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COHERENT LOWER PREVISIONS IN SYSTEMS MODELLING:
PRODUCTS AND AGGREGATION RULES

GERT DE COOMAN AND MATTHIAS C. M. TROFFAES

ABSTRACT. We discuss why coherent lower previsions provide a good uncertainty model for solving generic uncertainty prob-
lems involving possibly conflicting expert information. We study various ways of combining expert assessments on different
domains, such as natural extension, independent natural extension and the type-I product, as well as on common domains, such as
conjunction and disjunction. We provide each of these with a clear interpretation, and we study how they are related. Observing
that in combining expert assessments no information is available about the order in which they should be combined, we suggest
that the final result should be independent of the order of combination. The rules of combination we study here satisfy this
requirement.

1. INTRODUCTION

In [11], two problem sets are presented, whose challenge consists in modelling diverse kinds of uncertainty about a
system’s parameters, sometimes from different and possibly conflicting sources, and inferring from that an uncertainty
model for the system’s output. In the present paper, we concentrate on the first of these problem sets, because we believe
it is simpler and at the same time presents the same modelling challenges as the second one. It can be briefly sketched as
follows.

The system response y is a function f of two continuous parameters a and b, given by

y = f(a, b) = (a+ b)a.

The parameters a and b are non-negative real numbers, and consequently, so is the system output y. The task is to give
a model for the uncertainty about y, given additional information about the values that a and b assume. This additional
information is different in each of the following six problems for this set. In modelling the available information about a
and b, it should be kept in mind that they are assumed to be epistemically independent, i.e., information about the value
that one parameter assumes does not influence our knowledge and beliefs about the value of the other one.

Problem 1. a and b assume a value in the respective closed intervals:

A = [0.1, 1.0] and B = [0.0, 1.0].

Problem 2. a assumes a value in the closed interval A, and for b there are four independent and equally credible sources
of information, each of them stating that b belongs to a closed interval Bj (i = 1, . . . , 4). There are three different cases.
2a) The intervals Bj are consonant, or nested:

A = [0.1, 1.0] and B1 = [0.6, 0.8], B2 = [0.4, 0.85], B3 = [0.2, 0.9], B4 = [0.0, 1.0].

2b) The intervals Bj are consistent, i.e., they have a non-empty intersection:

A = [0.1, 1.0] and B1 = [0.6, 0.9], B2 = [0.4, 0.8], B3 = [0.1, 0.7], B4 = [0.0, 1.0].

2c) the intervals Bj are inconsistent or conflicting, i.e., they have an empty intersection:

A = [0.1, 1.0] and B1 = [0.6, 0.8], B2 = [0.5, 0.7], B3 = [0.1, 0.4], B4 = [0.0, 1.0].

Problem 3. For a there are three independent and equally credible sources of information, and for b there are four. There
are three different cases, where, with obvious notations,
3a) the intervals Ai and Bj are consonant:

A1 = [0.5, 0.7], A2 = [0.3, 0.8], A3 = [0.1, 1.0]

B1 = [0.6, 0.6], B2 = [0.4, 0.85], B3 = [0.2, 0.9], B4 = [0.0, 1.0];

3b) the intervals Ai and Bj are consistent:

A1 = [0.5, 1.0], A2 = [0.2, 0.7], A3 = [0.1, 0.6]

B1 = [0.6, 0.6], B2 = [0.4, 0.8], B3 = [0.1, 0.7], B4 = [0.0, 1.0];

3c) the intervals Ai and Bj are conflicting:

A1 = [0.8, 1.0], A2 = [0.5, 0.7], A3 = [0.1, 0.4]

B1 = [0.8, 1.0], B2 = [0.5, 0.7], B3 = [0.1, 0.4], B4 = [0.0, 0.2].

Key words and phrases. expert information, coherent lower previsions, natural extension, independence, type-I product, marginal extension, con-
junction, disjunction.
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Problem 4. a belongs to the closed interval A, and b is log-normally distributed, i.e., ln b ∼ N(µ, σ), where µ and σ are
known to belong to the respective closed intervals M and S, where

A = [0.1, 1.0],M = [0.0, 1.0] and S = [0.1, 0.5].

Problem 5. There are three independent and equally credible sources of information for a, each specifying a closed
interval that a belongs to. There are also three independent and equally credible sources of information for b, each stating
that b is log-normally distributed, i.e., ln b ∼ N(µ, σ), and each specifying closed intervals that µ and σ belong to. There
are three different cases, where, with obvious notations,
5a) the intervals Ai, Mj and Sk are consonant:

A1 = [0.5, 0.7], A2 = [0.3, 0.8], A3 = [0.1, 1.0]

M1 = [0.6, 0.8],M2 = [0.2, 0.9],M3 = [0.0, 1.0]

S1 = [0.3, 0.4], S2 = [0.2, 0.45], S3 = [0.1, 0.5];

5b) the intervals Ai, Mj and Sk are consistent:

A1 = [0.5, 1.0], A2 = [0.2, 0.7], A3 = [0.1, 0.6]

M1 = [0.6, 0.9],M2 = [0.1, 0.7],M3 = [0.0, 1.0]

S1 = [0.3, 0.45], S2 = [0.15, 0.35], S3 = [0.1, 0.5];

5c) the intervals Ai, Mj and Sk are conflicting:

A1 = [0.8, 1.0], A2 = [0.5, 0.7], A3 = [0.1, 0.4]

M1 = [0.6, 0.8],M2 = [0.1, 0.4],M3 = [0.0, 1.0]

S1 = [0.4, 0.5], S2 = [0.25, 0.35], S3 = [0.1, 0.2].

Problem 6. a belongs to the closed interval A, and b is log-normally distributed, i.e., ln b ∼ N(µ, σ), with known
parameters µ and σ:

A = [0.1, 1.0], µ = 0.5 and σ = 0.5.
Below, we propose to use Walley’s imprecise probability models, or coherent lower previsions [14], in order to repre-

sent the available information about the parameters a and b, and to infer a model for the uncertainty about the output y.
We have good reasons for preferring these models to a number of their very popular alternatives, such as Bayesian prob-
abilities and belief functions. First of all, unlike belief functions, imprecise probability models have an operationalisable
definition and a definite interpretation in terms of a subject’s behaviour. In this respect, they are very much like Bayesian
models, and they are also required to satisfy a number of rationality requirements, such as avoiding sure loss and coher-
ence. But they allow for more generality: roughly speaking, it is not claimed that all uncertainty should be represented
by probability measures, but rather by sets of probability measures. In our view, this makes imprecise probability models
more widely applicable and more realistic than their Bayesian counterparts. For an extensive discussion of these issues,
we refer to [14, Chapter 5].

Moreover, we are convinced that a model cannot be considered separately from how it is to be used. In many cases,
models are used to (help somebody) make decisions, such as deciding which action to take, but also deciding which
estimate to prefer, or which inference to make. Like their Bayesian counterparts, but unlike belief functions, imprecise
probability models come with a full-fledged decision theory that is closely linked with their behavioural interpretation:
roughly speaking, these models reflect a subject’s behaviour in certain situations, which, through requirements of consis-
tency or rationality, has implications for how his behaviour should be in other situations (for more information, see [14,
Section 3.9]). The imprecise probability models that we shall derive for the value of the system output y, can be used to
choose between actions whose outcome depends on the actual value of y. Although we concentrate on modelling itself,
we nevertheless feel that this additional aspect of our models should be mentioned.

And finally, imprecise probability models include Bayesian probabilities and belief functions as special cases, as they
do a number of other models in the literature, such as 2-monotone capacities [1], possibility measures [2, 7, 16], convex
sets of probability measures [10], comparative and modal probabilities (see for instance [15]).

In deriving a model for the uncertainty about the system parameter y, there are three steps to be taken: 1) finding an
imprecise probability model for the given information about the parameter a and about the parameter b, taken separately;
2) combining these separate models into a joint model for the values of a and b; and 3) deriving from this joint model an
imprecise probability model for the uncertainty about y.

Step 1 is discussed in Section 2. Section 3 deals with Step 2, which can also be described more technically as forming
products from independent marginals; and Step 3 is discussed in Section 4. We want to point out here that Problems 1,
4 and 6 are conceptually simpler than Problems 2, 3 and 5, because the latter also involve aggregating information from
different sources or experts. The results in Sections 2–4 do not deal with this aggregation problem, and therefore only
allow us to solve Problems 1, 4 and 6, which is done in Section 5. The problem of aggregation in Step 1 is dealt with in
Section 6, and the solutions to Problems 2, 3 and 5 are presented in Section 7.

In solving these problems, we have had to derive a number of new results about imprecise probability models, for
which we have provided detailed proofs. As these are fairly technical and not always essential for understanding the main
argument, and as they sometimes use other results proven elsewhere, we advise the reader with a limited knowledge of
the theory of imprecise probabilities to simply skip them.
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2. IMPRECISE PROBABILITY MODELS FOR THE VALUE OF A PARAMETER

2.1. Importance of a common mathematical model. Each problem in the set provides expert assessments for the values
of two parameters, a and b. It is important to note that each of the expert assessments deals with a single parameter.
Moreover, it is either of the

• vacuous type, such as the interval information: ‘a belongs to A = [0.1, 0.9]’,
• Bayesian type, such as ‘b has the log-normal distribution with parameters µ = 0.5 and σ = 0.5’, or
• Bayesian type with vacuous parameters, such as ‘b has a log-normal distribution with parameters µ belonging to

the interval M = [0.0, 1.0], and σ belonging to the interval S = [0.1, 0.5]’.
Assessments of the last type are hierarchical: an assessment of the variable b is made through an assessment about
variables µ and σ and an assessment about the variable b conditional on the variables µ and σ.

A first step toward combining these assessments is to express them using mathematical models of the same type. This
should allow us to deal with all sources of information in a uniform way. We shall argue in this section that all the
given expert assessments can be modelled by specific imprecise probability models, called coherent lower previsions. But
before we do that, let us first explain briefly what those models are. For a more detailed discussion, and many of the
technical results used in the proofs further on, we refer to Walley’s important book on the subject [14].

2.2. Coherent lower previsions: a behavioural uncertainty model.

2.2.1. The behavioural definition. Let us consider an agent who is uncertain about something, say, the value of the
variable a that takes values in a set A . A gamble is a bounded mapping from A toR, and it is interpreted as an uncertain
reward: if some α in A would turn out to be the true value of the variable a then the agent would receive the amount
X(α), expressed in units of some (predetermined) linear utility. Gambles play a similar part in the theory of imprecise
probabilities as events do in the classical, or Bayesian, theory of probability. In fact, any event can be interpreted as a very
simple gamble that only allows the modeller to distinguish between two situations: the event either occurs, or it doesn’t,
and the reward depends only on whether or not it does. So, an event, modelled as a subset A of the space A of possible
parameter values, corresponds to a gamble IA (its indicator) that yields one unit of utility if it occurs, i.e., if a ∈ A, and
zero units if it doesn’t, i.e., if a ∈ {A, where {A denotes the set-theoretic complement of A. In other words, there is a
natural correspondence between events and zero-one-valued gambles. The concept of a gamble can therefore be seen as a
generalisation of the concept of an event. The set of all gambles associated with the variable a is denoted by L (A ). It is
a real linear space under the point-wise addition of gambles and the scalar point-wise multiplication of gambles with real
numbers.

The information the agent has about the value of the parameter a will lead him to accept or reject transactions whose
reward depends on this value, and we can formulate a model for his uncertainty by looking at a specific type of transaction:
buying gambles. The agent’s lower prevision (or supremum acceptable buying price, or lower expectation) P(X) for a
gamble X is the greatest real number s such that he is disposed to buy the gamble X for any price strictly lower than s.
If the agent assesses a supremum acceptable buying price for every gamble X in some subset K of L (Ω), the resulting
mapping P : K → R is called the agent’s lower prevision. P will denote the conjugate upper prevision of P . It is defined
by P(X) = −P(−X) for every X ∈ −K . P(X) represents the agent’s infimum acceptable price for selling the gamble
X .

Lower and upper previsions for gambles are a natural generalisation of probabilities for events. Indeed, any assessment
of a probability of an event can be translated into an assessment of a supremum buying price and an infimum selling price
for a zero-one-valued gamble. Suppose that the probability of the event A is known to be p. The reward we expect from
IA is then equal to 0 · (1− p) + 1 · p = p. Therefore, we are willing to buy IA for any price less than p, and we are willing
to sell IA for any price greater than p. We infer that P(IA) = P(IA) = p. The power of lower and upper previsions,
compared to classical probability theory, is that lower and upper previsions allow for far more generality. In particular,
the theory does not require that your supremum buying price should be equal to your infimum selling price.

