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Abstract

This paper studies and bounds the effects of approximating loss functions and credal
sets on choice functions, under very weak assumptions. In particular, the credal set
is assumed to be neither convex nor closed. The main result is that the effects of
approximation can be bounded, although in general, approximation of the credal
set may not always be practically possible. In case of pairwise choice, I demonstrate
how the situation can be improved by showing that only approximations of the
extreme points of the closure of the convex hull of the credal set need to be taken
into account, as expected.
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1 Introduction

Classical decision theory tells a decision maker to choose that option which max-
imises his expected utility. A generalisation of this principle is compelling when
the probabilities and utilities relevant to the problem are not well known. Choice
functions are one such generalisation, and select a set of optimal options: instead
of pointing to a single solution based on possibly wrong assumptions, choice func-
tions provide a set of optimal options. The decision maker can then investigate
further if the set is too large, or not, if for instance the optimal set is a singleton,
or if a single option from the set stands out from the rest by other arguments.
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However, in modelling decision problems, we often afford ourselves the luxury of
infinite spaces and infinite sets, making those problems sometimes hard to solve
analytically. In such cases we must resort to computers, and these cannot handle
random variables on infinite spaces, let alone arbitrary infinite sets of probabilities.
Hence, in that case we must approximate our infinite sets by finite ones. By taking
the finite sets sufficiently large, hopefully the approximation reflects the true result
accurately. This paper confirms this intuition when modelling choice functions
induced by arbitrary (not necessarily convex) sets of probabilities and a single
cardinal utility, extending similar results known in classical decision theory [1,2].

The paper is organised as follows. Section 2 introduces notation, and briefly reviews
the theory of coherent choice functions and their role in decision theory. In Section 3
the building blocks for a theory of approximation are introduced, along with some
useful results on what they imply for loss functions, sets of probabilities, and
expected utility. The main part of the paper begins in Section 4, studying and
bounding the effects of approximation on coherent choice functions. Section 5
improves the results of the previous section for pairwise choice. Section 6 concludes
the paper. Some essential but technical results on approximating the standard
simplex in Rn are deferred to an appendix.

2 Choice Functions

Let Ω denote an arbitrary set of states. Bounded random quantities on Ω, i.e.
bounded maps from Ω to R, are also called gambles [3], and will be denoted by
f , g, . . . L(Ω) denotes the set of all gambles on Ω. Finitely additive probability
measures, or briefly probability charges [4], are denoted by P , Q, . . . and P(Ω)
denotes the set of all probability charges on the power set ℘(Ω) of Ω.

In a decision problem, we desire to choose an optimal option d from a set D of
options. Choosing d induces an uncertain reward r from a set R of rewards, with
probability charge µd(·|w) over ℘(R), depending on the outcome of the uncertain
state w ∈ Ω. For each w ∈ Ω, µd(·|w) is a lottery over R, and as a function of w,
µd(·|·) : w 7→ µd(·|w) is a horse lottery or act.

If we model our belief about states and rewards by a probability charge P on ℘(Ω)
and a state dependent utility function U(·|w) on R, then utility theory [5,6,7] tells
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us to choose a decision d which maximises the expected utility, or prevision:

E(d) =
∫

Ω

(∫
R
U(r|w) dµd(r|w)

)
dP (w)

=
∫

Ω
fd(w) dP (w)

where fd(w) =
∫
R U(r|w) dµd(r|w) is the gamble associated with decision d, and

the integrals are Dunford integrals [4]. For simplicity, in this paper, we assume
U(r|w) to be bounded, i.e.

sup
r,w

U(r|w)− inf
r,w
U(r|w) < +∞

Among other things, this ensures that relative approximation can be defined, as
in Section 3, without technical complications.

A decision which maximises expected utility is called a Bayes decision for the
decision problem (Ω, D, P, U).

However, if we are not sure about the probability of all events and the utility of all
rewards, a more reliable design is to use a family (Pα, Uα)α∈ℵ of probability-utility
pairs (where ℵ is an arbitrary index set), and to elicit from D those options which
maximise expected utility with respect to at least one of the pairs (Pα, Uα). First,
for each α ∈ ℵ, let

Eα(d) =
∫

Ω
fαd (w) dPα(w)

where fαd (w) =
∫
R Uα(r|w) dµd(r|w) is the gamble associated with decision d and

model α ∈ ℵ. Then we define:

Definition 1 A decision d ∈ D is called an optimal decision for the decision
problem (Ω, D, (Pα, Uα)α∈ℵ) if d belongs to the set

opt(Ω, D, (Pα, Uα)α∈ℵ) = {d ∈ D : (∃α ∈ ℵ)(∀e ∈ D)(Eα(d) ≥ Eα(e))}

=

{
d ∈ D : (∃α ∈ ℵ)

(
Eα(d) = sup

e∈D
Eα(e)

)}

As such, the operator opt selects a set of optimal decisions, namely all decisions
which are Bayes with respect to (Ω, D, Pα, Uα) for at least one α ∈ ℵ. Such an
operator is called a choice function or optimality operator [8,9].

