Actively querying superset labels using indecision: the k-nn case

Sebastien Destercke, Vu-Linh Nguyen, Mylene Masson

Université de Technologie de Compiègne

Learning with superset labels

Features			Labels
$[0.1,1.5]$	\ldots	0.6	a
0.3	\ldots	0.2	$\{a, b\}$
0.3	\ldots	$[0.2,0.5]$	$\{a, b, c\}$

- Partial data can induce uncertainty in learning process.
- May happen in a number of situations :
- Expert labelling,
- Using easily accessible information to get label set (e.g., actor list to do facial recognition of TV series pictures),
- Data collection with sensors of various qualities,
- Data descriptions using different levels of details (coarsening)

Learning from partial data

Two view points

- adapting classical approaches to learn one optimal model. For instance, defining specific loss functions [T. Cour et al, 2011.]
\rightarrow Necessary assumptions on the missingness process
- learning (IP) models to get set of optimal models from all completions of partial data. For example, the paper of [E. Hullermeier, 2014].
\rightarrow No or few assumptions on the missingness process

This work

\diamond We adopt the second view regarding data completions
\diamond We wonder about which data to query to make better predictions

Some formalisation

- A training set $D=\left\{x_{i}, \mathbf{y}_{i}\right\}$ with
- $x_{i} \in R^{d}$ are precise values
- $\mathbf{y}_{i} \subseteq \mathscr{Y}=\left\{\lambda_{1}, \ldots, \lambda_{M}\right\}$ are partial, a.k.a. superset labels
- An evaluation set $T=\left\{t_{i}\right\}$ of input instances, $t_{i} \in R^{d}$
- Possibly a decision function $h: D \rightarrow \mathscr{Y}$ providing a precise prediction

Which labels \mathbf{y}_{i} should we query to improve our model accuracy/decisiveness?

K-nn classifier for partially labelled data

A simple (maximax) way to take decision despite partial labels $[E$. Hullermeier \& J. Beringer, 2006]

$$
\begin{equation*}
h(\mathbf{t})=\arg \max _{\lambda \in \Omega} \sum_{\mathbf{y}_{k} \in \mathbf{N}_{\mathbf{t}}} w_{k} \mathbb{1}_{\lambda \in \mathbf{y}_{k}} \tag{1}
\end{equation*}
$$

$$
X^{2} \uparrow \begin{array}{cc}
\mathbf{y}_{2}=\left\{\lambda_{3}\right\} & \cdot \mathbf{t}^{3} \quad \cdot \mathbf{y}_{5}=\left\{\lambda_{1}\right\} \\
\bullet \mathbf{t}^{1} & \mathbf{y}_{4}=\left\{\lambda_{1}, \lambda_{2}\right\} \\
\bullet \mathbf{y}_{3}=\left\{\lambda_{2}, \lambda_{3}\right\} & \cdot \mathbf{t}^{2} \\
\mathbf{y}_{1}=\left\{\lambda_{2}\right\} & \\
\end{array}
$$

\diamond Which partial label is the more informative?

First idea : the more decision it is involved in, the more informative it is

1. define a given number K of neighbours
2. for each x_{i} with partial label, count the number of items in T of which it is a neighbour
3. query the item \mathbf{y}_{i} involved in most decisions

First idea : the more decision it is involved in, the more informative it is

$\diamond \mathbf{y}_{3}$ involves in decision of $\left\{\mathbf{t}^{1}\right\}$.

First idea : the more decision it is involved in, the more informative it is

$$
\begin{aligned}
& X^{2} \\
& y_{2}=\left\{\lambda_{3}\right\} \\
& \cdot \mathbf{t}^{1} \\
& \text { - } \mathbf{y}_{3}=\left\{\lambda_{2}, \lambda_{3}\right\} \\
& \text { - } y_{6}=\left\{\lambda_{1}\right\} \\
& \mathbf{y}_{1}=\left\{\lambda_{2}\right\}
\end{aligned}
$$

$\diamond \mathbf{y}_{3}$ involves in decision of $\left\{\mathbf{t}^{1}\right\}$.
$\diamond \mathbf{y}_{4}$ involves in decisions of $\left\{\mathbf{t}^{2}\right\}$.