As we have already suggested in the Introduction, a particular benefit from this way of modelling available information
(or uncertainty) is that it leads naturally to a theory of decision making under uncertainty. For example, making a particular
decision d from a set D of alternatives is behaviourally equivalent to accepting a gamble Xd, which represents the
(possibly negative) utility received as a function of the value of the (unknown) parameter a of the decision problem. The
agent should strictly prefer one action d1 over an alternative d2 if P(Xd1 −Xd2) > 0: this means that he is willing to pay
some strictly positive amount of utility for exchanging the rewards of making decision d2 with those of making decision
d1. More details on decision making with imprecise probability models can be found in [14, Section 3.9]. For a discussion
of optimal control and dynamic programming in connection with imprecise probability models, we refer to [4].

2.2.2. Coherence. Since a lower prevision P represents an agent’s commitments to act in certain ways—to buy gambles
X in its domain K up to certain prices P(X)—it should satisfy a number of requirements that ensure that his behaviour
is rational. The strongest such rationality criterion is that of coherence. It is easiest to understand and define if the domain
K is the set of all gambles L (A ). A lower prevision P on L (A ) is called coherent if it satisfies the following three
requirements.

Accepting sure gains: The agent should always be willing to buy a gamble X for a price equal to the lowest
possible reward he may expect from X , that is, inf[X]. Hence, it should hold that

Q(X) ≥ inf[X] for all gambles X.
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Positive homogeneity: Next, since we are working with a linear utility, buying prices should be independent of the
choice of the scale of the utility. Mathematically, this means that

Q(λX) = λQ(X) for each gamble X and λ > 0.

Superadditivity: Finally, since we are working with a linear utility, if the agent is willing to buy X for price Q(X)
and Y for price Q(Y ), he should be willing to buy X + Y for at least Q(X) + Q(Y ), whence:

Q(X + Y ) ≥ Q(X) + Q(Y ) for all gambles X and Y .

A lower prevision P on an arbitrary domain K ⊆ L (A ) is called coherent if it is the restriction of—can be extended
to—some coherent lower prevision on L (A ).

2.2.3. Avoiding sure loss. There is a weaker rationality criterion, called avoiding sure loss, that is of interest for the
development in this paper. A lower prevision P defined on a set of gambles K ⊆ L (A ) avoids sure loss if it is point-
wise dominated by some coherent lower prevision, i.e. if there is a coherent lower prevision Q on L (A ) such that for all
gambles X in K , P(X) ≤ Q(X).

It can be shown that, if this criterion is not satisfied, there are gambles X1, . . . , Xn in K such that

(1) sup
α∈A

[
n∑
k=1

[Xk(α)− P(Xk)]

]
< 0,

i.e., the combination of the transactions in which the gambles Xk are bought for a price P(Xk) leads to a loss, whatever
the actual value of the parameter a. This means that the assessments in P are clearly unacceptable. For this reason,
avoiding sure loss is a minimal but stringent requirement that an agent’s lower prevision should satisfy!

2.2.4. Natural extension. If a lower prevision P on a set of gambles K avoids sure loss (which we have argued should
always at least be the case), then it has a dominating coherent lower prevision on L (A ), and it is not difficult to see that
it has a point-wise smallest dominating lower prevision.1 This lower prevision E is called the natural extension of P : it
is the most conservative correction of P to a coherent lower prevision on L (A ).

The natural extension E of P can also be calculated as follows: for any gamble X ,

E (X) = sup
n∈N
λi≥0
Yi∈K

{
γ : X − γ ≥

n∑
i=1

λi [Yi(α)− P(Yi)]

}

= sup
n∈N
λi≥0
Yi∈K

inf
α∈A

[
X(α)−

n∑
i=1

λi[Yi(α)− P(Yi)]

]
.(2)

If the domain K of P is a linear subspace of L (A ), then is is easy to show that

(3) E (X) = sup
Y ∈K

inf
α∈A

[X(α)− [Y (α)− P(Y )]] .

If P is actually coherent, then it obviously coincides with its natural extension E on its domain K : E is the most
conservative extension of P to a coherent lower prevision on L (A ).

Natural extension is a very important tool in imprecise probability theory, as it allows any lower prevision that avoids
sure loss to be corrected into a coherent lower prevision, and any coherent lower prevision to be extended to the set
of all gambles, with minimal behavioural implications! The Bayesian counterpart of natural extension is de Finetti’s
fundamental theorem of probability [5]. To give an example of how de Finetti’s theorem relates to natural extension,
observe for instance that from any probability measure µ on a σ-field F on Ω, which gives probabilities µ(A) for all
events A in F , we obtain a coherent lower prevision P defined by P(IA) = P(IA) = µ(A) for all A ∈ F . The natural
extension of this lower prevision P coincides exactly with the Lebesgue integral with respect to µ, on all µ-measurable
gambles.

2.2.5. Linear previsions. This section focuses on the important issue of how classical theory of probability is embedded
in the theory of coherent lower previsions, and how the theory of coherent lower previsions can interpreted in terms of
classical probability theory. We establish that, without loss of generality, experts may represent their information using
sets of classical probability models, rather than assessing supremum buying prices directly (which one is simpler depends
on the application).

If an agent has little or no relevant information about the outcome of the gamble X , his infimum acceptable price
P(X) for selling the X will typically be substantially higher than his supremum acceptable price P(X) for buying it.
The bid-ask spread P(X) − P(X) is a measure for the amount of imprecision in the agent’s behavioural dispositions
toward the gamble X . The more relevant information the agent has about the outcome of X , the closer P(X) and P(X)
will move to each other. If it should happen that P(X) = P(X), then this common value is denoted by P(X) and it is
called the agent’s fair price, or prevision, for the gamble X .

1To prove this, use the definition of a coherent lower prevision to verify that the point-wise infimum of any number of coherent lower previsions that
dominate P is still a coherent lower prevision that dominates P .
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As we hinted at before, in the Bayesian theory of uncertainty, championed by de Finetti [5, 6], it is assumed that an
agent can always give a fair price for a gamble, whatever information he may have about its value. This questionable
assumption is not made in imprecise probability theory, but it should be obvious that a precise, or Bayesian, model
is nothing but a special case of an imprecise probability model, where the agent’s lower and upper previsions happen to
coincide. In particular, de Finetti’s rationality requirements for fair prices are nothing but particular cases of the coherence
requirements for lower (and upper) previsions.

A coherent lower prevision P on L (A ) that is self-conjugate in the sense that P(X) = P(X) = P(X) for all X
in L (A ), is called a linear prevision. It can be characterised alternatively as a real linear functional on the linear space
L (A ), that is moreover positive (if X ≥ 0 then P(X) ≥ 0) and has unit norm (P(1) = 1). A linear prevision on an
arbitrary set of gambles K is the restriction to K of some linear prevision on L (A ). We shall denote byP(A ) the set of
all linear previsions on L (A ). As stated before, these linear previsions are exactly the same thing as de Finetti’s coherent
previsions, i.e., the Bayesian, or precise, probability models. In general, a linear prevision P on K has no unique linear
extension to all of L (A ): its natural extension is generally imprecise. This fact is emphasised by de Finetti’s so-called
fundamental theorem of probability which gives bounds for linear extensions of linear previsions. It is interesting to note
that these bounds correspond exactly to the values obtained by natural extension.

There is another interesting connection between lower and linear previsions. LetM(P) be the set of all linear previ-
sions P on L (A ) that dominate the lower prevision P on its domain K : P(X) ≥ P(X) for allX ∈ K . Then P avoids
sure loss if and only ifM(P) is non-empty, i.e., if P has a dominating linear prevision. P is coherent if and only if

P(X) = min {P(X) : P ∈M(P)}

for all X in K , i.e., if P is the lower envelope ofM(P). And, finally, if P avoids sure loss then the natural extension E
is given by

E (X) = min {P(X) : P ∈M(P)}

for all X in L (A ). Moreover, any lower envelope of a set of linear previsions is a coherent lower prevision: it is
easily checked using the definition of coherence that the point-wise infimum of a set of coherent lower previsions (and in
particular linear previsions) is a coherent lower prevision.

2.2.6. Lower probabilities. A gamble X on A can be seen as a very general risky investment that yields a possibly dif-
ferent return X(α) for each possible value α of the parameter a. In more traditional approaches to uncertainty modelling,
it is common to work with a restricted class of quite simple gambles, that only allow the modeller to distinguish between
two situations: zero-one-valued gambles, which correspond to events in A as we argued before. Let A be an event in A
and let IA be its corresponding gamble. An agent’s lower prevision P(IA) for this gamble is also denoted by P(A) and is
called his lower probability for the event A: lower probabilities are simply lower previsions for zero-one-valued gambles.
P(A) can also be interpreted as an agent’s supremum acceptable rate for betting on the occurrence of the eventA. Similar
considerations holds for upper probabilities. It should be mentioned here that most of the lower and upper probabilities in
the literature, such as precise probability measures, 2-monotone capacities, belief functions, and possibility measures, are
in this way special cases of coherent lower and upper previsions [3, 14].

We prefer to work with the more general notion of gambles, rather than events. In fact, whereas the languages of events
and of gambles are equally powerful when dealing with precise, or Bayesian, probabilities or previsions [5], it has been
shown [14] that this is no longer the case for imprecise models: we need the more powerful language of gambles in the
more general theory of imprecise probability.

This concludes our brief survey of the theory of coherent lower previsions. We are now ready to apply the tools this
theory provides to modelling the expert assessments of the values of the variables a and b in the problems described in the
Introduction.

2.3. Vacuous information. Let us first consider assessments of the type ‘a assumes a value in a subset A of A ’. This
type of assessment includes the various instances of interval information present in the problem set—one may for example
think of A as the positive real line and of A as a closed interval.

This type of information can be represented by the so-called vacuous lower prevision relative to A, which will be
denoted by PA, and is given by

PA(X) = inf
α∈A

X(α),

for all gambles X in L (A ). This is a coherent lower prevision on L (A ) and its conjugate upper prevision is given by

PA(X) = sup
α∈A

X(α).

There are several lines of reasoning to motivate that this lower prevision indeed is the appropriate model for the given
information. First of all, if the agent knows that a belongs to A, and nothing more, he should be willing to buy a gamble
X for any price s strictly lower than infα∈AX(α) because doing so results in a sure gain; but he should not be willing to
pay a price t strictly higher than that, because then there is some α ∈ A such that t > X(α), and for all the agent knows,
α might be the actual value of the parameter a!

5



A second justification for PA is that it is the natural extension of the single precise probability assessment P(A) = 1.
Using Eq. (2), we find indeed that:

sup
λ≥0

inf
α∈A

[X(α)− λ[IA(α)− P(A)]] = sup
λ≥0

min
{

inf
α∈A

X(a), inf
α∈{A

[X(α) + λ]
}

= inf
α∈A

X(α) = PA(X).

This shows that the vacuous lower prevision relative to A follows uniquely from the single assessment that the agent’s
probability of event A is equal to 1, or equivalently, that the agent is practically certain that a belongs to A (since he is
prepared to bet at all odds on the occurrence of A).

Yet another way of justifying PA is the following. Consider a gamble X . Take any linear prevision P such that
P(A) = 1. De Finetti’s fundamental theorem of probability imposes bounds on P(X), i.e., states that P(X) belongs
to some interval. The union of all these intervals over all linear previsions P such that P(A) = 1 is exactly given by
[PA(X),PA(X)].

2.4. Bayesian information. Let us now look at the expert assessment ‘the parameter b is log-normally distributed with
parameters µ and σ’. This is a special case of a very common type of assessment, stating that a continuous real random
variable b taking values in a subset B of the set of real numbers R has (cumulative) distribution function F , or density
function φ, with respect to some measure µ on the reals, such as the Lebesgue measure λ.

It is well-known (see for instance [5]) that specifying such a model is equivalent to specifying a linear prevision P on
a set F of gambles that are measurable with respect to some σ-algebra on B, where for each such gamble X ,2

P(X) =
∫

B

XdF =
∫

B

Xφ dµ

is the expectation of X . For the problem set under study here, B is the positive real line, µ is the Lebesgue measure λ,
F is the linear space of Lebesgue-measurable gambles, and φ is the log-normal density function.