In case (Pα, Uα)α∈ℵ =M×U for some convex setsM and U , optimality as defined
above is also called E-admissibility [10, Sec. 4.8].
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There are many ways to define a choice function starting from a set (Pα, Uα)α∈ℵ
(see [10,11,3,12,9]). The one in Definition 1 satisfies an interesting set of axioms
[12,13], and is the subject of a representation theorem in case utility is precise
and state independent (i.e. if Uα(r|w) depends neither on α nor on w) and Ω is
finite (for infinite Ω the representation theorem is subject to additional constraints,
which preclude merely finitely additive probabilities over Ω) [13].

For the sake of simplicity, we shall only be concerned about decision problems with
precise and state independent utility functions, i.e. when (Pα, Uα)α∈ℵ =M×{U}
with U : R→ R a bounded state independent utility over R and

M = {Pα : α ∈ ℵ}

The set M is called a credal set as it represents our belief about w ∈ Ω. We can
identify M itself as index set, and write

EP (d) =
∫

Ω
fd(w) dP (w)

with fd(w) =
∫
R U(r) dµd(r|w), for any P ∈M.

Finally, defining the loss function L : D×Ω→ R as L(d, w) = −fd(w), the expected
value EP (d) is uniquely determined by P and L alone: we need not be concerned
explicitly with R, µd(r|w), and U(r).

3 Approximate Gambles, Probabilities, and Previsions

Let A = {A1, . . . , An} denote a finite partition of Ω. As we approximate Ω by
the finite set A, we also need to approximate decisions, gambles, and probability
charges on Ω.

Let ε ≥ 0. For a gamble f in L(Ω) and a gamble f̂ in L(A), we shall write f ∼ε f̂
if

max
A∈A

sup
w∈A

∣∣∣f(w)− f̂(A)
∣∣∣ ≤ [sup f − inf f ]ε

Note that f ∼ε f̂ implies af + b ∼ε af̂ + b, for any real numbers a and b, a > 0.
Therefore, the relation ∼ε is invariant with respect to positive linear transforma-
tions of utility: it only depends on our preferences over lotteries, and not on our
particular choice of utility scale.
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For a probability charge P in P(Ω), and a probability charge P̂ in P(A), we shall
write P ∼ε P̂ if ∑

A∈A

∣∣∣P (A)− P̂ (A)
∣∣∣ ≤ ε

Note that this implies |P (A) − P̂ (A)| ≤ ε for any A ∈ ℘(A). Also note the
differences between the definitions of ∼ε for gambles and bounded charges.

For a loss function L on D × Ω and a loss function L̂ on D ×A we write L ∼ε L̂
if for all d ∈ D

fd ∼ε f̂d
(with fd(w) = −L(d, w) and f̂d(A) = −L̂(d,A)).

For a subsetM of P(Ω) and a subset M̂ of P(A), we writeM∼ε M̂ if for every
P in M there is a P̂ in M̂ such that P ∼ε P̂ , and for every P̂ in M̂ there is a P
in M such that P ∼ε P̂ .

A few useful results about approximations are stated in the next lemmas.

Lemma 2 Assume that D is finite. Then, for every loss function L on D×Ω and
every ε > 0, there is a finite partition A of Ω and a loss function L̂ on D×A such
that L ∼ε L̂ and |A| ≤ (1 + 1/ε)|D|.

PROOF. Consider any d inD, and let Rd = sup fd−inf fd. Because fd is bounded,
we can embed the range of fd in k intervals I1, . . . , Ik of length Rdε, say

[inf fd, inf fd +Rdε), [inf fd +Rdε, inf fd + 2Rdε),

. . . , [inf fd + (k − 1)Rdε, inf fd + kRdε)

with k such that sup fd ∈ Ik. Therefore, inf fd+(k−1)Rdε ≤ sup fd < inf fd+kRdε
and hence k − 1 ≤ 1/ε < k. Observe that k is independent of d ∈ D.

The sets A1, . . . , Ak defined by

Aj = f−1
d (Ij)

form a finite partition Ad = {Aj : Aj 6= ∅} of cardinality |Ad| ≤ k ≤ 1 + 1/ε and

the gamble f̂d ∈ L(Ad) defined by

f̂d(Ai) = inf
w∈Ai

fd(w)
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Table 1
Upper bound on log10(|A|), i.e. the logarithm of the cardinality of the finite partition A
for various values of precision ε > 0 and number of decisions (see Lemma 2).

ε:

0.2 0.1 0.05 0.02 0.01

|D|: 2 1.6 2.1 2.6 3.4 4.0

4 3.1 4.2 5.3 6.8 8.0

8 6.2 8.3 10.6 13.7 16.0

16 12.5 16.7 21.2 27.3 32.1

32 24.9 33.3 42.3 54.6 64.1

satisfies

sup
w∈Aj

∣∣∣fd(w)− f̂d(Aj)
∣∣∣ = sup

fd(w)∈Ij

∣∣∣∣∣fd(w)− inf
fd(w)∈Ij

fd(w)

∣∣∣∣∣
≤ sup Ij − inf Ij = Rdε

for all Aj ∈ Ad; hence fd ∼ε f̂d. Defining L̂(d,A) = −f̂d(A) for all d ∈ D, we have

L ∼ε L̂.

