$$\theta = [s_0, s_1, s_2, \ldots]_O.$$
Let w be an octagon cutting sequence.

Lemma

If w is not a periodic sequence, the sequence of sectors $\{s_k\}_{k \in \mathbb{N}}$ is univoquely determined. In particular, each derivative $w^{(k)}$ is admissible in an unique \mathcal{D}_{s_k}.

Theorem

If w is not periodic, there is a unique sequence of sectors $\{s_k\}_{k \in \mathbb{N}}$ for w and the direction of the trajectories with cutting sequence w is given by

$$\theta = [s_0, s_1, s_2, \ldots]_O.$$
Ideas from proofs

As in the case of the square, the theorems follow if we prove that:

Theorem

If \(w \) *is an octagon cutting sequence, also the derived sequence* \(w' \) *is an octagon cutting sequence.*

Furthermore, if \(w \) is the cutting sequence of a trajectory in direction \(\theta \), the derived sequence \(w' \) is a cutting sequence of a trajectory in direction \(\theta' = F(\theta) \), where \(F \) is the octagon Farey map.

To prove it, one uses an argument in the same spirit of:

i.e. one uses renormalization in the space of affine deformations of the octagon.

Regular polygons are rich of affine automorphism.
Ideas from proofs

As in the case of the square, the theorems follow if we prove that:

Theorem

If w is an octagon cutting sequence, also the derived sequence w' is an octagon cutting sequence.

Furthermore, if w is the cutting sequence of a trajectory in direction θ, the derived sequence w' is a cutting sequence of a trajectory in direction $\theta' = F(\theta)$, where F is the octagon Farey map.

To prove it, one uses an argument in the same spirit of:

i.e. one uses renormalization in the space of affine deformations of the octagon.

Regular polygons are rich of affine automorphism.
Ideas from proofs

As in the case of the square, the theorems follow if we prove that:

Theorem

If w is an octagon cutting sequence, also the derived sequence w' is an octagon cutting sequence.

Furthermore, if w is the cutting sequence of a trajectory in direction θ, the derived sequence w' is a cutting sequence of a trajectory in direction θ' = F(θ), where F is the octagon Farey map.

To prove it, one uses an argument in the same spirit of:

i.e. one uses renormalization in the space of affine deformations of the octagon.

Regular polygons are rich of affine automorphism.
Ideas from proofs

As in the case of the square, the theorems follow if we prove that:

Theorem

If w *is an octagon cutting sequence, also the derived sequence* w' *is an octagon cutting sequence.*

Furthermore, if w *is the cutting sequence of a trajectory in direction* θ, *the derived sequence* w' *is a cutting sequence of a trajectory in direction* $\theta' = F(\theta)$, *where* F *is the octagon Farey map.*

To prove it, one uses an argument in the same spirit of:

i.e. one uses renormalization in the space of affine deformations of the octagon.

Regular polygons are rich of affine automorphism.
Affine automorphism and Veech group

Let S_O be the surface obtained glueing opposite sides of the octagon by translations: S_O is an example of a translation surface, i.e. it has an atlas whose changes of coordinates are of the form $z \mapsto z + c$.

Definition

An automorphism $\Psi : S \mapsto S$ of a translation surface S is an affine automorphism if it is affine in each chart and $D\Psi(z)$ is independent on $z \in S$. Let

$$\text{Aff}(S) = \{\psi, \quad \psi \text{ affine automorphism}\}.$$
Affine automorphism and Veech group

Let S_O be the surface obtained glueing opposite sides of the octagon by translations: S_O is an example of a *translation surface*, i.e. it has an atlas whose changes of coordinates are of the form $z \mapsto z + c$.

Definition

An automorphism $\Psi : S \mapsto S$ of a translation surface S is an affine automorphism if it is affine in each chart and $D\Psi(z)$ is independent on $z \in S$. Let

$$\text{Aff}(S) = \{ \psi, \quad \psi \text{ affine automorphism} \}.$$
Affine automorphism and Veech group

Let S_O be the surface obtained glueing opposite sides of the octagon by translations: S_O is an example of a translation surface, i.e. it has an atlas whose changes of coordinates are of the form $z \mapsto z + c$.