Since linear previsions are special types of coherent lower previsions, Bayesian models fit perfectly into imprecise
probability theory. This is also the case for the so-called robust Bayesian models that we deal with next.

2.5. Bayesian information with vacuous parameters.

2.5.1. Robust Bayesian models. The Bayesian approach has the disadvantage that the probability density φ must be
known exactly. In some situations this is not realistic: there may be a class Φ of probability densities φ, each compatible
with the given information, and different choices within this class may lead to completely different results: inferences
based on particular choices of φ will then not be robust, and will not with any confidence reflect the information that is
actually available.

The theory of imprecise probabilities deals with this situation in a straightforward manner: it associates with the set Φ
of density functions a coherent3 lower prevision P that is the lower envelope of the linear previsions associated with the
density functions φ ∈ Φ: for each measurable gamble X ,

(4) P(X) = inf
φ∈Φ

∫
B

Xφ dµ.

This ensures that our agent will accept to buy a gamble X only for prices that are lower than any of the prices
∫

B Xφ dµ
corresponding to specific choices of φ in Φ; any conclusions we may draw from the model will be automatically robust.

We have shown in Section 2.2.5 that, in a very specific sense, coherent lower previsions are mathematically equivalent
with sets of linear previsions. This way of looking at coherent lower previsions is sometimes referred to as the Bayesian
sensitivity analysis interpretation, or robust Bayesian interpretation of such lower previsions.

2.5.2. An alternative justification. There is another way of deriving Eq. (4), which, in our opinion, provides a better
justification for associating a lower prevision with a set of density functions.

Assume that the available information about a variable b allows us to specify for it a Bayesian model P(·|θ) that
depends on some additional variable θ ∈ Θ. However, the true value of the variable θ is only known to belong to some
non-empty subset Θ0 of Θ. We thus have the following information about the value of the variable b.

(i) Conditionally on θ, a probability density φθ for b. The inferred conditional linear prevision P(·|ϑ), given by

P(X|ϑ) =
∫

B

Xφϑ dµ

for each measurable gamble X , would describe the agent’s behavioural dispositions toward gambles on B if ϑ were
the true value of the parameter θ. This conditional linear prevision P(·|ϑ) is also called a sampling model.

(ii) Vacuous information about the variable θ, described by a vacuous lower prevision relative to Θ0, PΘ0
, on L (Θ),

where Θ0 ⊆ Θ and Θ0 6= ∅. The coherent lower prevision PΘ0
is also called the prior.

2To see that P really is a linear prevision, observe that by the Hahn-Banach theorem P can be extended to a linear prevision on the whole space
L (B). Generally speaking, such an extension will not be unique, or equivalently, the natural extension of P to L (B) will be imprecise (a coherent
lower prevision that is not a linear prevision).

3A lower envelope of linear previsions is always a coherent lower prevision, see Section 2.2.5.
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For a given measurable gamble X on B, we shall denote by P(X|Θ) the gamble on Θ that assumes the value P(X|ϑ) in
the element ϑ of Θ.

Walley’s marginal extension theorem [14, Theorem 6.7.2] then tells us that the natural extension P of the lower previ-
sion PΘ0

and the conditional linear prevision P(·|Θ) is given by

P(X) = PΘ0
(P(X|Θ)) = inf

ϑ∈Θ0
P(X|ϑ) = inf

ϑ∈Θ0

∫
B

Xφϑ dµ,

for all measurable gamblesX . P(X) is the supremum acceptable buying price forX that can be inferred from the agent’s
assessments PΘ0

and P(·|Θ), through arguments of coherence alone! P is the smallest (most conservative) coherent
extension to measurable gambles on B of both P(·|Θ) and PΘ0

.
For a full motivation of marginal extension we refer to [14, Chapter 6]. But it may be interesting to observe that it

generalises Kolmogorov’s definition P(B) = E(Pu(B)) of conditional probability [9, Chapter V, Equations (1–3), pp. 47–
9], where Pu(B) is the probability of event B conditional on the outcome of a random variable u, E is the expectation of
a gamble depending on the outcome of the random variable u and P(B) is the probability of the event B.

For the problem set under study, the sampling model is a log-normal distribution with parameters µ and σ; we shall
denote the set of possible values for parameter µ by M and for parameter σ by S . Thus, we have that Θ = M × S
and θ = (µ, σ). Each expert expresses his information about µ and σ through a vacuous lower prevision on L (M ) or
L (S ), relative to some subset (closed interval) of M or S , respectively.

What we still need, however, in order to be able to apply the marginal extension theorem, is a way to combine the
separate lower previsions on M and S into a joint lower prevision on Θ = M ×S . If we can do that, we shall be able
to arrive at a lower prevision modelling the available information about the parameter b. We have seen above that we are
also able to find a lower prevision modelling the available information about parameter a. But here again, we still have
to combine these separate lower previsions into a joint lower prevision modelling the available information about a and b
taken together. We conclude that in order to proceed, we need a way to form so-called products of lower previsions. This
is the subject of the next section.

3. PRODUCTS

Assume that the information about the value that the variable a assumes in A is modelled by a coherent lower prevision
P . To make things as easy as possible and as complicated as necessary, its domain is assumed to be a linear space
FA ⊆ L (A ) of gambles on A — for instance, the set L (A ), or the linear space of all gambles that are measurable
with respect to some σ-field on A . Similarly, the information about the variable b is represented by a coherent lower
prevision Q defined on a linear space of gambles FB ⊆ L (B).

We now want to find a way to combine the information about a and that about b into information about the values that
the variable (a, b) takes in the product space A ×B. In other words, we want to find a way to combine P and Q into a
coherent product lower prevision P whose marginals are P and Q . This is made more clear in the following definition.
We denote by FA ×FB the linear space of those gambles Z on A ×B whose partial maps belong to FA and FB,
i.e., such that for all α ∈ A and β ∈ B, Z(α, ·) ∈ FB and Z(·, β) ∈ FA . If X belongs to FA then it can also be
considered as a gamble on A ×B that is constant on B, and which therefore belongs to FA ×FB. A similar remark
can be made about gambles Y in FB.

Definition 1. A coherent lower prevision R whose domain F includes FA ×FB is called a product of the coherent lower
previsions P and Q if it has these lower previsions as its marginals, i.e., if for allX in FA and Y in FB, R(X) = P(X)
and R(Y ) = Q(Y ).

We shall consider three different ways to define a product of P and Q .

3.1. Natural extension. The natural extension P ×NE Q of P and Q is defined as the smallest coherent lower prevision
on FA ×FB that has marginals P and Q . It is, in other words, their least-committal or most conservative product. Since
we assume the domains FA and FB to be linear spaces, we find, using Eq. (3), that for any gamble Z in FA ×FB:

(5)
(
P ×NE Q

)
(Z) = sup

X∈FA ,Y ∈FB

inf
(α,β)∈A×B

[
Z(α, β)− [X(α)− P(X)]− [Y (β)−Q(Y )]

]
.

In forming the natural extension, no assumption is made about the possible independence of the variables a and b. Making
such an additional assumption generally leads to products that dominate the natural extension, and are therefore less
conservative. We look at two types of independent products, each with a different interpretation.

3.2. Independent natural extension. The independent natural extension of P and Q is denoted by P ×INE Q and
defined as the smallest coherent lower prevision on FA ×FB that has marginals P and Q , also taking into account the
extra assessment that the variables a and b are epistemically independent, i.e., that additional knowledge about the value
that a assumes in A does not affect our knowledge about the value that b assumes in B, and vice versa. It can be shown
using the results and ideas in [14, Chapters 6–9] that for any gamble Z in FA ×FB:

(6)
(
P ×INE Q

)
(Z) = sup

X∈FA ,Y ∈FB

inf
(α,β)∈A×B

[
Z(α, β)− [X(α, β)− P(X(·, β))]− [Y (α, β)−Q(Y (α, ·))]

]
,
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where we have introduced the notations

FA = {X ∈ L (A ×B) : (∀β ∈ B)(X(·, β) ∈ FA )}

FB = {Y ∈ L (A ×B) : (∀α ∈ A )(Y (α, ·) ∈ FB)} .

Observe that FA ×FB = FA ∩FB, L (A )×FB = FB and FA ×L (B) = FA .

3.3. Type-I product. There is another way to define an independent product of P and Q that is compatible with the
Bayesian sensitivity analysis interpretation of a lower prevision. On this view, the uncertainty about the variable a is
ideally described by a linear prevision PT ; the only problem is that for some reason, we are not able to uniquely identify
it. Specifying a coherent lower prevision P is then tantamount to stating that the unknown PT should belong to the set

M(P) = {P ∈ P(A ) : (∀X ∈ FA )(P(X) ≥ P(X))}
of those linear previsions on A that dominate the lower prevision P on its domain FA . Similar considerations hold
for the uncertainty about the variable b, its ideal precise model QT , and the coherent lower prevision Q . If a and b are
independent, then the ideal model describing the uncertainty about the value of the joint variable (a, b) is the independent
product PT ×QT , i.e., the linear prevision defined on gambles Z on A ×B by

(PT ×QT ) (Z) = PT (QT (Z)) = QT (PT (Z)) ,

where by QT (Z) we denote the gamble on A taking the value QT (Z(α, ·)) in α ∈ A and similarly for PT (Z).
It then seems appropriate to define the type-I product P ×TI Q of the lower previsions P and Q as the lower envelope

of all compatible independent linear products (see also Corollary 1 further on):

(7)
(
P ×TI Q

)
(Z) = inf

{
(P ×Q)(Z) : P ∈M(P) and Q ∈M(Q)

}
for all Z in FA ×FB.

3.4. Products with a vacuous lower prevision. In general, we have that(
P ×NE Q

)
(Z) ≤

(
P ×INE Q

)
(Z) ≤

(
P ×TI Q

)
(Z)

for all gambles Z in FA ×FB, but it turns out that, if at least one of the lower previsions P or Q is vacuous, then their
independent natural extension and their type-I product coincide! This is the case for all of the problems in the problem
set described in the Introduction. If both P and Q are vacuous, then all three products coincide. This is made evident by
the following theorem and proposition.

Theorem 1. Consider a non-empty subset A of A , let Q be a coherent lower prevision defined on a linear space of
gambles FB, and let PA be the vacuous lower prevision relative to A, defined on L (A ) by

PA(X) = inf
α∈A

X(α),

for all gambles X on A . Then the natural extension of PA and Q is given by(
PA×NE Q

)
(Z) = E

(
inf
α∈A

Z(α, ·)
)

for all gambles Z in FB = L (A ) × FB, where E is the natural extension of Q to the set L (B). Moreover, the
independent natural extension and the type-I product of PA and Q coincide and are given for all Z in FB by(

PA×INE Q
)

(Z) =
(
PA×TI Q

)
(Z) = inf

α∈A
Q(Z(α, ·)).

Proof. Let us first look at the natural extension of PA and Q . For any Z in FB we find that(
P ×NE Q

)
(Z) = sup

Y ∈FB

sup
X∈FA

inf
β∈B

inf
α∈A

[
Z(α, β)− [X(α)− P(X)]− [Y (β)−Q(Y )]

]
≤ sup
Y ∈FB

inf
β∈B

sup
X∈FA

inf
α∈A

[
Z(α, β)− [X(α)− P(X)]− [Y (β)−Q(Y )]

]
and using the fact that the coherent PA coincides on L (A ) with its natural extension, given by Eq. (3),

= sup
Y ∈FB

inf
β∈B

PA

(
Z(·, β)− [Y (β)−Q(Y )]

)
= sup
Y ∈FB

inf
β∈B

[
inf
α∈A

Z(α, β)− [Y (β)−Q(Y )]
]

and invoking Eq. (3) for the natural extension E of Q ,

= E
(

inf
α∈A

Z(α, ·)
)
.