The finite collection of partitions {Ad : d ∈ D} has a smallest common refinement
A. Since each Ad has no more than 1 + 1/ε elements, A has no more than (1 +
1/ε)|D| elements. Indeed, two partitions of cardinalities k1 and k2 respectively have
a smallest common refinement of cardinality no more than k1k2. By induction,
n partitions of cardinalities k1, . . . , kn have a smallest common refinement of
cardinality no more than

∏n
j=1 kj and hence,

|A| ≤ (1 + 1/ε)|D|

Table 1 lists upper bounds on the size of the partition, to ensure L ∼ε L̂, for
various values of ε and |D|, according to Lemma 2.

Let
(
a
b

)
be the binomial coefficient, defined for all real numbers a ≥ b ≥ 0 by

(
a

b

)
=

Γ(a+ 1)

Γ(b+ 1)Γ(a− b+ 1)

with Γ the Gamma function.
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Lemma 3 For every subset M of P(Ω), every δ > 0, and every finite partition A
of Ω, there is a finite subset M̂ of P(A) such thatM∼δ M̂ and |M̂| ≤

(
|A|(1+1/δ)
|A|−1

)
.

PROOF. Consider any P in M. Let n = |A| and let the elements of A be A1,
. . . , An. Consider the vector x = (P (A1), . . . , P (An)) in ∆n. Let N be the smallest
natural number such that N ≥ n/δ.

By Lemma 13 in the appendix, there is a vector y in ∆n
N such that

|x− y|1 < n/N ≤ δ

Define P̂ in P(A) by

P̂ (Ai) = yi

for all i ∈ {1, . . . , n}—by finite additivity, P̂ is well defined on ℘(A). By construc-
tion, P ∼δ P̂ because

n∑
i=1

∣∣∣P (Ai)− P̂ (Ai)
∣∣∣ = |x− y|1 < δ

Approximating each P in M in this manner, the set

M̂ = {P̂ : P ∈M}

is finite as each of its elements corresponds to an element of the finite set ∆n
N , and

therefore |M̂| ≤ |∆n
N |. By Lemma 12 in the appendix,

|M̂| ≤
(
N + n− 1

N

)
=

(
N + n− 1

n− 1

)

≤
(
n/δ + 1 + n− 1

n− 1

)
=

(
|A|(1 + 1/δ)

|A| − 1

)

The second inequality follows from the fact that
(
a
b

)
is strictly increasing in a, for

fixed b (for integer a and b this follows immediately from Pascal’s triangle; the
general case follows from the properties of the Gamma function).

Table 2 lists upper bounds on the cardinality of M̂ on a logarithmic scale, for
some values of |A| and δ. The cardinality grows enormously fast with increasing
|A| and 1/δ. Within the range of Table 2, an exponential trend is obvious. The
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Table 2
Upper bound on log10(|M̂|), i.e. the logarithm of the cardinality of the finite set of
probability charges M̂, for various values of precision δ > 0 and cardinality of the
partition |A| (see Lemma 3).

δ:

0.2 0.1 0.05

|A|: 4 3.3 4.1 5.0

8 7.9 9.8 11.8

12 12.5 15.5 18.7

16 17.1 21.3 25.6

20 21.8 27.1 32.6

24 26.4 32.9 39.5

28 31.1 38.6 46.5

32 35.8 44.4 53.4

log10(|A|): 0.7 4.4 5.5 6.7

1.4 27.6 34.3 41.3

2.1 144.6 179.5 215.5

2.8 731.3 906.8 1088.2

3.5 3666.1 4544.7 5452.8

4.2 18341.5 22735.9 27277.5

4.9 91719.7 113693.0 136402.5

table shows that the influence of |A| is much larger than the influence of δ: more
precisely, doubling |A| increases |M̂| by far more than halving δ.

Next, we study the effect on the expectation if both gambles and probabilities
are approximated. Let us use the notation EP (f) =

∫
Ω f(w) dP (w). In the lemma

below, assume 0 < ε < 1/2.

Lemma 4 For every finite partition A of Ω, every f ∈ L(Ω), f̂ ∈ L(A), P ∈
P(Ω), and P̂ ∈ P(A), the following implications hold. If f ∼ε f̂ and P ∼δ P̂ then

∣∣∣EP (f)− EP̂ (f̂)
∣∣∣ ≤ [sup f − inf f ](ε+ δ(1 + 2ε))
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and ∣∣∣EP (f)− EP̂ (f̂)
∣∣∣ ≤ [sup f̂ − inf f̂ ]

(
ε

1− 2ε
+ δ

)

PROOF. Let R = sup f−inf f , R̂ = sup f̂−inf f̂ , and write infA f for infw∈A f(w)
and supA f for supw∈A f(w). Then

∣∣∣EP (f)− EP̂ (f̂)
∣∣∣ =

∣∣∣∣∣∑
A∈A

(∫
A
f dP − f̂(A)P̂ (A)