Definition

An automorphism $\Psi : S \mapsto S$ of a translation surface S is an affine automorphism if it is affine in each chart and $D\Psi(z)$ is independent on $z \in S$. Let

$$\text{Aff}(S) = \{\Psi, \; \Psi \text{ affine automorphism}\}.$$

Example (1)

Se $\Psi \in D_8$ is an isometry of O, clearly one has $\Psi \in \text{Aff}(O)$.
Affine automorphism and Veech group

Let S_O be the surface obtained glueing opposite sides of the octagon by translations: S_O is an example of a *translation surface*, i.e. it has an atlas whose changes of coordinates are of the form $z \mapsto z + c$.

Definition
An automorphism $\Psi : S \mapsto S$ of a translation surface S is an affine automorphism if it is affine in each chart and $D\Psi(z)$ is independent on $z \in S$. Let

$$\text{Aff}(S) = \{ \Psi, \text{ Ψ affine automorphism} \}.$$

Example (2)
The matrix \[
\begin{pmatrix}
1 & 2(1 + \sqrt{2}) \\
0 & 1
\end{pmatrix}
\] $\in V(O)$.
The Veech group of the octagon

The Veech group \(V(S) \) is the group of linear parts of \(\text{Aff}(S) \):

\[
V(S) = \{ D\Psi, \quad \Psi \in \text{Aff}(S) \} \subset \text{SL}(2, \mathbb{R})^\pm.
\]

Ex 1

\[
V(T^2)^+ = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle = \text{SL}(2, \mathbb{Z}).
\]

Ex 2

\[
V(O) = \langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 \sqrt{2} & 1 \sqrt{2} \\ -1 \sqrt{2} & 1 \sqrt{2} \end{pmatrix}, \begin{pmatrix} 1 & 2(1 + \sqrt{2}) \\ 0 & 1 \end{pmatrix} \rangle
\]

If \(S \) is a translation surface glued from a regular polygon, \(V(S) \) is a lattice in \(\text{SL}(2, \mathbb{R})^\pm \) (Veech)

The surfaces \(S \) for which \(V(S) \) is a lattice are actively researched in Teichmüller dynamics.
The Veech group of the octagon

The Veech group $V(S)$ is the group of linear parts of $\text{Aff}(S)$:

$$V(S) = \{ D\psi, \quad \psi \in \text{Aff}(S) \} \subset \text{SL}(2, \mathbb{R})^\pm.$$

Ex 1

$$V(\mathbb{T}^2)^+ = < \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} > = \text{SL}(2, \mathbb{Z}).$$

Ex 2

$$V(O) = < \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \begin{pmatrix} 1 & 2(1 + \sqrt{2}) \\ 0 & 1 \end{pmatrix} >$$

If S is a translation surface glued from a regular polygon, $V(S)$ is a lattice in $\text{SL}(2, \mathbb{R})^\pm$ (Veech).

The surfaces S for which $V(S)$ is a lattice are actively researched in Teichmüller dynamics.
The Veech group of the octagon

The Veech group $V(S)$ is the group of linear parts of $\text{Aff}(S)$:

$$V(S) = \{ D\psi, \quad \psi \in \text{Aff}(S) \} \subset \text{SL}(2, \mathbb{R})^\pm.$$

Ex 1

$$V(\mathbb{T}^2)^+ = < \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} > = \text{SL}(2, \mathbb{Z}).$$

Ex 2

$$V(O) = < \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 1 & 2(1 + \sqrt{2}) \\ 0 & 1 \end{pmatrix} >$$

If S is a translation surface glued from a regular polygon, $V(S)$ is a lattice in $\text{SL}(2, \mathbb{R})^\pm$ (Veech).