First idea : the more decision it is involved in, the more informative it is

$$
X^{2} \uparrow \quad \begin{aligned}
& \mathbf{y}_{2}=\left\{\lambda_{3}\right\} \\
& \bullet \mathbf{t}^{1} \quad \mathbf{y}_{4}=\left\{\lambda_{1}, \lambda_{2}\right\} \\
& \bullet \mathbf{y}_{3}=\left\{\lambda_{2}, \lambda_{3}\right\} \\
& \mathbf{y}_{1}=\left\{\lambda_{2}\right\}
\end{aligned} \quad \begin{aligned}
& \mathbf{y}_{5}=\left\{\lambda_{1}\right\} \\
& \mathbf{t}^{2} \\
& \mathbf{y}_{6}=\left\{\lambda_{1}\right\}
\end{aligned}
$$

$\diamond \mathbf{y}_{3}$ involves in decision of $\left\{\mathbf{t}^{1}\right\}$.
$\diamond \mathbf{y}_{4}$ involves in decisions of $\left\{\mathbf{t}^{2}, \mathbf{t}^{3}\right\}$.

First idea : the more decision it is involved in, the more informative it is

$$
\begin{aligned}
& X^{2} \\
& y_{2}=\left\{\lambda_{3}\right\} \\
& q \mathbf{t}^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{y}_{1}=\left\{\lambda_{2}\right\}
\end{aligned}
$$

$\diamond \mathbf{y}_{3}$ involves in decision of $\left\{\mathbf{t}^{1}\right\}$.
$\diamond \mathbf{y}_{4}$ involves in decisions of $\left\{\mathbf{t}^{2}, \mathbf{t}^{3}\right\}$.
\triangleright This strategy chooses y_{4} as the optimal query.

First idea : The more decision it is involved, the more informative it is
\diamond It is simple, but is it a good idea?
\triangleright What do we gain if we query y_{4} ?

$$
\begin{aligned}
& X^{2} \\
& \mathbf{y}_{2}=\left\{\lambda_{3}\right\} \\
& q^{t^{1}} \\
& \mathbf{y}_{4}=\left\{\lambda_{1}\right\} \longrightarrow \quad \mathbf{t}^{2}=\left\{\lambda_{1}\right\} \\
& \text { - } y_{3}=\left\{\lambda_{2}, \lambda_{3}\right\} \\
& \text { - } \mathbf{y}_{6}=\left\{\lambda_{1}\right\} \\
& \mathbf{y}_{1}=\left\{\lambda_{2}\right\} \\
& \xrightarrow{X^{1}}
\end{aligned}
$$

- If $\mathbf{y}_{4}=\lambda_{1}$, then decisions are λ_{1}.

$$
\begin{aligned}
& X^{2} \\
& \mathbf{y}_{2}=\left\{\lambda_{3}\right\} \\
& \int_{-y_{3}=\left\{\lambda_{2}, \lambda_{3}\right\}}^{y_{4}} \\
& \mathbf{y}_{4}=\left\{\lambda_{2}\right\} \longrightarrow \begin{array}{l}
\mathbf{t}^{3}=\left\{\lambda_{1}\right\} \\
\\
\mathbf{y}_{5}=\left\{\lambda_{1}\right\} \\
\left.\mathbf{t}_{1}\right\}
\end{array} \\
& \mathbf{y}_{1}=\left\{\lambda_{2}\right\} \\
& \text { - } \mathbf{y}_{6}=\left\{\lambda_{1}\right\}
\end{aligned}
$$

- If $\mathbf{y}_{4}=\lambda_{1}$, then decisions are λ_{1}.
- If $\mathbf{y}_{4}=\lambda_{2}$, then decisions are λ_{1}.

$$
\begin{aligned}
& X^{2} \\
& \mathbf{y}_{2}=\left\{\lambda_{3}\right\} \\
& \int_{y_{3}}^{\mathbf{t}^{1}=\left\{\lambda_{2}, \lambda_{3}\right\}} \\
& \mathbf{y}_{4}=\left\{\lambda_{2}\right\} \longrightarrow \begin{array}{l}
\mathbf{t}^{3}=\left\{\lambda_{1}\right\} \\
\cdot \mathbf{y}_{5}=\left\{\lambda_{1}\right\} \\
\mathbf{t}^{2}=\left\{\lambda_{1}\right\}
\end{array} \\
& \text { - } \mathbf{y}_{6}=\left\{\lambda_{1}\right\} \\
& \mathbf{y}_{1}=\left\{\lambda_{2}\right\} \\
& \xrightarrow{X^{1}}
\end{aligned}
$$

- If $\mathbf{y}_{4}=\lambda_{1}$, then decisions are λ_{1}.
- If $\mathbf{y}_{4}=\lambda_{2}$, then decisions are λ_{1}.
\triangleright Querying y_{4} does not change predictions.