)∣∣∣∣∣
and since P (A) infA f ≤

∫
A f dP ≤ P (A) supA f , there is an rA ∈ [infA f, supA f ]

such that P (A)rA =
∫
A f dP , and hence

=

∣∣∣∣∣∑
A∈A

(
rAP (A)− f̂(A)P̂ (A)

)∣∣∣∣∣
but, because |f(w) − f̂(A)| ≤ Rε for all w ∈ A, and infA f ≤ rA ≤ supA f ,

it must also hold that |rA − f̂(A)| ≤ Rε, so
∣∣∣∑A∈A

(
rAP (A)− f̂(A)P (A)

)∣∣∣ ≤∑
A∈A

∣∣∣rA − f̂(A)
∣∣∣P (A) ≤ ∑A∈ARεP (A) = Rε, whence

≤
∣∣∣∣∣∑
A∈A

(
f̂(A)P (A)− f̂(A)P̂ (A)

)∣∣∣∣∣+Rε

=

∣∣∣∣∣∑
A∈A

f̂(A)
(
P (A)− P̂ (A)

)∣∣∣∣∣+Rε

and because
∑
A∈A(P (A)− P̂ (A)) = 0,

=

∣∣∣∣∣∑
A∈A

(f̂(A)− inf f̂)
(
P (A)− P̂ (A)

)∣∣∣∣∣+Rε

≤
∑
A∈A

(f̂(A)− inf f̂)
∣∣∣P (A)− P̂ (A)

∣∣∣+Rε

≤ (sup f̂ − inf f̂)
∑
A∈A

∣∣∣P (A)− P̂ (A)
∣∣∣+Rε

≤ R̂δ +Rε

and since R(1 + 2ε) ≥ R̂ ≥ R(1− 2ε)

≤

R(1 + 2ε)δ +Rε = R(ε+ δ(1 + 2ε))

R̂δ + R̂ε/(1− 2ε) = R̂ (ε/(1− 2ε) + δ)
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Fig. 1. Upper bound on log10 |M̂| for various values of ε, with ε+ δ = 0.2 and |D| = 2.
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Let us now investigate what is the most optimal choice for ε > 0 and δ > 0. The
cardinality of M̂ is of largest concern as it grows enormously fast with increasing
cardinality of the finite partition A and with increasing precision 1/δ (see Table 2).
Therefore, as a first step, let us see how we can minimise |M̂|, assuming a fixed
relative error ε+δ on the expectation (see Lemma 4)—omitting higher order terms
in ε and δ to simplify the analysis.

We wish to minimise the upper bound (neglecting lower order terms)(
(1/(ε|D|δ)

1/ε|D|

)

on |M̂| along the ε–δ-curve γ(ε, δ) = ε + δ = γ∗. Figure 1 demonstrates a typical
case: the ε–δ-ratio has a large impact on the upper bound of |M̂|. In particular,
the curve grows extremely large for small ε, because a small ε corresponds to a
large partition A, and the cardinality of the partition has a huge impact on the
cardinality of M as shown in Table 2.

4 Approximate Choice

Let us now consider again the decision problem (Ω, D,M, L) with state space Ω,
decision space D, credal set M, and loss function L, and reflect upon how the
results in the previous section could be of use in finding the optimal decisions
opt(Ω, D,M, L). Can we still find the optimal decisions after approximating the
loss function L and the set of probabilities M?
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As we admit a relative error on gambles and probabilities, and therefore also on
previsions, we should admit a relative error on the choice function as well. Let RD

be defined by (recall that fd(w) = −L(d, w))

RD = sup
d∈D

[sup fd − inf fd]

Definition 5 Let ε ≥ 0. A decision d in D is called an ε-optimal decision for the
decision problem (Ω, D,M, L) if it belongs to the set

optε(Ω, D,M, L) =

{
d ∈ D : (∃P ∈M)

(
sup
e∈D

EP (e)− EP (d) ≤ εRD

)}

Note that

optε(Ω, D,M, aL+ b) = optε(Ω, D,M, L)

for any real numbers a and b, a > 0. In other words, optε(Ω, D,M, L) is invariant
with respect to positive linear transformations of utility: ε-optimality does not
depend on our choice of utility scale.

Clearly,

opt(Ω, D,M, L) ⊆ optε(Ω, D,M, L)

because

optε(Ω, D,M, L) ⊆ optδ(Ω, D,M, L)

whenever ε ≤ δ, and

opt0(Ω, D,M, L) = opt(Ω, D,M, L)

In approximating a decision problem (Ω, D,M, L), we start with a finite partition
A, consider a (possibly finite) set M̂ such that M ∼δ M̂, and approximate the
loss L(d, w) by a loss L̂(d,A) such that L ∼ε L̂.