To prove the converse inequality, let X = −λ[1 − IA] in the definition of the natural extension, where λ is some real
number satisfying

λ ≥ sup
(α,β)∈A×B

Z(α, β)− inf
(α,β)∈A×B

Z(α, β).
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For this choice of λ it is easy to prove that for all β ∈ B:

(8) λ+ inf
α 6∈A

Z(α, β) ≥ inf
α∈A

Z(α, β)

It then follows, since PA(X) = 0, that(
P ×NE Q

)
(Z) ≥ sup

Y ∈FB

inf
β∈B

inf
α∈A

[
Z(α, β) + λ[1− IA(α)]− [Y (β)−Q(Y )]

]
= sup
Y ∈FB

inf
β∈B

[
min

{
inf
α∈A

Z(α, β), inf
α6∈A

Z(α, β) + λ

}
− [Y (β)−Q(Y )]

]
and taking into account the inequality (8),

= sup
Y ∈FB

inf
β∈B

[
inf
α∈A

Z(α, β)− [Y (β)−Q(Y )]
]

and using Eq. (3) for the natural extension E of Q ,

= E
(

inf
α∈A

Z(α, ·)
)
.

We now turn to the type-I product of PA and Q :(
P ×TI Q

)
(Z) = inf

Q∈M(Q)
inf

P∈M(PA)
P(Q(Z))

= inf
Q∈M(Q)

PA(Q(Z))

= inf
Q∈M(Q)

inf
α∈A

Q(Z(α, ·))

= inf
α∈A

inf
Q∈M(Q)

Q(Z(α, ·))

= inf
α∈A

Q(Z(α, ·)).

To conclude the proof, we consider the independent natural extension of PA and Q . For ease of notation, denote by R the
lower prevision defined on the set of gambles L (B) by R(Z) = infα∈A E (Z(α, ·)), where, as before, E is the natural
extension of Q . It is not difficult to prove that R is coherent. Consequently, R(·) ≥ inf[·], and therefore(

PA×INE Q
)

(Z) ≤ sup
X∈FA ,Y ∈FB

R
(
Z − [X − PA(X)]− [Y −Q(Y )]

)
and from the coherence (superadditivity) of R

≤ sup
X∈FA ,Y ∈FB

[
R(Z)− R(X − PA(X))− R(Y −Q(Y ))

]
.

At the same time, we deduce from the coherence of E that

R (X − PA(X)) = inf
α∈A

E
(
X(α, ·)− inf

γ∈A
X(γ, ·)

)
≥ 0

and similarly, since Q and its natural extension E coincide on FB,

R
(
Y −Q(Y )

)
= inf
α∈A

Q
(
Y (α, ·)−Q(Y (α, ·))

)
= 0,

whence immediately
(
PA×INE Q

)
(Z) ≤ R(Z). To prove the converse inequality, let in the definition for the indepen-

dent natural extension Y = Z ∈ FB and X = Q(Z) ∈ L (A ). �

Proposition 1. Let A be a non-empty subset of A and B a non-empty subset of B. Then for all Z in L (A ×B),

(PA×NE PB) (Z) = (PA×INE PB) (Z) = (PA×TI PB) (Z) = PA×B(Z) = inf
(α,β)∈A×B

Z(α, β).

Proof. For any Z in L (A ×B) we find using Theorem 1 that, since PA is a vacuous lower prevision,

(PA×NE PB) (Z) = PB

(
inf
α∈A

Z(α, ·)
)

= inf
β∈B

inf
α∈A

Z(α, β) = inf
(α,β)∈A×B

Z(a, b) = PA×B(Z),

and similarly,

(PA×INE PB) (Z) = (PA×TI PB) (Z) = inf
α∈A

PB(Z(α, ·)) = inf
α∈A

inf
β∈B

Z(α, β) = inf
(α,β)∈A×B

Z(a, b) = PA×B(Z). �
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3.5. Products with a linear prevision. If at least one of the lower previsions P or Q is a linear prevision, which is
the case for Problem 6 described in the Introduction, then their independent natural extension and their type-I product
coincide as well.

Theorem 2. Let P be a coherent lower prevision defined on a linear space of gambles FA ⊆ L (A ), and let Q be a
linear prevision defined on L (B). Then for all gambles Z in FA = FA ×L (B),

(P ×INE Q) (Z) = (P ×TI Q) (Z) = E (Q(Z)),

where E is the natural extension of P to L (A ), and where Q(Z) denotes the gamble on A whose value in α ∈ A is
given by Q(Z(α, ·)).

Proof. Let Z be any gamble in FA . We begin with the last equality. SinceM(Q) = {Q}, we see that indeed

(P ×TI Q) (Z) = inf
P∈M(P)

P(Q(Z)) = E (Q(Z)).

To prove the first equality, apply Eq. (6) to see that

(P ×INE Q) (Z) = sup
X∈FA ,Y ∈L (B)

inf [Z − [X − P(X)]− [Y −Q(Y )]] .

If we make the particular choice Y = Z in this supremum, and apply Eq. (3) for the natural extension E of P , we find
that

(P ×INE Q) (Z) ≥ sup
X∈FA

inf [Q(Z) + [X − P(X)]] = E (Q(Z)).

To prove the converse inequality, recall that it follows from the coherence of P and Q that for any gamble U on A ×B,
E (Q(U)) ≥ inf[U ], whence

(P ×INE Q) (Z) = sup
X∈FA ,Y ∈L (B)

inf [Z − [X − P(X)]− [Y −Q(Y )]]

≤ sup
X∈FA ,Y ∈L (B)

E (Q (Z − [X − P(X)]− [Y −Q(Y )]))

≤ sup
X∈FA ,Y ∈L (B)

[E (Q(Z))− E (Q(X − P(X)))− E (Q(Y −Q(Y )))]

It is easy to see that, by Lemma 1,

E (Q(X − P(X))) = E (Q(X))−Q(P(X)) ≥ 0,

and also that
E (Q(Y −Q(Y ))) = 0

whence indeed also (P ×INE Q) (Z) ≤ E (Q(Z)). �

Lemma 1. Let P be a coherent lower prevision defined on L (A ), and let Q be a linear prevision defined on L (B).
Then for all gambles Z in L (A ×B):

P(Q(Z)) ≥ Q(P(Z)).

Proof. For any Z in L (A ×B) and any P inM(P) we have that P(Z) ≤ P(Z), whence Q(P(Z)) ≤ Q(P(Z)) =
P(Q(Z)), and consequently

Q(P(Z)) ≤ inf
P∈M(P)

P(Q(Z)) = P(Q(Z)). �

Corollary 1. Let P be a linear prevision defined on L (A ) and let Q be a linear prevision defined on L (B). Then

P ×INE Q = P ×TI Q = P ×Q .

It may happen, as in some of the problems sketched in the Introduction, that the variable b is assumed to have a
precise probability model QT , whose parameters are not well known. This means that the lower prevision Q has the
Bayesian sensitivity analysis interpretation. If no such additional assumption is made for the variable a, then the lower
prevision P does not have this interpretation. In this case, if the ideal QT were known, the lower prevision describing
the joint information would be given by P ×INE QT , taking into account the epistemic independence of a and b, and the
appropriate product of P and Q is then given by

inf
Q∈M(Q)

(P ×INE Q) (Z) = inf
Q∈M(Q)

E (Q(Z)) = inf
Q∈M(Q)

inf
P∈M(P)

P(Q(Z)) =
(
P ×TI Q

)
(Z)

for any gamble Z, taking into account Theorem 2. In other words, as soon as the lower prevision for at least one of the two
epistemically independent variables a and b has the Bayesian sensitivity analysis interpretation, the appropriate product
to use is the type-I product. If none of the models for these variables has the Bayesian sensitivity analysis interpretation,
i.e., if no additional assumption is made that their model is precise but not well known, we should use the independent
natural extension to form independent products. Fortunately, since it will turn out that at least one of the lower previsions
in the problem set is always of the vacuous type, we may deduce from Theorem 1 that both types of independent products
coincide, and we need therefore in the rest of this paper not really be concerned with these subtleties of interpretation.
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4. INFERENCE

In our line of reasoning so far, we have taken the necessary steps to ensure that we can model the available information
about the parameters a and b, or actually their joint value (a, b), by a coherent lower prevision P on some linear space F
of gambles on A ×B. The final step to take is the transformation of P into a coherent lower prevision Py on the set of
possible values Y of the parameter y, using the functional relationship y = f(a, b) between (a, b) and y.

This can be achieved quite easily using the following heuristic course of reasoning. Consider a gamble U on Y . If
(a, b) assumes the value (α, β) in A × B, then y assumes the value f(α, β), and consequently U assumes the value
U(f(α, β)). This means that the gamble U on Y can be interpreted as a gamble U ◦ f on A ×B, whose lower prevision
is P(U ◦ f), provided that U ◦ f belongs to the linear space

Fy = {U ∈ L (Y ) : U ◦ f ∈ F}

of gambles on Y . This leads immediately to the definition of the lower prevision Py(·) = P( · ◦ f) on Fy .
This course of reasoning can be given more weight by arguments of coherence. If we know that the variable (a, b)

assumes the value (α, β), then it is absolutely certain that the variable y assumes the value f(α, β), and this can be
modelled by a degenerate linear prevision all of whose probability mass lies in f(α, β): for any gamble U on Y ,

P(U |α, β) = U(f(α, β)).

The functional relationship f between (a, b) and y can therefore be represented by the conditional linear previsions
P(·|α, β) for all (α, β) in A ×B, or with the notation established in Section 2.5.2, by the conditional linear prevision
P(·|A ×B) defined on the set L (Y ) of all gambles on Y . Together with the prior P , it leads, through natural extension
(Walley’s marginal extension theorem [14, Theorem 6.7.2], see also the similar course of reasoning in Section 2.5.2), to
the lower prevision Py , defined on the set of gambles Fy by

(9) Py(U) = P(P(U |A ×B)) = P(U ◦ f),

for all U in Fy . Py(U) is the smallest (most conservative) supremum acceptable price for buying the gamble U that can
be inferred from the lower prevision P and the functional relationship f , using only arguments of coherence!

Observe that, if U is the indicator IC of some subset C of Y , then it is clear that (IC ◦ f)(α, β) equals one if and only
if f(α, β) ∈ C, or equivalently, (α, β) ∈ f−1(C), and that it equals zero elsewhere:

IC ◦ f = If−1(C),

which tells us that Py(C) = P(f−1(C)). In other words, Eq. (9) is the appropriate generalisation to lower previsions and
to gambles of the notion of a probability measure induced by the map f !

5. SOLUTIONS TO PROBLEMS 1, 4 AND 6

We are now ready to apply the results derived so far to the solution of the problems not involving combination of
assessments from different experts.

5.1. Solution to Problem 1. We only know that a and b assume values in the respective closed intervals A = [0.1, 1.0]
and B = [0.0, 1.0]. Hence, we have the vacuous lower prevision PA on L (A ) and the vacuous lower prevision PB on
L (B). Using Proposition 1, we find that the lower prevision P representing the available information about the value of
(a, b) is given by:

P(Z) = (PA×INE PB) (Z) = (PA×TI PB) (Z) = inf
(α,β)∈A×B

Z(α, β),

for each Z in L (A ×B). Eq. (9) tells us that the lower prevision Py representing the available information about the
output y is then given by

Py(U) = inf
(α,β)∈A×B

U(f(α, β)),

for all gambles U on Y . This lower prevision can be used as a starting point for further inference and decision problems
involving the value of the output y. As an illustration, we calculate the lower prevision Py(1Y ) = P(f) and upper
prevision Py(1Y ) = P(f) of the output y, where 1Y is the identity map on Y .4 We get

P(f) = 0.692201 and P(f) = 2.

5.2. Solution to Problem 4. We know that a assumes a value in the closed interval A = [0.1, 1.0], and that b is log-
normally distributed, ln b ∼ N(µ, σ), with parameters µ ∈ M = [0.0, 1.0] and σ ∈ S = [0.1, 0.5]. Hence, we have as
appropriate models the vacuous lower prevision PA on L (A ) and, as argued in Section 2.5, a lower envelope over M
and S:

Q(X) = inf
(µ,σ)∈M×S

∫
B

Xφµ,σdλ = inf
µ∈M

inf
σ∈S

∫
B

Xφµ,σdλ,

for each integrable gambleX on B, with φµ,σ the log-normal distribution and λ the Lebesgue measure on the reals. Since
the model Q for the parameter b has the Bayesian sensitivity analysis interpretation, we have argued in Section 3.5 that

4The reader will perhaps object that 1Y is not bounded, and therefore not a gamble. But we have shown elsewhere [12, 13] that this difficulty can
be circumvented, and we shall not go any deeper into this matter here.
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the appropriate product to use is the type-I product. But since PA is vacuous, this product coincides with the independent
natural extension, by Theorem 1, and it is given by

P(Z) =
(
PA×TI Q

)
(Z) =

(
PA×INE Q

)
(Z) = inf

α∈A
inf
µ∈M

inf
σ∈S

∫
B

Z(α, ·)φµ,σdλ,

for each gamble Z ∈ L (B) such that Z(α, ·) is integrable for every α ∈ A . The lower prevision Py representing the
available information about the output y is then given by

Py(U) = inf
α∈A

inf
µ∈M

inf
σ∈S

∫
B

U (f(α, ·))φµ,σdλ,

for all gambles U on Y such that U (f(α, ·)) is integrable for all α ∈ A . In particular, using the monotonicity of the
integral

∫
B f(α, ·)φµ,σdλ with respect to α, µ and σ, we easily find the following values for the lower and the upper

prevision of the output y:
P(f) = 1.00966 and P(f) = 4.08022.