The surfaces S for which $V(S)$ is a lattice are actively researched in Teichmüller dynamics.
The Veech group of the octagon

The Veech group $V(S)$ is the group of linear parts of $\text{Aff}(S)$:

$$V(S) = \{D\Psi, \; \Psi \in \text{Aff}(S)\} \subset SL(2, \mathbb{R})^\pm.$$

Ex 1

$$V(\mathbb{T}^2)^+ = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \; \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle = SL(2, \mathbb{Z}).$$

Ex 2

$$V(O) = \langle \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \; \begin{pmatrix} 1 \sqrt{2} & 1 \sqrt{2} \\ -1 \sqrt{2} & 1 \sqrt{2} \end{pmatrix}, \; \begin{pmatrix} 1 & 2(1 + \sqrt{2}) \\ 0 & 1 \end{pmatrix} \rangle$$

If S is a translation surface glued from a regular polygon, $V(S)$ is a lattice in $SL(2, \mathbb{R})^\pm$ (Veech)

The surfaces S for which $V(S)$ is a lattice are actively researched in Teichmüller dynamics.
The Veech group of the octagon

The Veech group $V(S)$ is the group of linear parts of $\text{Aff}(S)$:

$$V(S) = \{D\psi, \quad \psi \in \text{Aff}(S)\} \subset \text{SL}(2, \mathbb{R})^\pm.$$

Ex 1

$$V(T^2)^+ = <\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}> = \text{SL}(2, \mathbb{Z}).$$

Ex 2

$$V(O) = <\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \begin{pmatrix} 1 & 2(1 + \sqrt{2}) \\ 0 & 1 \end{pmatrix}>$$

If S is a translation surface glued from a regular polygon, $V(S)$ is a lattice in $\text{SL}(2, \mathbb{R})^\pm$ (Veech)

The surfaces S for which $V(S)$ is a lattice are actively researched in Teichmüller dynamics.
The Veech group of the octagon

The Veech group $V(S)$ is the group of linear parts of $\text{Aff}(S)$:

$$V(S) = \{ D\Psi, \quad \Psi \in \text{Aff}(S) \} \subset \text{SL}(2, \mathbb{R})^\pm.$$

Ex 1

$$V(\mathbb{T}^2)^+ = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle = \text{SL}(2, \mathbb{Z}).$$

Ex 2

$$V(O) = \langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} 1 \sqrt{2} & 1 \sqrt{2} \\ 1 \sqrt{2} & 1 \sqrt{2} \end{pmatrix}, \quad \begin{pmatrix} 1 & 2(1 + \sqrt{2}) \\ 0 & 1 \end{pmatrix} \rangle.$$

If S is a translation surface glued from a regular polygon, $V(S)$ is a lattice in $\text{SL}(2, \mathbb{R})^\pm$ (Veech)

The surfaces S for which $V(S)$ is a lattice are actively researched in Teichmüller dynamics.
The Veech group of the octagon

The Veech group $V(S)$ is the group of linear parts of $\text{Aff}(S)$:

$$V(S) = \{ D\psi, \quad \psi \in \text{Aff}(S) \} \subset \text{SL}(2, \mathbb{R})^\pm.$$

Ex 1

$$V(\mathbb{T}^2)^+ = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \quad \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle = \text{SL}(2, \mathbb{Z}).$$

Ex 2

$$V(O) = \langle \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \begin{pmatrix} \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ -\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{pmatrix}, \quad \begin{pmatrix} 1 & 2(1 + \sqrt{2}) \\ 0 & 1 \end{pmatrix} \rangle.$$

If S is a translation surface glued from a regular polygon, $V(S)$ is a lattice in $\text{SL}(2, \mathbb{R})^\pm$ (Veech)

The surfaces S for which $V(S)$ is a lattice are actively researched in Teichmüller dynamics.
Let w be the cutting sequence of a trajectory in direction $\theta \in \Sigma_0$. Let $O' = \begin{pmatrix} -1 & 2(1 + \sqrt{2}) \\ 0 & 1 \end{pmatrix} O$.

Lemma

The derived sequence w' coincides with the cutting sequence of the same trajectory in direction θ with respect to the sides of O'.