Theorem 6 Consider two decision problems (Ω, D,M, L) and (A, D,M̂, L̂). If
L ∼ε L̂ and M∼δ M̂ then, for any γ ≥ 0,

optγ(Ω, D,M, L) ⊆ opt
γ

1−2ε
+2( ε

1−2ε
+δ)(A, D,M̂, L̂) (1)

and

optγ(A, D,M̂, L̂) ⊆ optγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L) (2)
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PROOF. We prove Eq. (1). Let d ∈ optγ(Ω, D,M, L). Then

sup
e∈D

EP (fe)− EP (fd) ≤ γRD (3)

for some P ∈M. Let P̂ be such that P ∼δ P̂ . Because, by Lemma 4,∣∣∣∣∣sup
e∈D

EP̂ (f̂e)− sup
e′∈D

EP (fe′)

∣∣∣∣∣ ≤ sup
e∈D

∣∣∣EP̂ (f̂e)− EP (fe)
∣∣∣

≤ sup
e∈D

[sup f̂e − inf f̂e](ε/(1− 2ε) + δ)

= (ε/(1− 2ε) + δ)R̂D (4)

it follows that

sup
e∈D

EP̂ (f̂e)− EP̂ (f̂d) ≤ sup
e∈D

EP (fe)− EP̂ (f̂d) + (ε/(1− 2ε) + δ)R̂D

and again by Lemma 4,

≤ sup
e∈D

EP (fe)− EP (fd) + 2(ε/(1− 2ε) + δ)R̂D

and by Eq. (3),

≤ γRD + 2(ε/(1− 2ε) + δ)R̂D

≤ [γ/(1− 2ε) + 2(ε/(1− 2ε) + δ)]R̂D

hence, d ∈ optγ/(1−2ε)+2(ε/(1−2ε)+δ)(A, D,M̂, L̂).

Next, we prove Eq. (2). Let d ∈ optγ(A, D,M̂, L̂). Then

sup
e∈D

EP̂ (f̂e)− EP̂ (f̂d) ≤ γR̂D (5)

Because, by Lemma 4,∣∣∣∣∣sup
e∈D

EP̂ (f̂e)− sup
e′∈D

EP (fe′)

∣∣∣∣∣ ≤ sup
e∈D

∣∣∣EP̂ (f̂e)− EP (fe)
∣∣∣

≤ sup
e∈D

[sup fe − inf fe](ε+ δ(1 + 2ε))

= (ε+ δ(1 + 2ε))RD (6)

we have that

sup
e∈D

EP (fe)− EP (f) ≤ sup
e∈D

EP̂ (f̂e)− EP (f) + (ε+ δ(1 + 2ε))RD
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and again by Lemma 4,

≤ sup
e∈D

EP̂ (f̂e)− EP̂ (f̂e) + 2(ε+ δ(1 + 2ε))RD

and by Eq. (5)

≤ γR̂D + 2(ε+ δ(1 + 2ε))RD

≤ [γ(1 + 2ε) + 2(ε+ δ(1 + 2ε))]RD

so d ∈ optγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L).

If we ignore higher order terms in γ, ε, and δ, then the above theorem says that
when moving from an original decision problem to an approximate decision prob-
lem, or the other way around, with relative error ε in gambles and relative error δ
in probabilities, the relative error in optimality increases by 2(ε+ δ). For example,
for small ε and δ the following holds, up to a small error: if L ∼ε L̂ andM∼δ M̂,
then

opt(Ω, D,M, L) ⊆ opt2(ε+δ)(A, D,M̂, L̂) ⊆ opt4(ε+δ)(Ω, D,M, L)

So, the approximate problem with relative error 2(ε+ δ) will contain all solutions
to the original problem with no relative error, and will, so to speak, not contain
any solutions to the original problem with relative error over 4(ε+ δ). Because of
this property, opt2(ε+δ)(A, D,M̂, L̂) seems a logical choice when solving decision
problems in practice.

5 Pairwise Choice

Table 2 reveals that the size of the credal set is a serious computational bottleneck.
Therefore, it is worth investigating how the size of M̂ can be reduced, without
compromising the accuracy δ > 0. One way to this end is to restrict to pairwise
comparisons, i.e. using maximality (see Walley [3, Sec. 3.7–3.9]).
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5.1 Maximality

Definition 7 A decision d ∈ D is called a maximal decision for the decision
problem (Ω, D,M, L) if d belongs to the set

max(Ω, D,M, L) = {d ∈ D : (∀e ∈ D)(∃P ∈M) (EP (d) ≥ EP (e))}

Denote by co(M) the convex hull of M. Obviously it holds that

max(Ω, D,M, L) = max(Ω, D, co(M), L)

because for any λ ∈ [0, 1] and any two P and Q in M, the inequalities EP (d) ≥
EP (e) and EQ(d) ≥ EQ(e) imply the inequality

EλP+(1−λ)Q(d) ≥ EλP+(1−λ)Q(e)

This does not hold for optimality as defined in Definition 1: assuming Ω finite, for
any two distinct subsetsM andM′ of P(Ω), we can always find a set D and a loss
function L such that opt(Ω, D,M, L) 6= opt(Ω, D,M′, L) (see Kadane, Schervish,
and Seidenfeld [12, Thm. 1, p. 53]).