5.3. Solution to Problem 6. We know that a assumes a value in the closed interval A = [0.1, 1.0], and that b is log-
normally distributed, ln b ∼ N(µ, σ), with parameters µ = 0.5 and σ = 0.5. Hence, we have as appropriate models the
vacuous lower prevision PA on L (A ) and the linear prevision

Q(X) =
∫

B

Xφµ,σdλ,

for each integrable gamble X on B, with φµ,σ the log-normal distribution and λ the Lebesgue measure on the reals.
By Theorem 1, or alternatively by Theorem 2, the independent natural extension and the type-I product of PA and Q
coincide, and the lower prevision P representing the available information about the parameters (a, b) is given by:

(PA×INE Q) (Z) = (PA×TI Q) (Z) = inf
α∈A

∫
B

Z(α, ·)φµ,σdλ

for each gamble Z ∈ L (B) such that Z(α, ·) is integrable for every α ∈ A . The available information about the output
y is modelled by the lower prevision Py , where

Py(U) = inf
α∈A

∫
B

U (f(α, ·))φµ,σdλ

for all gambles U on Y such that U (f(α, ·)) is integrable for all α in A . In particular, using the monotonicity of∫
B f(α, ·)φµ,σdλ with respect to α, we find for the lower and upper prevision of the output y:

P(f) = 1.05939 and P(f) = 2.86825.

6. COMBINATION OF ASSESSMENTS

Whereas Problems 1, 4 and 6 involve only a single assessment for each parameter, problems 2, 3 and 5 also involve
different and possibly conflicting assessments about the same parameter. In order to solve these problems, we now aim at
finding ways of combining multiple lower previsions defined on gambles on the same parameter space into a single lower
prevision. To arrive at a joint uncertainty model for all the parameters we can combine lower previsions on each parameter
separately and apply one of the product rules described in Section 3. We could alternatively first construct all products
between lower previsions on different parameters, and then combine these products. In general, even more scenarios are
possible.

However, the order in which we apply combination and product rules is not prescribed, and we therefore should demand
that this order has no influence on the final result. We call this the order of combination invariance principle: the joint
should not depend on the order in which combinations and products are applied. Our approach satisfies this principle (see
Propositions 4, 5, 6 and 7).

In order to fix terminology and notation, suppose we have n (male) agents, called the experts. Their assessments about
the value that a parameter ω assumes in a set of possible values Ω are expressed through coherent lower previsions Pk on
some subset Kk of L (Ω), for k = 1, . . . , n. We show how these lower previsions can be combined into a single coherent
lower prevision defined on the set of gambles L (Ω).

6.1. Consistency and conjunction. Consider a new (female) agent, called the modeller. She wishes to aggregate all the
assessments Pk to a single lower prevision PM defined on L (Ω). Say that she trusts an expert’s assessment Pk whenever
she is willing to accept every decision he makes, that is, whenever she is willing to accept his price s for buying X as
her price for buying X , and this for each gamble X ∈ Kk and each buying price s < Pk(X). We immediately have the
following result.

Theorem 3. The modeller trusts an expert’s assessment Pk if and only if her coherent lower prevision PM point-wise
dominates Pk on its domain Kk.

This leads to the notion of consistency of the expert assessments Pk.

Definition 2. If there is at least one coherent lower prevision that point-wise dominates the coherent lower previsions Pk

on their respective domains Kk for k = 1, . . . , n, then these lower previsions Pk are called consistent.
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It is not difficult to show that if the Pk are consistent, then there is (point-wise) smallest coherent lower prevision that
dominates all the Pk on their respective domains Kk. This coherent lower prevision is called the conjunction of the Pk

and is denoted by unk=1Pk. By Theorem 3, it is the smallest, or most conservative, coherent lower prevision on L (Ω)
that the modeller can have such that she still trusts each of the experts. The conjunction of two consistent coherent lower
previsions P1 and P2 is also denoted by P1 u P2. By the theorem given below, the conjunction is an associative and
commutative operator, and hence, it satisfies the order of combination invariance principle.

Theorem 4. Consider, for each of the coherent lower previsions Pk defined on the set Kk, the set of dominating linear
previsions

M(Pk) = {P ∈ P(Ω): (∀X ∈ Kk)(Pk(X) ≤ P(X))} .
Then the (Pk)nk=1 are consistent if and only if

n⋂
k=1

M(Pk) 6= ∅.

In that case, the conjunction unk=1Pk is the lower envelope of this intersection: for all gambles X on Ω,

(unk=1Pk) (X) = inf

{
P(X) : P ∈

n⋂
k=1

M(Pk)

}
.

Proof. The first part of the theorem is immediate if we recall that a coherent lower prevision is always dominated by some
linear prevision, and that a linear prevision is in particular a coherent lower prevision.

To prove the second part, assume that the (Pk)nk=1 are consistent. Then it suffices to show that

M(unk=1Pk) =
n⋂
k=1

M(Pk).

Assume that the linear prevision P belongs to
⋂n
k=1M(Pk). Then it dominates all of the Pk on their domains, and

therefore, since it is in particular a coherent lower prevision, it also dominates smallest coherent lower prevision unk=1Pk

that dominates all of the Pk on their domains. So P belongs toM(unk=1Pk).
Conversely, assume that P belongs toM(unk=1Pk), i.e., it dominates unk=1Pk. Since unk=1Pk dominates all of the

Pk on their domains, so does P , and consequently P is an element of
⋂n
k=1M(Pk). �

Theorem 5. Assume that the domain Kk of the coherent lower prevision Pk is a linear space for each k ∈ {1, . . . , n}.
Consider the map E assigning to each gamble Z on Ω the (possibly infinite) real number

(10) E (Z) = sup
Xk∈L (Ω)

{
α ∈ R : Z − α ≥

n∑
k=1

[Xk − Pk(Xk)]

}
,

If E (Z) = +∞ for some Z (and hence for all Z), then the lower previsions (Pk)nk=1 are inconsistent. Otherwise, the
conjunction unk=1Pk coincides with E on all gambles on Ω.

Proof. We first show that E dominates Pk on Kk, for all k ∈ {1, . . . , n}. To see this, let Z ∈ Kk and let Xk = Z and
X` = 0 for all ` ∈ {1, . . . , n} \ {k} in Eq. (10).

Next, let F be another coherent lower prevision that dominates each Pk on its domain Kk. Then we show that F also
dominates E . Indeed, for any gamble Z on Ω,

E (Z) = sup
Xk∈Kk

{
α ∈ R : Z − α ≥

n∑
k=1

[Xk − Pk(Xk)]

}

≤ sup
Xk∈Kk

{
α ∈ R : α ≤ F

(
Z −

n∑
k=1

[Xk − Pk(Xk)]

)}

≤ sup
Xk∈Kk

[
F (Z)−

n∑
k=1

F (Xk − Pk(Xk))

]
≤ F (Z),

where we used the coherence of F and the fact that F (Xk) ≥ P(Xk) for all Xk ∈ Kk.
It is now easily checked that provided that E is everywhere finite, it is a coherent lower prevision, and therefore

coincides with the conjunction.
To complete the proof, assume first that the conjunction exists. Denote this conjunction by F . Then F is coherent and

dominates each P i. But then F must dominate E too, as we already showed before. Hence, if the conjunction exists,
E (Z ) ≤ F (Z ) 6= +∞ for all gambles Z on Ω, or equivalently, if E (Z ) = +∞ for some gamble Z on Ω then the
conjunction does not exist.

Finally, if E (Z ) = +∞ for some gamble Z on Ω, then it must hold that

(∀α ∈ R)(∃Xk ∈ Kk)

(
Z − α ≥

n∑
k=1

[Xk − Pk(Xk)]

)
.
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Now, observe that since gambles are is bounded, this condition is equivalent to

(∀α ∈ R)(∃Xk ∈ Kk)

(
Y − α ≥

n∑
k=1

[Xk − Pk(Xk)]

)
,

for any other gamble Y on Ω. Hence, it holds indeed that E (Z) = +∞ for some gamble Z if and only if E (Y ) = +∞
for any gamble Y . �

If the consistent coherent lower previsions Pk have a common domain K then the conjunction E can also be derived
as the natural extension to L (A ×B) of the lower prevision PC defined on K by

PC(X) =
n

max
k=1

Pk(X), for all X ∈ K .

Observe that the Pk are consistent if and only if PC avoids sure loss.
Let us now take a closer look at a number of interesting special cases.

6.2. Conjunction of vacuous lower previsions. If the modeller trusts all the experts’ assessments ‘ω ∈ T1’, . . . , ‘ω ∈
Tn’ then she should at least conclude that ‘ω ∈

⋂
i∈I Ti’. This is the essence of the following proposition.

Proposition 2. Consider the non-empty subsets Tk, k = 1, . . . , n of Ω, and the associated vacuous lower previsions PTk

on L (Ω). Let T =
⋂n
k=1 Tk. Then the PTk

are consistent if and only if T 6= ∅. If the PTk
are consistent, then their

conjunction is equal to the vacuous lower prevision PT on Ω relative to the intersection T .

Proof. First, assume that T = ∅. Then the PTk
cannot be consistent. Indeed, assume that there is a coherent lower

prevision R that point-wise dominates them. Since
⋃
i∈I {Ti = Ω, it follows from the coherence of R that

−1 = R(−1) = R

(
−
∑
i∈I

I{Ti

)
≥
∑
i∈I

R
(
−I{Ti

)
≥
∑
i∈I

PTi

(
−I{Ti

)
= 0,

a contradiction. This means that the PTk
are inconsistent.

Conversely, assume that T 6= ∅. Then PT is a coherent lower prevision, and it point-wise dominates all the PTk
: for

each k and each X in L (Ω),
PT (X) = inf

ω∈T
X(ω) ≥ inf

ω∈Tk

X(ω) = PTk
(X).

This means that the PTk
are consistent. Now let R be any coherent lower prevision on Ω that dominates all the PTk

. It
now only remains to show that R ≥ PT . Indeed, let X be any gamble. Then it is always possible to find λk ≥ 0 such that

inf

[
X +

n∑
k=1

λk {Tk

]
= min

{
inf
ω∈T

X(ω),
n

min
k=1

[
λk + inf

ω∈{Tk

X(ω)
]}

= inf
ω∈T

X(ω) = PT (X).

Consequently, taking into account the coherence of R, and the fact that R
(
−I{Tk

)
≥ PTk

(
−I{Tk

)
= 0, whence also

R
(
−
∑n
k=1 λkI{Tk

)
≥ 0, and consequently

R(X) ≥ R(X)− R

(
−

n∑
k=1

λkI{Tk

)
= R(X) + R

(
n∑
k=1

λkI{Tk

)

≥ R

(
X +

n∑
k=1

λkI{Tk

)
≥ inf

[
X +

n∑
k=1

λkI{Tk

]
= PT (X).

Thus PT is indeed the smallest coherent lower prevision that point-wise dominates all of the Pk. �

Proposition 3. Let P be any coherent lower prevision with domain K and let PΩ the vacuous lower prevision relative
to Ω. Then P u PΩ = E , where E is the natural extension of P to L (Ω).

Proof. The proof is immediate if we recall that any coherent lower prevision P point-wise dominates PΩ on its domain
K . �

6.3. Products of conjunctions. The conjunction distributes over the two independent products we have defined previ-
ously. So, using conjunction to combine expert assessments on common domains, and independent natural extension
or type-I product to combine expert assessments on different domains, the order of combination invariance principle is
satisfied.