Let us renormalize:

$O' \mapsto O$

$\theta \mapsto \theta'$

Lemma

The derived sequence w' is an octagon cutting sequence in direction $\theta' = F_O(\theta)$.
Derivation and renormalization in the octagon

Let \(w \) be the cutting sequence of a trajectory in direction \(\theta \in \Sigma_0 \). Let
\[
O' = \begin{pmatrix}
-1 & 2(1 + \sqrt{2}) \\
0 & 1
\end{pmatrix} O.
\]

Lemma

The derived sequence \(w' \) coincides with the cutting sequence of the same trajectory in direction \(\theta \) with respect to the sides of \(O' \).

Let us renormalize:
\[
O' \leftrightarrow O
\]
\[
\theta \leftrightarrow \theta'
\]

Lemma

The derived sequence \(w' \) is an octagon cutting sequence in direction \(\theta' = F_O(\theta) \).
Derivation and renormalization in the octagon

Let \(w \) be the cutting sequence of a trajectory in direction \(\theta \in \Sigma_0 \). Let \(O' = \begin{pmatrix} -1 & 2(1 + \sqrt{2}) \\ 0 & 1 \end{pmatrix} O \).

Lemma

The derived sequence \(w' \) coincides with the cutting sequence of the same trajectory in direction \(\theta \) with respect to the sides of \(O' \).

Let us renormalize:

\[O' \leftrightarrow O \]
\[\theta \leftrightarrow \theta' \]

Lemma

The derived sequence \(w' \) is an octagon cutting sequence in direction \(\theta' = F_O(\theta) \).
Renormalization, modular surface and continued fractions

The space of lattices is $\mathbb{H}/SL(2, \mathbb{Z})$. (moduli space of tori with a flat metric)

Farey Tessellation: $\mathcal{V}(Q) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle \subset \mathcal{F}(0, 1, \infty)$

Q square

$S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

$S_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

Given θ, g_t^θ geodesics

$\theta = \frac{1}{a_0 + \frac{1}{a_1 + \ldots}}$

g_t^θ is approximated by $S_1^{a_0} S_2^{a_1} S_1^{a_2} \ldots$
Renormalization, modular surface and continued fractions

The space of lattices is $\mathbb{H}/SL(2, \mathbb{Z})$. (moduli space of tori with a flat metric)

Farey Tessellation: $\mathcal{V}(Q) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} > \mathcal{F}(0, 1, \infty)$

Q square

$S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

$S_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

Given θ, g_t^θ geodesics

$\theta = \frac{1}{a_0 + \frac{1}{a_1 + \ldots}}$

g_t^θ is approximated by $S_1^{a_0} S_2^{a_1} S_1^{a_2} \ldots$
Renormalization, modular surface and continued fractions

The space of lattices is $\mathbb{H}/SL(2, \mathbb{Z})$. (moduli space of tori with a flat metric)

Farey Tessellation: $V(Q) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle > \mathcal{F}(0, 1, \infty)$

Q square

$S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

$S_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

Given θ, g_t^θ geodesics

$\theta = \frac{1}{a_0 + \frac{1}{a_1 + \ldots}}$

g_t^θ is approximated by $S_1^{a_0} S_2^{a_1} S_1^{a_2} \ldots$
Renormalization, modular surface and continued fractions

The space of lattices is \(\mathbb{H}/SL(2, \mathbb{Z}) \). (moduli space of tori with a flat metric)

Farey Tessellation: \(\mathcal{V}(Q) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle > \mathcal{T}(0, 1, \infty) \)

\(Q \) square

\(S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \)

\(S_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \)

Given \(\theta \), \(g_t^\theta \) geodesics

\[\theta = \frac{1}{a_0 + \frac{1}{a_1 + \ldots}} \]

\(g_t^\theta \) is approximated by

\(S_1^{a_0} S_2^{a_1} S_1^{a_2} \ldots \)
Renormalization, modular surface and continued fractions