To understand why the above notion of optimality is called maximality, consider
the strict partial ordering > on D defined by

e > d ⇐⇒ (∀P ∈M) (EP (e) > EP (d))

for any d and e in D, that is, e is strictly preferred to d if e is strictly preferred to
d with respect to every P ∈M. Then,

max(Ω, D,M, L) = {d ∈ D : (∀e ∈ D)(e 6> d)}

so max(Ω, D,M, L) elects those decisions d which are undominated with respect
to >. Therefore, maximality can be expressed through pairwise preferences only—
again in contrast to opt(Ω, D,M, L) as for instance demonstrated by Kadane,
Schervish, and Seidenfeld [12, Sec. 4, p. 51].

However, because

opt(Ω, D,M, L) ⊆ max(Ω, D,M, L)

we may interpret max(Ω, D,M, L) as an approximation to opt(Ω, D,M, L), an
approximation which discards all preferences but the pairwise ones.
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Let us admit a relative error on the choice function max as well. Recall, RD =
supd∈D[sup fd − inf fd].

Definition 8 Let ε ≥ 0. A decision d in D is called an ε-maximal decision for
the decision problem (Ω, D,M, L) if it belongs to the set

maxε(Ω, D,M, L)

= {d ∈ D : (∀e ∈ D)(∃P ∈M)(EP (e)− EP (d) ≤ εRD)}

5.2 Approximating Extreme Points

It turns out that we can restrict our attention to the extreme points of the closure
of the convex hull of M, with respect to the topology of pointwise convergence
on members of L(Ω). This topology is characterised by the following notion of
convergence: for every directed set (A,≤) and every net (Pα)α∈A, we have that
limα Pα = P if

lim
α
EPα(f) = EP (f) for all f ∈ L(Ω)

Without further mention, I will assume this topology on P(Ω). See for instance
[14] for more information regarding nets [14, Chapter 7] and this topology [14,
§28.15].

There is a nice connection between the closure of M, denoted by cl(M), and
ε-optimality and ε-maximality.

Lemma 9 Assume that RD > 0 and let ε ≥ 0. For any decision problem (Ω, D,M, L),
the following equality holds:

maxε(Ω, D, cl(M), L) =
⋂
δ>0

maxε+δ(Ω, D,M, L) (7)

and if additionally D is finite, then the following equality holds as well:

optε(Ω, D, cl(M), L) =
⋂
δ>0

optε+δ(Ω, D,M, L) (8)

PROOF. We start with proving Eq. (7).

Assume d ∈ maxε(Ω, D, cl(M), L). Consider any e ∈ D. By assumption, there is
a P ∈ cl(M) such that EP (e)− EP (d) ≤ RDε. Because P ∈ cl(M), there is a net
(Pα ∈ M)α∈A such that limαEPα(f) = EP (f) for all gambles f . It follows that
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limαEPα(e) − limαEPα(d) ≤ RDε. This implies that for every δ > 0, there is an
α ∈ A such that EPα(e)−EPα(f) ≤ (ε+δ)RD. So, for every δ > 0, there is a P ∈M
such that EP (e)−EP (f) ≤ (ε+ δ)RD. Whence, because this holds for any e ∈ D,
d ∈ maxε+δ(Ω, D,M, L) for all δ > 0, and therefore, d ∈ ⋂δ>0 maxε+δ(Ω, D,M, L).

Conversely, assume d ∈ ⋂δ>0 maxε+δ(Ω, D,M, L). Consider any e ∈ D. Then, for
all δ > 0, there is a Pδ ∈ M such that EPδ(e) − EPδ(f) ≤ (ε + δ)RD. Hence, for
all n ∈ N, there is a Pn ∈M such that

EPn(e)− EPn(d) ≤ 1/n+ εRD (9)

For any m ∈ N, consider the following closed subset of P(Ω):

Rm = cl({Pn : n ≥ m})

The collection {Rm : m ∈ N} satisfies the finite intersection property. By the
Banach-Alaoglu-Bourbaki theorem [14, §28.29(UF26)] P(Ω) is compact, and hence

R = ∩m∈NRm

is non-empty as well [14, §17.2].

Take any R ∈ R. Since each Pn ∈ M, it follows that each Rm ⊆ cl(M),
and hence R ∈ cl(M). If we can show that ER(e) − ER(d) ≤ εRD, then d ∈
maxε(Ω, D, cl(M), L) is established.

Indeed, fix m ∈ N. Because R ∈ Rm, there is a net (Pnα)α∈A in {Pn : n ≥ m}—
so nα ≥ m, but nα is not necessarily an increasing function of α—such that
limαEPnα (fe − fd) = ER(fe − fd). Hence, for each γ > 0, there is an α ∈ A
such that ER(e) − ER(d) ≤ EPnα (e) − EPnα (d) + γ, and therefore by Eq. (9),
ER(e)− ER(d) ≤ 1/nα + εRD + γ. Because this inequality holds for every m and
every γ > 0, and nα ≥ m, it follows that ER(e)− ER(d) ≤ εRD.

Let us now prove Eq. (8), under the additional assumption that D is finite. The
proof goes along similar lines as the one for Eq. (7).