Proposition 4. For each k = 1,. . . ,n and each ` = 1,. . . ,m, let Pk be a coherent lower prevision defined on the
linear subspace Fk of L (A ) and let Q

`
be a coherent lower prevision defined on the linear subspace G` of L (B).

Then consistency of (Pk ×INE Q
`
)k,` is equivalent to consistency of both (Pk)nk=1 and (Q

`
)m`=1, and in such a case the

following equality holds:

(11) uk,`
(
Pk ×INE Q

`

)
=
(
unk=1Pk

)
×INE

(
um`=1Q`

)
.
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Proof. Let us, for convenience, define the inconsistent lower prevision on Ω as I (Z) = +∞ for all gambles Z on Ω.
In this way, the conjunction is always defined and the formula for conjunction, Eq. (10), always holds, whether the
assessments are consistent or not (if they are not, it is equal to I ). Also let the independent natural extension be the
inconsistent lower prevision whenever at least one of the factors is the inconsistent lower prevision. Then both sides of
Eq. (11) are well defined and if we can prove equality, equivalence of consistency follows naturally.

Let P denote the conjunction of (Pk)nk=1 (i.e., the usual conjunction if they are consistent, and +∞ otherwise).
Similarly, let Q denote the conjunction of (Q

`
)n`=1.

Let Z be any gamble on Ω = A ×B. Using the definition of independent natural extension (Eq. (6)), we have that

(12)
(
P ×INE Q

)
(Z) = sup

X ,Y∈L (Ω)

{
γ ∈ R : Z − γ ≥ X − P(X ) + Y −Q(Y )

}
Note that this equation holds whether both (Pk)nk=1 and (Q

`
)m`=1 are consistent or not because the right hand side is +∞

(independently of Z) in case of inconsistency, conforming with our definition of the inconsistent lower prevision.
From the formula for conjunction (Eq. (10)), we know that, for any X ∈ L (Ω), and any β ∈ B,

P(X(·, β)) = sup
Xk∈Fk

{
η ∈ R : X(·, β)− η ≥

n∑
k=1

[Xk − Pk(Xk)]

}
(13)

Again, this holds whether the (Pk)nk=1 are consistent or not. We now consider two cases.
(1) If both (Pk)nk=1 and (Q

`
)m`=1 are consistent, it is instructive to rewrite Eq. (13) as follows:

(14)

(∀X ∈ L (Ω))(∀β ∈ B)(∀ε > 0)(∀k)(∃Uk,X,β,ε ∈ Fk)

(
X(·, β)− P(X(·, β)) + ε ≥

n∑
k=1

[Uk,X,β,ε − Pk(Uk,X,β,ε)]

)
Using (14), and a similar expression for Q(Y (a, ·)), we find that

(15) (∃X,Y ∈ L (Ω))(Z − γ ≥ X − P(X) + Y −Q(Y ))

implies that

(16) (∀ε > 0)(∃Xk ∈ F k)(∃Y` ∈ G `)

(
Z − γ ≥

n∑
k=1

[Xk − Pk(Xk)]− ε+
m∑
`=1

[
Y` −Q

`
(Y`)

]
− ε

)
,

for any gamble Z on Ω and any γ ∈ R. From this implication, (15) =⇒ (16), we may infer that the right hand
side of (12) is less than or equal to

(17) 2ε+ sup
Xk∈Fk

Y`∈G `

{
γ ∈ R : Z − γ ≥

n∑
k=1

[Xk − Pk(Xk)] +
m∑
`=1

[
Y` −Q

`
(Y`)

]}
,

for every ε > 0. Now also observe that

(18) (∃Xk ∈ F k)(∃Y` ∈ G `)

(
Z − γ ≥

n∑
k=1

[Xk − Pk(Xk)] +
m∑
`=1

[
Y` −Q

`
(Y`)

])
implies (15). Indeed, take X =

∑n
k=1Xk and Y =

∑n
k=1 Y`, and use the fact that P ≥ Pk on F k and Q ≥ Q

`

on G `, e.g.:
n∑
k=1

[Xk − Pk(Xk)] = X −
n∑
k=1

Pk(Xk) ≥ X −
n∑
k=1

P(Xk)

≥ X − P

(
n∑
k=1

Xk

)
= X − P(X).

From this implication, (18) =⇒ (15), we may infer that the right hand side of (12) is greater or equal to

(19) sup
Xk∈Fk

Y`∈G `

{
γ ∈ R : Z − γ ≥

n∑
k=1

[Xk − Pk(Xk)] +
m∑
`=1

[
Y` −Q

`
(Y`)

]}
.

Thus, since that the right hand side of (12) is less or equal to (17) for every ε > 0, and greater or equal to (19),
we must conclude that it is equal to (19).

(2) In case that the (Pk)nk=1 are inconsistent, we may rewrite Eq. (13) as

(∀β ∈ B)(∀η ∈ R)(∀k)(∃Uk,X,β,η ∈ Fk)

(
Z(·, β)− η ≥

n∑
k=1

[Uk,X,β,η − Pk(Uk,X,β,η)]

)
.

In particular, taking Xk(·, β) = Uk,X,β,η and Y` = 0, we find that

(∀γ ∈ R)(∀k)(∃Xk ∈ F k)(∀`)(∃Y` ∈ G `)

(
Z − γ ≥

n∑
k=1

[Xk − Pk(Xk)] +
m∑
`=1

[
Y` −Q

`
(Y`)

])
.
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Hence, in this case, (19) is equal to +∞, which is also equal to the right hand side of (12).
(3) A similar argument shows that the equality also holds if the (Q

`
)m`=1 are inconsistent.

Hence, we showed that, in all cases, (19) is equal to the right hand side of (12)
Now, by the definition of independent natural extension, equation (6), it holds that(

Pk ×INE Q
`

)
(Zk`) = sup

X∈Fk

Y ∈G `

{
γk` ∈ R : Zk` − γk` ≥ X − Pk(X) + Y −Q

`
(Y )
}
.

for any gamble Zk` on Ω. It is instructive to rewrite this equality as follows:

(20) (∀ε > 0)(∃Uε ∈ F k)(∃Vε ∈ G `)
(
Zk` −

(
Pk ×INE Q

`

)
(Zk`) + ε ≥ Uε − Pk(Uε) + Vε −Q

`
(Vε)

)
.

Using (20) we find that

(21) (∃Zk` ∈ L (Ω))

Z − γ ≥∑
k,`

[
Zk` −

(
Pk ×INE Q

`

)
(Zk`)

]
implies that

(∀ε > 0)(∃Xk` ∈ F k)(∃Yk` ∈ G `)

Z − γ ≥∑
k,`

[
Xk` − Pk(Xk`) + Yk` −Q

`
(Yk`)− ε

] ,

which implies that

(22) (∀ε > 0)(∃Xk ∈ F k)(∃Yk ∈ G `)

(
Z − γ + nmε ≥

n∑
k=1

[Xk − Pk(Xk)] +
m∑
`=1

[
Y` −Q

`
(Y`)

])
.

Indeed, take Xk =
∑m
`=1Xk` and Y` =

∑n
k=1 Yk`, and use the fact that, e.g.,

m∑
`=1

[Xk` − Pk(Xk`)] = Xk −
m∑
`=1

Pk(Xk`) ≥ Xk − Pk

(
m∑
`=1

Xk`

)
= Xk − Pk(Xk)

Now, the implication (21) =⇒ (22) implies that (19) is greater or equal to

(23) − nmε+ sup
Zk`∈L (Ω)

γ ∈ R : Z − γ ≥
∑
k,`

[
Zk` −

(
Pk ×INE Q

`

)
(Zk`)

]
for any ε > 0. Also

(24) (∃Xk ∈ F k)(∃Y` ∈ G `)

(
Z − γ ≥

n∑
k=1

[Xk − Pk(Xk)] +
m∑
`=1

[
Y` −Q

`
(Y`)

])

implies (21). Indeed, taking Zk` = 1
m (Xk − Pk(Xk)) + 1

n

(
Y` −Q

`
(Y`)

)
we find that(

Pk ×INE Q
`

)
(Zk`) ≥

1
m

(
Pk ×INE Q

`

)
(Xk − Pk(Xk)) +

1
n

(
Pk ×INE Q

`

)
(Y` −Q

`
(Y`)) ≥ 0.

The last inequality follows from the fact that, e.g.,(
Pk ×INE Q

`

)
(Xk − Pk(Xk)) = sup

X∈Fk

Y ∈G `

{
η ∈ R : Xk − Pk(Xk)− η ≥ X − Pk(X) + Y −Q

`
(Y )
}

≥ sup {η ∈ R : Xk − Pk(Xk)− η ≥ Xk − Pk(Xk)} = 0.

Hence, for this choice of Zk` we have that
n∑
k=1

[Xk − Pk(Xk)] +
m∑
`=1

[
Y` −Q

`
(Y`)

]
=
∑
k,`

Zkl ≥
∑
k,`

[
Zk` −

(
Pk ×INE Q

`

)
(Zk`)

]
,

which establishes (24) =⇒ (21). This implication implies that (19) is less or equal to

(25) sup
Zk`∈L (Ω)

γ ∈ R : Z − γ ≥
∑
k,`

[
Zk` −

(
Pk ×INE Q

`

)
(Zk`)

]
Thus, if (19) is greater or equal to (23) for all ε > 0 and less or equal to (25), then it must be equal to (25). But (25) is
exactly equal to uk,`

(
Pk ×INE Q

`

)
(Z), no matter whether the (Pk ×INE Q

`
)k,` are consistent or not. �

16



Proposition 5. Let Pk be a coherent lower prevision defined on a linear subspace Fk of L (A ), k = 1, . . . , n, and let
Q
`

be a coherent lower previsions defined on a linear subspace G` of L (B), ` = 1, . . . ,m. Then the (Pk ×TI Q
`
)k,`

are consistent if and only if both the (Pk)nk=1 and (Q
`
)m`=1 are, and in such a case, the following equality holds:

(26) uk,`
(
Pk ×TI Q

`

)
= (unk=1Pk)×TI

(
um`=1Q`

)
.

Proof. The proof is immediate if we recall that(
n⋂
k=1

M(Pk)

)
×

(
m⋂
`=1

M(Q
`
)

)
=

n⋂
k=1

m⋂
`=1

[
M(Pk)×M(Q

`
)
]
.

The equality holds too whenever either side is equal to the empty set; this establishes equivalence of consistency. �

6.4. Combination of conflicting assessments. If the assessments (Pk)nk=1 are conflicting—if there exists no conjunction—
then there is no coherent way to accept every decision of every expert, since the modeller incurs a sure loss if she would do
so: using Theorem 5 it is easily established that in case of inconsistency there are gambles Xk ∈ Kk such that (compare
with Eq. (1))

(27) sup
ω∈Ω

[
n∑
k=1

[Xk(ω)− Pk(Xk)]

]
< 0,

i.e., the combination of the transactions in which the gambles Xk are bought for a price Pk(Xk) leads to a loss, whatever
the actual value of the parameter a. Blindly accepting decisions of all the experts (Pk)nk=1 is clearly unacceptable in case
of inconsistency.

This issue can be resolved using hierarchical models. In order to avoid sure loss, this procedure must somehow involve
the weakening of some of the decisions of at least some of the experts. This can be done for instance by only accepting
particular decisions at some prescribed rate r strictly less than one. But we do not know how much the experts’ decisions
can be weakened.

We propose a simpler and more straightforward method, based on the principle that there should be at least one of the
experts that provides a reasonable model. Briefly, in case of inconsistency the modeller is certain that some of the experts’
assessments (Pk)nk=1 cannot be trusted, but she does not necessarily know which ones. Therefore, instead of looking for
an aggregate that implies trust to all experts—a conjunction—we now look for an aggregate that is trusted by all experts.
This is reasonable if we assume that at least one of the experts has a reasonable model.

Say that an expert trusts the modeller whenever he is willing to accept every decision she makes, that is, whenever he
is willing to accept her price s for buying X as his price for buying X , and this for each gamble X on Ω and each buying
price s < PM (X). We have the following result.

Theorem 6. The modeller is trusted by an expert if and only if the natural extension Ek of his assessment Pk point-wise
dominates her coherent lower prevision PM on L (Ω).

We need to consider the natural extension Ek because Pk may not be defined on all gambles, which may complicate
comparison with PM .