The space of lattices is \(\mathbb{H}/SL(2, \mathbb{Z}) \). (moduli space of tori with a flat metric)

Farey Tessellation: \(V(Q) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle \supset \mathcal{T}(0, 1, \infty) \)

\(Q \) square

\[S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \]

\[S_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \]

Given \(\theta \), \(g_t^\theta \) geodesics

\[\theta = \frac{1}{a_0 + \frac{1}{a_1 + \ldots}} \]

\(g_t^\theta \) is approximated by

\[S_1^{a_0} S_2^{a_1} S_1^{a_2} \ldots \]
Renormalization, modular surface and continued fractions

The space of lattices is $\mathbb{H}/SL(2, \mathbb{Z})$. (moduli space of tori with a flat metric)

Farey Tessellation: $V(Q) = \langle \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \rangle \supset \mathcal{F}(0, 1, \infty)$

Q square

$S_1 = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$

$S_2 = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$

Given θ, g_t^θ geodesics

$\theta = \frac{1}{a_0 + \frac{1}{a_1 + \ldots}}$

g_t^θ is approximated by $S_1^{a_0} S_2^{a_1} S_1^{a_2} \ldots$
Renormalization and dynamics on the Teichmüller disk

\[SL(2, \mathbb{R}) \cdot O = \{ A \cdot O, A \in SL(2, \mathbb{R}) \} \] affine deformations of the octagon

\[
\begin{align*}
\text{affine deformations} & \quad = \quad \frac{SL(2, \mathbb{R})}{V(O)} \\
\text{affini automorphisms} & \quad = \quad \text{(Teichmueller disk)}
\end{align*}
\]

\[V(O) \cdot O \] centers of ideal octagons
tree of renormalization moves
Given \(\theta, g^\theta_t \) geodesics is approximated by a sequence of renormalization moves
the Farey map of the octagon is given by the action on \(\partial \mathbb{D} \).
Renormalization and dynamics on the Teichmüller disk

\[SL(2, \mathbb{R}) \cdot O = \{ A \cdot O, A \in SL(2, \mathbb{R}) \} \text{ affine deformations of the octagon} \]

\[
\frac{\text{affine deformations}}{\text{affini automorphisms}} = \frac{SL(2, \mathbb{R})}{V(O)} \quad (\text{Teichmueller disk})
\]

\[V(O) \cdot O \text{ centers of ideal octagons} \]

\[\text{tree of renormalization moves} \]

Given \(\theta, g^\theta_t \) geodesics is approximated by a sequence of renormalization moves

the Farey map of the octagon is given by the action on \(\partial \mathbb{D} \).
Renormalization and dynamics on the Teichmüller disk

\[
SL(2, \mathbb{R}) \cdot O = \{ A \cdot O, A \in SL(2, \mathbb{R}) \} \text{ affine deformations of the octagon}
\]

\[
\frac{\text{affine deformations}}{\text{affini automorphisms}} = \frac{SL(2, \mathbb{R})}{V(O)} \quad (\text{Teichmüller disk})
\]

\[V(O) \cdot O \text{ centers of ideal octagons} \]

Tree of renormalization moves

Given \(\theta \), \(g_t^\theta \) geodesics is approximated by a sequence of renormalization moves

The Farey map of the octagon is given by the action on \(\partial \mathbb{D} \).
Renormalization and dynamics on the Teichmüller disk

\[SL(2, \mathbb{R}) \cdot O = \{ A \cdot O, A \in SL(2, \mathbb{R}) \} \] affine deformations of the octagon

\[
\frac{\text{affine deformations}}{\text{affini automorphisms}} = \frac{SL(2, \mathbb{R})}{V(O)} \quad (\text{Teichmueller disk})
\]

\[V(O) \cdot O \] centers of ideal octagons

tree of renormalization moves

Given \(\theta, g^\theta_t \) geodesics is approximated by a sequence of renormalization moves

the Farey map of the octagon is given by the action on \(\partial \mathbb{D} \).
Renormalization and dynamics on the Teichmüller disk

\[SL(2, \mathbb{R}) \cdot O = \{ A \cdot O, A \in SL(2, \mathbb{R}) \} \] affine deformations of the octagon

\[
\frac{\text{affine deformations}}{\text{affini automorphisms}} = \frac{SL(2, \mathbb{R})}{V(O)} \quad (\text{Teichmüller disk})
\]