Assume d ∈ optε(Ω, D, cl(M), L). By assumption, there is a P ∈ cl(M) such
that EP (e) − EP (d) ≤ RDε for every e ∈ D. Because P ∈ cl(M), there is a net
(Pα ∈M)α∈A such that limαEPα(f) = EP (f) for all gambles f . In particular, there
is a net (Pα ∈M)α∈A such that limαEPα(e)− limαEPα(d) ≤ RDε for every e ∈ D.
So, for every e ∈ D and δ > 0, there is an αe,δ ∈ A such that EPα(e)− EPα(f) ≤
(ε + δ)RD for all α ≥ αe,δ. Because D is finite, there is an αδ such that αδ ≥ αe,δ
for all e ∈ D. Hence, for every δ > 0, there is a αδ ∈ A such that EPαδ (e) −
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EPαδ (f) ≤ (ε + δ)RD for every e ∈ D. Whence, because Pαδ ∈ M, it follows that

d ∈ optε+δ(Ω, D,M, L) for all δ > 0, and therefore, d ∈ ⋂δ>0 optε+δ(Ω, D,M, L).

Conversely, assume d ∈ ⋂δ>0 optε+δ(Ω, D,M, L). Then, for all δ > 0, there is a
Pδ ∈ M such that EPδ(e) − EPδ(f) ≤ (ε + δ)RD for every e ∈ D. Hence, for all
n ∈ N, there is a Pn ∈M such that for every e ∈ D

EPn(e)− EPn(d) ≤ 1/n+ εRD (10)

Now choose any R in
R = ∩m∈N cl({Pn : n ≥ m})

Similarly as before, it can be established thatR is non-empty and that R ∈ cl(M).
If we can show that ER(e)−ER(d) ≤ εRD for all e ∈ D, then d indeed belongs to
optε(Ω, D, cl(M), L) and the desired result is established.

Indeed, because R ∈ cl({Pn : n ≥ m}), for every e ∈ D, there is a net (Pnα,e)α∈A in
{Pn : n ≥ m}—so nα,e ≥ m—such that limαEPnα,e (fe − fd) = ER(fe − fd). Hence,
for every e ∈ D and every γ > 0, there is an α ∈ A such that ER(e) − ER(d) ≤
EPnα,e (e) − EPnα,e (d) + γ, and therefore by Eq. (10), ER(e) − ER(d) ≤ 1/nα,e +
εRD +γ. Because this inequality holds for every m and every γ > 0, and nα,e ≥ m,
it follows that ER(e)− ER(d) ≤ εRD for every e ∈ D.

In particular, assuming RD > 0, if for any δ > ε > 0

maxε(Ω, D,M, L) = maxδ(Ω, D,M, L)

then
maxε(Ω, D,M, L) = maxε(Ω, D, cl(M), L)

A similar result holds for the optε operator for finite D.

As a special case, Lemma 9 implies an interesting connection between maximality
and ε-maximality:

Corollary 10 Assume that RD > 0. For any decision problem (Ω, D,M, L), the
following equality holds:

max(Ω, D, cl(M), L) =
⋂
ε>0

maxε(Ω, D,M, L)

Again, a similar result holds for optimality and ε-optimality, in case D is finite.

In the following theorem, assume that 0 < ε < 1/2.
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Theorem 11 Consider two decision problems (Ω, D,M, L) and (A, D,M̂, L̂).
Assume that RD > 0. If L ∼ε L̂ and ext(cl(co(M))) ∼δ M̂ then, for any γ ≥ 0,

maxγ(Ω, D,M, L) ⊆
⋂
η>0

maxη+ γ
1−2ε

+2( ε
1−2ε

+δ)(A, D,M̂, L̂) (11)

maxγ(A, D,M̂, L̂) ⊆
⋂
η>0

maxη+γ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L) (12)

PROOF. First, note that

maxγ(Ω, D,M, L) = maxγ(Ω, D, co(M), L)

⊆ maxγ(Ω, D, cl(co(M)), L)

and by convexity of cl(co(M)) [14, §26.23] and the Krein-Milman theorem [15,
p. 74], the closed convex hull of ext(cl(co(M))) is cl(co(M)), so

= maxγ(Ω, D, cl(co(ext(cl(co(M))))), L)

and now by Corollary 10,

= ∩η>0maxγ+η(Ω, D, co(ext(cl(co(M)))), L)

= ∩η>0maxγ+η(Ω, D, ext(cl(co(M))), L)

Now apply the same argument as in the proof of Theorem 6 to recover Eq. (11).