Now define the disjunction of (Pk)nk=1 as the largest, or least conservative, coherent lower prevision that the modeller
can have, such that all of the experts still agree with her decisions. By Theorem 6, this is the (point-wise) largest coherent
lower prevision that is dominated by all of the experts’ natural extensions (Ek)nk=1. This way of combining lower
previsions is also called the unanimity rule [14, Section 4.3.9].

It is easy to see that the disjunction always exists (see Theorem 7 below). We shall denote the disjunction of n
coherent lower previsions (Pk)nk=1 by tnk=1Pk, and the disjunction of two coherent lower lower previsions P1 and P2

by P1 t P2. By the next theorem, the disjunction is an associative and commutative operator, and hence, it satisfies the
order of combination invariance principle.

Theorem 7. Let Ek be the natural extension of the coherent lower prevision Pk, and letM(Pk) be its set of dominating
linear previsions, for each k ∈ {1, . . . , n}. Then for each gamble Z on Ω:

(28) (tnk=1Pk) (Z) =
n

min
k=1

Ek(Z) = inf

{
P(Z) : P ∈

n⋃
k=1

M(Pk)

}
.

Proof. For notational convenience, let E = minnk=1 Ek. It is obvious that E is the largest functional on L (Ω) that is
point-wise dominated by all the Ek. Since it is a point-wise minimum of coherent lower previsions, E is a coherent lower
prevision, which proves the first equality. The proof of the second equality is now immediate: for each gamble Z on Ω,

inf

{
P(Z) : P ∈

n⋃
k=1

M(Pk)

}
= inf

n⋃
k=1

{P(Z) : P ∈M(Pk)} =
n

min
k=1

inf {P(Z) : P ∈M(Pk)} =
n

min
k=1

Ek(Z). �

Obviously, if the modeller only accepts those decisions which are supported by all the experts, her model is going to
be at most as precise as the least precise expert only. Disjunction, in contradistinction to conjunction, aims at reconciling
all the experts’ assessments. Therefore, if the assessments are highly conflicting, any reconciliation of them will be highly
imprecise. This is illustrated by Eq. (28). We therefore suggest the following general strategy:
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(i) if the experts are consistent, the modeller takes their conjunction unk=1Pk as her coherent lower prevision,
(ii) if they are not, this points to the fact that the modeller cannot trust all of the experts, so she should try to find out

what experts she really can trust, and then discard those experts which she does not trust,
(iii) if the remaining experts, say (Pk)n

′

k=1 with n′ ≤ n, are consistent, she takes their conjunction un′k=1Pk as her
coherent lower prevision,

(iv) if there is still inconsistency, she reconciles the remaining experts by taking the disjunction tn′k=1Pk of the remaining
assessments as her coherent lower prevision.

Discarding experts will lead to less precise results in case of consistency (smaller conjunction), but may increase precision
in case of inconsistency (larger disjunction). There is no unique solution in case of inconsistency: everything depends on
how much information is available about the reliability of the given information.

6.5. Products of disjunctions. The disjunction also distributes over the two independent products we have introduced.
Hence, we obtain order of combination invariance for disjunction and independent natural extension, and disjunction and
the type-I product.

Proposition 6. For all k = 1, . . . , n, let Pk be a coherent lower prevision defined on the linear subspace Fk of L (A )
containing all constant gambles, and for all ` = 1, . . . ,m, let Q

`
be a coherent lower prevision defined on the linear

subspace G` of L (B) containing all constant gambles. Then the following equality holds:

(29) tk,`
(
Pk ×INE Q

`

)
=
(
tnk=1Pk

)
×INE

(
tm`=1Q`

)
.

Proof. Consider a gamble Z on A ×B. Using Eqs. (28) and (6) we find that(
tnk=1Pk

)
×INE

(
tm`=1Q`

)
(Z) = sup

X,Y ∈L (A×B)

{
γ : Z − γ ≥ X −

(
n

min
k=1

Ek

)
(X) + Y −

(
m

min
`=1

F `

)
(Y )
}
,

where Ek is the natural extension of Pk and F ` is the natural extension of Q
`
. Now observe that

(30) Z − γ ≥ X −
(

n
min
k=1

Ek

)
(X) + Y −

(
m

min
`=1

F `

)
(Y )

is equivalent to

(∀(α, β) ∈ A ×B)
(
Z(α, β)− γ ≥ X(α, β)−

n
min
k=1

Ek(X(·, β)) + Y (α, β)−
m

min
`=1

F `(Y (α, ·))
)
,

which is also equivalent to

(∀(α, β) ∈ A ×B) (∀k, `) (Z(α, β)− γ ≥ X(α, β)− Ek(X(·, β)) + Y (α, β)− F `(Y (α, ·))) ,

which can also be written as

(31) (∀k, `) (Z − γ ≥ X − Ek(X) + Y − F k(Y )) .

Using the equivalence of (30) and (31), we find that(
tnk=1Pk

)
×INE

(
tm`=1Q`

)
(Z) = sup

X,Y ∈L (Ω)

{γ : (∀k, `) (Z − γ ≥ X − Ek(X) + Y − F `(Y ))} .

Next, observe that, since Pk(X) = Ek(X) for X ∈ F k, and similarly for Q
`
,

(32) (∀k, `)
(
∃Xk ∈ F k, Y` ∈ G `

) (
Z − γ ≥ Xk − Pk(Xk) + Y` −Q

`
(Y`)

)
implies that

(33) (∃X,Y ∈ L (A ×B)) (∀k, `) (Z − γ ≥ X − Ek(X) + Y − F `(Y )) .

Indeed, let X = 1
n+m

∑n
k=1Xk and Y = 1

n+m

∑m
`=1 Y`, and observe that for this choice

Ek(X) = Pk(X) ≥ 1
n+m

n∑
k=1

Pk(Xk) and F `(Y ) = Q
`
(Y ) ≥ 1

n+m

m∑
`=1

Q
`
(Y`).

for all k and `. Thus, if (32) is satisfied then

Z − γ ≥
∑
k,`

[Xk − Pk(X) + Y − P `(Y )] ≥ X − Ek(X) + Y − F `(Y ),

for all k and `, which means that (33) must hold too. Consequently,
(34)(
tnk=1Pk

)
×INE

(
tm`=1Q`

)
(Z) ≥ sup

{
γ : (∀k, `)

(
∃Xk ∈ F k, Y` ∈ G `

) (
Z − γ ≥ Xk − Pk(Xk) + Y` −Q

`
(Y`)

)}
.

To prove the converse inequality, we recall that (see [14, Section 3.1.4])

Ek(X(·, β)) = sup
U∈Fk

U≤X(·,β)

Pk(U(·, β)) = sup
U∈Fk
U≤X

Pk(U(·, β))
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and similarly
F `(Y (α, ·)) = sup

V ∈G`

V≤Y (α,·)

Q
`
(V (α, ·)) = sup

V ∈G `
V≤Y

Q
`
(V (α, ·)).

Consequently,

(∀ε > 0)(∀k, `)(∀X,Y ∈ L (A ×B))
(
∃Uε,k,X ∈ F k

) (
∃Vε,`,Y ∈ G `

)(
Uε,k,X ≤ X , Pk(Uε,k,X) + ε ≥ Ek(X), Vε,`,Y ≤ Y and Q

`
(Vε,`,Y ) + ε ≥ F `(Y )

)
.

But this means that (33) implies that

(∀ε > 0)(∀k, `)
(
∃Xk ∈ F k

) (
∃Y` ∈ G `

) (
Z − γ ≥ Xk − Pk(Xk)− ε+ Y` −Q

`
(Y`)− ε

)
[identify Xk with Uε,k,X and Y` with Vε,`,Y ]. From this implication we infer that(
tnk=1Pk

)
×INE

(
tm`=1Q`

)
(Z) ≤ 2ε+sup

{
γ : (∀k, `)

(
∃Xk ∈ F k

) (
∃Y` ∈ G `

) (
Z − γ ≥ Xk − Pk(Xk) + Y` −Q

`
(Y`)

)}
for all ε > 0, and hence also for ε = 0. We may thus infer that(
tnk=1Pk

)
×INE

(
tm`=1Q`

)
(Z) = sup

{
γ : (∀k, `)

(
∃Xk ∈ F k

) (
∃Y` ∈ G `

) (
Z − α ≥ Xk − Pk(Xk) + Y` −Q

`
(Y`)

)}
.

If we now define the Ak,` as the subsets{
α ∈ R :

(
∃Xk ∈ F k

) (
∃Y` ∈ G `

) (
Z − α ≥ Xk − Pk(Xk) + Y` −Q

`
(Y`)

)}
of the reals, then we can rewrite this as(

tnk=1Pk

)
×INE

(
tm`=1Q`

)
(Z) = sup

⋂
k,`

Ak,`.

Since the Ak,` are down-sets [if α1 ∈ Ak,` and α2 ≤ α1 then also α2 ∈ Ak,`], it follows that

sup
⋂
k,`

Ak,` = min
k,`

supAk,`.

Now observe that the right hand side is equal to
(
tk,`

(
Pk ×INE Q

`

))
(Z). �

Proposition 7. Let Pk be a coherent lower prevision defined on the linear subspace Fk of L (A ), k = 1, . . . , n, and let
Q
`

be a coherent lower prevision defined on the linear subspace G` of L (B), ` = 1, . . . ,m. Then the following equality
holds:

(35) tk,`
(
Pk ×TI Q

`

)
= (tnk=1Pk)×TI

(
tm`=1Q`

)
.

Proof. The proof is an immediate consequence of Theorem 7 if we recall that(
n⋃
k=1

M(Pk)

)
×

(
m⋃
`=1

M(Q
`
)

)
=

n⋃
k=1

m⋃
`=1

[
M(Pk)×M(Q

`
)
]
. �

7. SOLUTIONS TO PROBLEMS 2, 3 AND 5

The additional difficulty in Problems 2, 3 and 5 is that there are a number of experts, or sources, giving information
about the parameters a and b. In the formulation of the problem set [11], nothing is said about how these experts are related:
an expert for a and an expert for b might be same person, or they may be different people. We take the independence
assumption in [11] stating that “knowledge about the value of one parameter implies nothing about the value of the other”
to refer to all the experts: their assessments about the values of one parameter, are in no way influenced by (their own or
other experts’) assessments about the values of the other parameter. This means that for each a-expert and each b-expert,
we can take an independent product of the lower previsions modelling their assessments, and then combine these products
using conjunction, or if there is inconsistency, using disjunction. But the results in Propositions 4, 5, 6 and 7 tell us that
we get the same result if we first combine, for each parameter, the information about its value coming from the different
experts, and then take an independent product: our approach satisfies the order of combination invariance principle.

7.1. Solution to Problem 2. The argument in Section 2.3 tells us that the expert assessment A = [a1, a2] is described by
the coherent vacuous lower prevision PA defined on L (A ), and that the expert assessments Bj = [bj1, b

j
2] are described

by the coherent vacuous lower previsions PBj
defined on L (B) (j = 1, . . . , 4). Let us first look at the case that the PBj

are consistent, or equivalently, by Proposition 2, that
⋂4
j=1Bj 6= ∅. We then find for the lower prevision P modelling the

available information about the pair (a, b) that, again using Proposition 2 and also Propositions 1, 4 and 5:

P = u4
j=1

(
PA×INE PBj

)
= u4

j=1

(
PA×TI PBj

)
= PA×INE

(
u4
j=1PBj

)
= PA×TI

(
u4
j=1PBj

)
= PA×(T4

j=1 Bj).

The available information about the output y is then represented by the coherent lower prevision Py , where

Py(U) = inf
α∈A

inf
β∈

T4
j=1 Bj

U(f(α, β)),
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for all gambles U on Y . As an illustration, we can calculate the lower prevision P(f) and the upper prevision P(f) of
the system output y, for the given subproblems 2a and 2b.

Problem 2a. With A× ∩4
j=1Bj = [0.1, 1.0]× [0.6, 0.8], we find that

P(f) = 0.956196 and P(f) = 1.8.

Problem 2b. With A× ∩4
j=1Bj = [0.1, 1.0]× [0.6, 0.7], we find that

P(f) = 0.956196 and P(f) = 1.7.