\(V(O) \cdot O \) centers of ideal octagons

tree of renormalization moves

Given \(\theta, g^\theta_t \) geodesics
is approximated by a sequence of renormalization moves

the Farey map of the octagon is given by the action on \(\partial \mathbb{D} \).
Renormalization and dynamics on the Teichmüller disk

\[SL(2, \mathbb{R}) \cdot O = \{ A \cdot O, A \in SL(2, \mathbb{R}) \} \] affine deformations of the octagon

\[\text{affine deformations} \quad \frac{1}{\text{affine automorphisms}} = \frac{SL(2, \mathbb{R})}{V(O)} \quad \text{(Teichmueller disk)} \]

\[V(O) \cdot O \] centers of ideal octagons

tree of renormalization moves

Given \(\theta, g^\theta_t \) geodesics is approximated by a sequence of renormalization moves

the Farey map of the octagon is given by the action on \(\partial D \).
Renormalization and dynamics on the Teichmüller disk

$$SL(2, \mathbb{R}) \cdot O = \{ A \cdot O, A \in SL(2, \mathbb{R}) \}$$ affine deformations of the octagon

$$\frac{\text{affine deformations}}{\text{affini automorphisms}} = \frac{SL(2, \mathbb{R})}{V(O)} \quad \text{(Teichmueller disk)}$$

$$V(O) \cdot O$$ centers of ideal octagons

tree of renormalization moves

Given θ, g^θ_t geodesics is approximated by a sequence of renormalization moves

the Farey map of the octagon is given by the action on $\partial \mathbb{D}$.
Generation of cutting sequences

Let us define operators g^j_i that invert derivation.
The operator g^j_i interpolates a sequence w admissible in \mathcal{D}_j producing a sequence ammissible in \mathcal{D}_i and such that $(g^j_i(w))' = w$.

Definition
Let w be ammissible in \mathcal{D}_0. The sequence $g^2_0 w$ us obtained interpolating the letters corresponding to vertices in Figure with the words on the arrows:

Example

$w = \ldots \text{D C A B B B A C} \ldots$
$g^3_0 w = \ldots \text{D B C} \ldots$

The only sandwiched letters are the coloured ones, thus $(g^3_0 w)' = w$.

Generation of cutting sequences

Let us define operators g^j_i that invert derivation. The operator g^j_i interpolates a sequence w admissible in \mathcal{D}_j producing a sequence ammissible in \mathcal{D}_i and such that $(g^j_i(w))' = w$.

Definition

Let w be ammissible in \mathcal{D}_0. The sequence $g^2_0 w$ us obtained interpolating the letters corresponding to vertices in Figure with the words on the arrows:

![Diagram](diagram.png)

Example

$$w = \ldots D C A B B B A C \ldots$$

$$g^3_0 w = \ldots D B C \ldots$$

The only sandwiched letters are the coloured ones, thus $(g^3_0 w)' = w$.

Generation of cutting sequences

Let us define operators g^j_i that invert derivation.

The operator g^j_i interpolates a sequence w admissible in \mathcal{D}_j producing a sequence ammissible in \mathcal{D}_i and such that $(g^j_i(w))' = w$.

Definition

Let w be ammissible in \mathcal{D}_0. The sequence $g^2_0 w$ us obtained interpolating the letters corresponding to vertices in Figure with the words on the arrows:

```
D B C A CC
B BD CCBD
DBCCBD
```

Example

\[
\begin{align*}
w & = \ldots \ D \ C \ A \ B \ B \ B \ A \ C \ldots \\
g^3_0 w & = \ldots \ D \ B \ C \ldots
\end{align*}
\]

The only sandwiched letters are the coloured ones, thus $(g^3_0 w)' = w$.