To establish Eq. (12), again use the same argument as in the proof of Theorem 6,

maxγ(A, D,M̂, L̂) ⊆ maxγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D, ext(cl(co(M))), L)

⊆ maxγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D, cl(co(ext(cl(co(M))))), L)

and again by the Krein-Milman theorem [15, p. 74], the closed convex hull of
ext(cl(co(M))) is cl(co(M)), so

= maxγ(1+2ε)+2(ε+δ(1+2ε))(Ω, D, cl(co(M)), L)

=
⋂
η>0

maxη+γ(1+2ε)+2(ε+δ(1+2ε))(Ω, D, co(M), L)

=
⋂
η>0

maxη+γ(1+2ε)+2(ε+δ(1+2ε))(Ω, D,M, L)

Again, if we ignore higher order terms in γ, ε, and δ, then the above theorem says
that when moving from the original decision problem to the approximate decision
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problem, with relative error ε in gambles and relative error δ in probabilities, the
relative error in maximality increases by 2(ε + δ). Hence, for small ε and δ the
following holds, up to a small error: if L ∼ε L̂ and ext(cl(co(M))) ∼δ M̂, then

max(Ω, D,M, L) ⊆ max2(ε+δ)(A, D,M̂, L̂) ⊆ max4(ε+δ)(Ω, D,M, L)

Again, max2(ε+δ)(A, D,M̂, L̂) seems a logical choice when calculating maximal
decisions in practice.

6 Conclusion and Remarks

With this paper, I hope to have consolidated at least part of our every day intuition
when approximating decision problems involving sets of probabilities, for instance
when those problems have to be solved by computer.

One result is quite depressing: Lemma 2 and Lemma 3 seem to tell us that except
in the simplest cases, any approximation will need too many resources to be of any
practical value, as demonstrated by Table 1 and Table 2.

Fortunately, not all is lost. If we resort to pairwise comparison, we may restrict
ourselves to the extreme points of the closure of the convex hull of the credal set,
which can be much smaller than the original credal set. Closing the credal set
only has an arbitrary small effect on maximality, and in part for this reason, it
turns out that approximating extreme points suffices when restricting to pairwise
preference.

I wish to emphasise that the bounds on the cardinalities of the approximating
partition and the approximating credal set are only upper bounds under very
weak assumptions. These bounds are only attained in extreme situations. In many
cases the credal set and the loss function have additional structure which may
allow for much lower upper bounds.

In case the problem has sufficient structure, an alternative approach is to develop
algorithms which do not need to traverse the complete credal set (or an approx-
imation thereof) to compute the optimal solution. The imprecise Dirichlet model
has already been given considerable attention in this direction [16].

Obermeier and Augustin [17] have described a method to approximate decision
problems by applying Luceños’ adaptive discretisation method to either all ele-
ments of the credal set (so the partition varies with the distribution), or on a
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reference distribution of that set. This type of approximation aims to preserve the
first r moments of a distribution. Although precise convergence results and bounds
on the precision of this approximation have not yet been proven, examples have
shown that this method can yield good results in practice.

Finally, another approach could consist of sampling elements from the credal set,
for instance through Monte-Carlo techniques, and solve a classical decision problem
for each of these elements. If the sample s from M̂ is large enough, then—since⋃
P∈s opt(A, D, P, L) = opt(A, D, s, L)—hopefully

opt(A, D,M, L) =
⋃
P∈s

opt(A, D, P, L)

The question how large a sample we need to ensure convergence is definitely worth
further investigation.
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A Discretisation Of The Standard Simplex In Rn

In this appendix a simple discretisation of ∆n, the standard simplex in Rn, is
studied—these results are not new and are in fact related to well known notions
from combinatorics, in particular multisets [18]. The standard simplex ∆n is de-
fined as

∆n = {x ∈ Rn : x ≥ 0, |x|1 = 1}
where | · |1 denotes the 1-norm, i.e. |x|1 =

∑n
i=1 |xi|.

For any non-zero natural number N , let ∆n
N denote the following finite subset of

∆n:
∆n
N = {m/N : m ∈ Nn, |m|1 = N}

20



(above, N is the set of natural numbers including 0).

Lemma 12 The cardinality of ∆n
N is

(
N+n−1

N

)
.

PROOF. There is an obvious one-to-one and onto correspondence between ∆n
N

and all multisets of cardinality N with elements taken from {1, . . . , n}—for any
m/N ∈ ∆n

N , interpret mi as the multiplicity of i. The number of all such multisets

is precisely
(
N+n−1

N

)
(see Stanley [18]).

Lemma 13 For every x in ∆n there is a y in ∆n
N such that

|x− y|1 < n/N

PROOF. For each i ∈ {1, . . . , n}, let mi be the unique natural number such that
xi ∈ [mi/N, (mi + 1)/N), or equivalently, let mi be the largest natural number
such that mi/N ≤ xi. Define M =

∑n
i=1 mi. Then, M ≤ N < M + n since

M/N = |m/N |1 ≤ |x|1 = 1 and (M + n)/N = |(m+ 1)/N |1 > |x|1 = 1. Define

ei =

1 if i ∈ {1, . . . , N −M}
0 if i ∈ {N −M + 1, . . . , n}

and let y = (m + e)/N . Note that y ∈ ∆n
N because |y|1 = |m + e|1/N = (M +

(N −M))/N = 1. Finally,

|x− y|1 =
N−M∑
i=1

|xi − mi+1
N
|+

n∑
i=N−M+1

|xi − mi
N
| < n/N

as |xi − mi+1
N
| ≤ 1/N and |xi − mi

N
| < 1/N .
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