Second idea : The more uncertainty the label introduces, the more informative it is

- Assume $\mathbf{y}_{1}, \ldots, \mathbf{y}_{K}$ are neighbours
- Set $\mathbf{L}_{\mathbf{t}}=\left\{\left(l_{1}^{t}, \ldots, I_{K}^{t}\right)| |_{k}^{t} \in \mathbf{y}_{k}^{t}\right\}$ is the selection of partial labels
- Set of possible predicted labels

$$
\mathbf{P L}_{\mathbf{t}}=\left\{\lambda \in \Omega \mid \exists \mathbf{I}^{t} \in \mathbf{L}_{\mathbf{t}} \text { s.t } \lambda \in \widehat{\lambda}_{\mathbf{I}}\right\}
$$

- Set of necessary predicted labels

$$
\mathbf{N L}_{\mathbf{t}}=\left\{\lambda \in \Omega \mid \forall \mathbf{I}^{t} \in \mathbf{L}_{\mathbf{t}}, \lambda \in \widehat{\lambda}_{\mathbf{t}^{t}}\right\}
$$

An instance t is said to be ambiguous if $\mathrm{PL}_{\mathbf{t}} \neq \mathbf{N L}_{\mathbf{t}}$

Second idea : The more uncertainty the label introduces, the more informative it is

$$
\begin{aligned}
& X^{2} \\
& \stackrel{\mathbf{t}^{3}}{-} \cdot \mathbf{y}_{5}=\left\{\lambda_{1}\right\} \\
& \mathbf{y}_{4}=\left\{\lambda_{1}, \lambda_{2}\right\} \text { • } \\
& \cdot t^{2} \\
& \text { - } \mathbf{y}_{6}=\left\{\lambda_{1}\right\} \\
& \mathbf{y}_{1}=\left\{\lambda_{2}\right\}
\end{aligned}
$$

X^{1}
\diamond Assuming a weighted 3-nn, $\mathrm{PL}_{\mathbf{t}^{1}}=\left\{\lambda_{2}, \lambda_{3}\right\}, \mathbf{N L}_{\mathbf{t}^{1}}=\{ \}$

Second idea : The more uncertainty the label introduces, the more informative it is

- A data x_{i} can reduce ambiguity on t if after knowing $\mathbf{y}_{i}, \mathbf{N L}_{\mathbf{t}}$ or $P L_{t}$ can potentially change
- For a given K and x_{i}, count the number of items in \mathbf{T} for which it can reduce ambiguity
- Query the \mathbf{y}_{i} with greatest potential ambiguity reductions

- If $\mathbf{y}_{3}=\lambda_{2}$, then decision is λ_{2}.

- If $\mathbf{y}_{3}=\lambda_{2}$, then decision is λ_{2}.
- If $\mathbf{y}_{3}=\lambda_{3}$, then decision is λ_{3}.

- If $\mathbf{y}_{3}=\lambda_{2}$, then decision is λ_{2}.
- If $\mathbf{y}_{3}=\lambda_{3}$, then decision is λ_{3}.
\diamond Querying \mathbf{y}_{3} can reduce ambiguity, while \mathbf{y}_{4} does not.
\triangleright This strategy choose y_{3} as the optimal query.

Computational considerations

Link with computational social choice

- Computing PL, NL : equivalent to possible/necessary winner in plurality voting with partial voter preferences
- Querying a label \mathbf{y}_{i} : eliciting precise preferences of a voter

Computational issues

- Computing NL : can be done in linear time
- Computing PL in unweighted case : can be done in cubic time (reducible to maximum flow problem)
- Computing PL in weighted case : seems NP-hard (reducible to 3-dimensional matching), but dynamical programming maybe possible, otherwise approximate

Experimental results illustrated on one data set

$$
\rightarrow \text { Random } \rightarrow 1^{\text {st }} \text { strat. } \rightarrow 2^{\text {rd }} \text { exact } \bullet 2^{\text {rd }} \text { appro. }
$$

Other related questions

- Each query provides information about the "imprecisiation" process \rightarrow can we use it to improve our results
- In practice, optimal model may be identifiable from partial information \rightarrow under which conditions?
- Can the idea be efficiently extended to other simple settings (learning NCC, Classification trees) or more complex ones (learning preferences, dynamical models)