Generation of cutting sequences

Let us define operators \(g^j_i \) that invert derivation.

The operator \(g^j_i \) interpolates a sequence \(w \) admissible in \(\mathcal{D}_j \) producing a sequence ammissible in \(\mathcal{D}_i \) and such that \((g^j_i(w))' = w\).

Definition

Let \(w \) be ammissible in \(\mathcal{D}_0 \). The sequence \(g^2_0 w \) us obtained interpolating the letters corresponding to vertices in Figure with the words on the arrows:

Example

\[
\begin{align*}
w &= \ldots \ D \ C \ A \ B \ B \ A \ C \ldots \\
g^3_0 w &= \ldots \ D \ B \ C \ldots
\end{align*}
\]

The only sandwiched letters are the coloured ones, thus \((g^3_0 w)' = w\).
Generation of cutting sequences

Let us define operators g_{ij} that invert derivation. The operator g_{ij} interpolates a sequence w admissible in \mathcal{D}_j producing a sequence admissible in \mathcal{D}_i and such that $(g_{ij}(w))' = w$.

Definition

Let w be admissible in \mathcal{D}_0. The sequence g_0^2w is obtained interpolating the letters corresponding to vertices in Figure with the words on the arrows:

Example

\[
\begin{align*}
 w &= \ldots \, D \, C \, A \, B \, B \, B \, A \, C \, \ldots \\
 g_0^3w &= \ldots \, D \, B \, C \, BD \, A \, \ldots
\end{align*}
\]

The only sandwiched letters are the coloured ones, thus $(g_0^3w)' = w$.

The only sandwiched letters are the coloured ones, thus $(g_0^3w)' = w$.

Generation of cutting sequences

Let us define operators g^j_i that invert derivation. The operator g^j_i interpolates a sequence w admissible in \mathcal{D}_j producing a sequence admissible in \mathcal{D}_i and such that $(g^j_i(w))' = w$.

Definition

Let w be admissible in \mathcal{D}_0. The sequence g_0^2w us obtained interpolating the letters corresponding to vertices in Figure with the words on the arrows:

![Diagram](image)

Example

$w = \ldots$ D C A B B B A C \ldots

$g_0^3w = \ldots$ D B C BD A DBCC B \ldots

The only sandwiched letters are the coloured ones, thus $(g_0^3w)' = w$.

Generation of cutting sequences

Let us define operators g^j_i that invert derivation. The operator g^j_i interpolates a sequence w admissible in \mathcal{D}_j producing a sequence admissible in \mathcal{D}_i and such that $(g^j_i(w))' = w$.

Definition

Let w be admissible in \mathcal{D}_0. The sequence $g^2_0 w$ us obtained interpolating the letters corresponding to vertices in Figure with the words on the arrows:

<table>
<thead>
<tr>
<th></th>
<th>B</th>
<th>BD</th>
<th>DBCC</th>
<th>CCBD</th>
</tr>
</thead>
<tbody>
<tr>
<td>D</td>
<td>C</td>
<td>A</td>
<td>B</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Example

\[
\begin{align*}
w &= \ldots \text{D} \quad \text{C} \quad \text{A} \quad \text{B} \quad \text{B} \quad \text{B} \quad \text{A} \quad \text{C} \quad \ldots \\
g^3_0 w &= \ldots \text{D} \quad \text{B} \quad \text{C} \quad \text{BD} \quad \text{A} \quad \text{DBCC} \quad \text{B} \quad \text{CC} \quad \text{B} \quad \text{CC} \quad \text{B} \quad \text{CCBD} \quad \text{A} \quad \text{DB} \quad \text{C} \quad \ldots \end{align*}
\]

The only sandwiched letters are the coloured ones, thus $(g^3_0 w)' = w$.
Generation of cutting sequences

Let us define operators g^i_j that invert derivation. The operator g^i_j interpolates a sequence w admissible in \mathcal{D}_j producing a sequence ammissible in \mathcal{D}_i and such that $(g^i_j(w))' = w$.