In Problem 2c, the lower previsions PB1
, . . . , PB4

on L (B) are inconsistent, as B1 ∩ B2 ∩ B3 = ∅. Applying
disjunction, this leads to the following lower prevision P , using Propositions 1, 6 and 7,

P = t4
j=1

(
PA×INE PBj

)
= t4

j=1

(
PA×TI PBj

)
= PA×INE

(
t4
j=1PBj

)
= PA×TI

(
t4
j=1PBj

)
= PA×(S4

j=1 Bj).

The information about the output y is now represented by the coherent lower prevision Py , where

Py(U) = inf
α∈A

inf
β∈

S4
j=1 Bj

U(f(α, β)),

for all gambles U on Y . As an illustration, we can calculate the lower prevision P(f) and the upper prevision P(f) of
the system output y.

Problem 2c. With A×
⋃4
j=1Bj = [0.1, 1.0]× [0.0, 1.0], we find that

P(f) = 0.692201 and P(f) = 2.

7.2. Solution to Problem 3. Using the results of Section 2.3, the expert assessments Ai = [ai1, a
i
2] are described by the

coherent vacuous lower previsions PAi
defined on L (A ) (i = 1, . . . , 3), and the expert assessments Bj = [bj1, b

j
2] by

the coherent vacuous lower previsions PBj
defined on L (B) (j = 1, . . . , 4). We first consider the case that the PAi

and
PBj

are consistent, or equivalently, by Proposition 2, that
⋂3
i=1Ai 6= ∅ and

⋂4
j=1Bj 6= ∅. We then find for the lower

prevision P modelling the available information about the pair (a, b) that, using Proposition 2 and Propositions 1, 4 and 5:

P = ui=1,··· ,3
j=1,··· ,4

(
PAi
×INE PBj

)
= ui=1,··· ,3

j=1,··· ,4

(
PAi
×TI PBj

)
=
(
u3
i=1PAi

)
×INE

(
u4
j=1PBj

)
=
(
u3
i=1PAi

)
×TI

(
u4
j=1PBj

)
= P(T3

i=1 Ai)×(T4
j=1 Bj).

The available information about the output y is represented by the coherent lower prevision Py , where

Py(U) = inf
α∈

T3
i=1 Ai

inf
β∈

T4
j=1 Bj

U(f(α, β)),

for all gambles U on Y . As an illustration, we give the lower prevision P(f) and the upper prevision P(f) of the output,
for the subproblems 3a and 3b.

Problem 3a. For (
⋂3
i=1Ai)× (

⋂4
j=1Bj) = [0.5, 0.7]× {0.6}, we find

P(f) = 1.04881 and P(f) = 1.2016.

Problem 3b. For (
⋂3
i=1Ai)× (

⋂4
j=1Bj) = [0.5, 0.6]× {0.6}, we find that

P(f) = 1.04881 and P(f) = 1.1156.

In Problem 3c, the lower previsions corresponding with the different expert assessments PAi
and PBj

are conflicting,
since

⋂3
i=1Ai =

⋂4
j=1Bj = ∅. The modeller has no additional information regarding the reliability of any of the sources;

she considers all of the assessments equally credible and applies the disjunction rule to all of them:

P = ti=1,··· ,3
j=1,··· ,4

(
PAi
×INE PBj

)
= ti=1,··· ,3

j=1,··· ,4

(
PAi
×TI PBj

)
=
(
t3
i=1PAi

)
×INE

(
t4
j=1PBj

)
=
(
t3
i=1PAi

)
×TI

(
t4
j=1PBj

)
= P(S3

i=1 Ai)×(S4
j=1 Bj).

The available information about the output y is represented by the coherent lower prevision Py , where

Py(U) = inf
α∈

S3
i=1 Ai

inf
β∈

S4
j=1 Bj

U(f(α, β)),

for all gambles U on Y . As an illustration, we give the lower prevision P(f) and the upper prevision P(f) of the output.

Problem 3c. We find that
P(f) = 0.692201 and P(f) = 2.

20



7.3. Solution to Problem 5. Using the results of Section 2.3, the assessments Ai = [ai, ai] are described by the vacuous
lower previsions PAi

on L (A ) (i = 1, . . . , 3), the assessments Mj = [µj1, µ
j
2] by the vacuous lower previsions PMj

on
L (M ) (j = 1, . . . , 3), and the assessments Sk = [σk1 , σ

k
2 ] by the vacuous lower previsions PSk

on L (S ) (k = 1, . . . , 3).
Information about the value of the parameter b in B is derived from information about µ and σ through the common
sampling model, ln b ∼ N(µ, σ), and using the marginal extension theorem (see Section 2.5.2).

Let us first concentrate on the information about the parameter b. When combining the assessments about the values
of the parameters µ and σ, there are in principle two possible ways to proceed:

(i) first obtain, for each expert, the marginal extensions based on his assessments of the values of µ and σ, and then
combine these marginal extensions;

(ii) first combine the different experts’ assessments about the values of µ and σ, and then calculate the marginal exten-
sion.

The two strategies are not equivalent; in fact, for the types of combination we have studied, it turns out that the second
strategy gives more precise results (i.e., the resulting buying prices are higher). This is not entirely unexpected, as the
second strategy leads to more precise results because it involves additional assumptions: the experts use the same sampling
model and make assessments about the same sampling model parameters. Since this is precisely the case in the problem
under study, we have opted for the second strategy.

We first consider Problems 5a and 5b, where the lower previsions PAi
, the lower previsions PMj

, and the lower
previsions PSk

are consistent, because
⋂3
i=1Ai 6= ∅,

⋂3
j=1Mj 6= ∅ and

⋂3
k=1 Sk 6= ∅, see Proposition 2.

We can then model the information about the parameters µ and σ by the following lower prevision on L (M ×S ):

uj=1,··· ,3
k=1,··· ,3

(
PMj

×INE PSk

)
= uj=1,··· ,3

k=1,··· ,3

(
PMj

×TI PSk

)
=
(
u3
j=1PMi

)
×INE

(
u3
k=1PSk

)
=
(
u3
j=1PMj

)
×TI

(
u3
k=1PSk

)
= P(T3

j=1Mj)×(T3
k=1 Sk).

Using the results of Section 2.5, we find that the information about the value of the parameter b can then be modelled by
the lower prevision Q , where

Q(Y ) = inf
µ∈

T3
j=1Mj

inf
σ∈

T3
k=1 Sk

∫
B

Y φµ,σdλ,

for all integrable gambles Y on B. This lower prevision has the Bayesian sensitivity analysis interpretation.
By Proposition 2, the conjunction of the sources Ai is the vacuous lower prevision PT3

i=1 Ai
. By Proposition 1, the

type-I product of this conjunction with the lower prevision Q coincides with their independent natural extension, and it is
given by the lower prevision P , where

P(Z) = inf
α∈

T3
i=1 Ai

inf
µ∈

T3
j=1Mj

inf
σ∈

T3
k=1 Sk

∫
B

Z(α, ·)φµ,σ(·)dλ

for all gambles Z on A ×B such that Z(α, ·) is integrable for all α in A .
The available information about the output y is represented by the coherent lower prevision Py , where

Py(U) = inf
α∈

T3
i=1 Ai

inf
µ∈

T3
j=1Mj

inf
σ∈

T3
k=1 Sk

∫
B

U (f(α, ·))φµ,σ(·)dλ

for all gambles U on Y such that U (f(α, ·)) is integrable for all α in A . As an illustration, we give the lower prevision
P(f) and the upper prevision P(f) of the system output y.

Problem 5a. With
⋂3
i=1Ai = [0.5, 0.7],

⋂3
j=1Mj = [0.6, 0.8] and

⋂3
k=1 Sk = [0.3, 0.4] we find that

P(f) = 1.54027 and P(f) = 2.19107.

Problem 5b. With
⋂3
i=1Ai = [0.5, 0.6],

⋂3
j=1Mj = [0.6, 0.7] and

⋂3
k=1 Sk = [0.3, 0.35] we find that

P(f) = 1.54027 and P(f) = 1.81496.

In Problem 5c, all the experts give conflicting information about the parameters a, µ and σ, as
⋂3
i=1Ai =

⋂3
j=1Mj =⋂3

k=1 Sk = ∅, see Proposition 2. As discussed above, we first combine the expert assessments M1, . . . , M3 and S1,
. . . , S3. Both µ-sources and σ-sources are conflicting, so we combine them separately using disjunction and take their
independent product. We find the following lower prevision on L (M ×S ), representing the available information about
(µ, σ):

P (
S3

i=1Mi)×(
S3

i=1 Si)
.

This lower prevision has the Bayesian sensitivity analysis interpretation.
The sources A1, . . . , A3 are conflicting too, so we use disjunction. We find the lower prevision PS3

i=1 Ai
on L (A ).

Applying the marginal extension theorem, and taking the independent product—independent natural extension and type-I
product coincide—we eventually find that the available information about (a, b) can be modelled by the lower prevision
P , where

P(Z) = inf
α∈

S3
i=1 Ai

inf
µ∈

S3
j=1Mj

inf
σ∈

S3
k=1 Sk

∫
B

Z(α, ·)φµ,σ(·)dλ
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for all gambles Z on A ×B such that Z(α, ·) is integrable for all α in A .
The available information about the output y is represented by the coherent lower prevision Py , where

Py(U) = inf
α∈

S3
i=1 Ai

inf
µ∈

S3
j=1Mj

inf
σ∈

S3
k=1 Sk

∫
B

U (f(α, ·))φµ,σ(·)dλ

for all gambles U on Y such that U (f(α, ·)) is integrable for all α in A . As an illustration, we give the lower prevision
P(f) and the upper prevision P(f) of the system output y.

Problem 5c. For
⋃3
i=1Ai = [0.1, 1.0],

⋃3
j=1Mj = [0.0, 1.0] and

⋃3
k=1 Sk = [0.1, 0.2]∪ [0.25, 0.35]∪ [0.4, 0.5], we find

that
P(f) = 1.00966 and P(f) = 4.08022.

8. CONCLUSION

We have argued extensively that the theory of coherent lower previsions is eminently suited for solving the first set of
problems posed in [11]. For easy reference, and in order to allow easy comparison with other solution methods, we have
listed the calculated lower and upper previsions P(f) and P(f) for the output y in Table 1. We want to emphasise that
these numbers are by no means the only information that our models provide. In fact the lower previsions Py we have
given as solutions in Sections 5 and 7 contain much more information than just these two numbers, and they can also be
used to in decision making and estimation problems. But we feel a more extensive discussion of these issues to be beyond
the scope of the modelling challenges presented in [11].

problem P(f) P(f)

1 0.692201 2.0
2a 0.956196 1.8
2b 0.956196 1.7
2c 0.692201 2.0
3a 1.04881 1.2016
3b 1.04881 1.1156
3c 0.692201 2.0
4 1.00966 4.08022
5a 1.54027 2.19107
5b 1.54027 1.81496
5c 1.00966 4.08022
6 1.05939 2.86825

TABLE 1. Lower and upper previsions for the output y calculated using our imprecise probability mod-
els for the available information
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editors, Soft Methods in Probability, Statistics and Data Analysis, Advances in Soft Computing, pages 146–155. Physica-Verlag, New York, 2002.

[14] P. Walley. Statistical Reasoning with Imprecise Probabilities. Chapman and Hall, London, 1991.
[15] P. Walley and T. L. Fine. Varieties of modal (classificatory) and comparative probability. Synthese, 41:321–374, 1979.
[16] L. A. Zadeh. Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems, 1:3–28, 1978.

22


	1. Introduction
	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6

	2. Imprecise probability models for the value of a parameter
	2.1. Importance of a common mathematical model
	2.2. Coherent lower previsions: a behavioural uncertainty model
	2.3. Vacuous information
	2.4. Bayesian information
	2.5. Bayesian information with vacuous parameters

	3. Products
	3.1. Natural extension
	3.2. Independent natural extension
	3.3. Type-I product
	3.4. Products with a vacuous lower prevision
	3.5. Products with a linear prevision

	4. Inference
	5. Solutions to Problems 1, 4 and 6
	5.1. Solution to Problem 1
	5.2. Solution to Problem 4
	5.3. Solution to Problem 6

	6. Combination of assessments
	6.1. Consistency and conjunction
	6.2. Conjunction of vacuous lower previsions
	6.3. Products of conjunctions
	6.4. Combination of conflicting assessments
	6.5. Products of disjunctions

	7. Solutions to Problems 2, 3 and 5
	7.1. Solution to Problem 2
	7.2. Solution to Problem 3
	7.3. Solution to Problem  5

	8. Conclusion
	References