Definition

Let w be admissible in \mathcal{D}_0. The sequence $g^2_0 w$ is obtained interpolating the letters corresponding to vertices in Figure with the words on the arrows:

Example

$w = \ldots D C A B B B A C \ldots$

$g^3_0 w = \ldots D B C BD A DBCC B CC B CC B CCBD A DB C \ldots$

The only sandwiched letters are the coloured ones, thus $(g^3_0 w)' = w$.
The interpolation operators

The other operators are obtained from these ones by permuting the letters.
Characterization of the closure of cutting sequences

Lemma

If \(w \) is a cutting sequence and \(\{s_n\}_{n \in \mathbb{N}} \) a sequence of sectors, we have

\[
w \in \bigcap_n g_{s_1}^{s_0} \ldots g_{s_n}^{s_{n-1}} \{A, B, C, D\}^\mathbb{Z}.
\]

This condition, together with infinite derivability, is necessary and sufficient to characterize the closure of octagon cutting sequences (in \(\{A, B, C, D\}^\mathbb{Z} \)):

Theorem (Smillie-U)

A sequence \(w \in \{A, B, C, D\}^\mathbb{Z} \) belongs to the closure of cutting sequences in the octagon iff there exists a sequence \(\{s_n\}_{n \in \mathbb{N}} \in \{0, \ldots, 7\}^\mathbb{N} \) such that

\[
w \in \bigcap_n g_{s_1}^{s_0} \ldots g_{s_n}^{s_{n-1}} \{A, B, C, D\}^\mathbb{Z}.
\]

An analogous theorem holds for every regular polygon.
Characterization of the closure of cutting sequences

Lemma

If \(w \) *is a cutting sequence and* \(\{s_n\}_{n \in \mathbb{N}} \) *a sequence of sectors, we have*

\[
w \in \bigcap_n g_{s_0}^{s_0} g_{s_1}^{s_1} \cdots g_{s_{n-1}}^{s_{n-1}} \{A, B, C, D\}^\mathbb{Z}.
\]

This condition, together with infinite derivability, is *necessary and sufficient* to characterize the *closure* of octagon cutting sequences (in \(\{A, B, C, D\}^\mathbb{Z} \)):

Theorem (Smillie-U)

A sequence \(w \in \{A, B, C, D\}^\mathbb{Z} \) belongs to the closure of cutting sequences in the octagon *iff* there exists a sequence \(\{s_n\}_{n \in \mathbb{N}} \in \{0, \ldots, 7\}^\mathbb{N} \) *such that*

\[
w \in \bigcap_n g_{s_0}^{s_0} g_{s_1}^{s_1} \cdots g_{s_{n-1}}^{s_{n-1}} \{A, B, C, D\}^\mathbb{Z}.
\]

An analogous theorem holds for every regular polygon.
Charaterization of the closure of cutting sequences

Lemma
If \(w \) is a cutting sequence and \(\{s_n\}_{n \in \mathbb{N}} \) a sequence of sectors, we have

\[
w \in \bigcap_{n} g_{s_1}^{s_0} g_{s_2}^{s_1} \ldots g_{s_{n-1}}^{s_n-1} \{A, B, C, D\}^\mathbb{Z}.
\]

This condition, together with infinite derivability, is necessary and sufficient to characterize the closure of octagon cutting sequences (in \(\{A, B, C, D\}^\mathbb{Z} \)):

Theorem (Smillie-U)
A sequence \(w \in \{A, B, C, D\}^\mathbb{Z} \) belongs to the closure of cutting sequences in the octagon iff there exists a sequence \(\{s_n\}_{n \in \mathbb{N}} \in \{0, \ldots, 7\}^\mathbb{N} \) such that

\[
w \in \bigcap_{n} g_{s_1}^{s_0} g_{s_2}^{s_1} \ldots g_{s_{n-1}}^{s_n-1} \{A, B, C, D\}^\mathbb{Z}.
\]

An analogous theorem holds for every regular polygon.