

Actively querying superset labels using indecision: the k-nn case

Sebastien Destercke, Vu-Linh Nguyen, Mylene Masson

Université de Technologie de Compiègne

Learning with superset labels

Features			Labels
[0.1,1.5]		0.6	а
0.3		0.2	{ <i>a</i> , <i>b</i> }
0.3		[0.2, 0.5]	{ <i>a</i> , <i>b</i> , <i>c</i> }

- ► Partial data can induce uncertainty in learning process.
- ► May happen in a number of situations :
 - Expert labelling,
 - Using easily accessible information to get label set (e.g., actor list to do facial recognition of TV series pictures),
 - Data collection with sensors of various qualities,
 - Data descriptions using different levels of details (coarsening)

Learning from partial data

Two view points

- adapting classical approaches to learn one optimal model. For instance, defining specific loss functions [T. Cour *et al*, 2011.]
 - \rightarrow Necessary assumptions on the missingness process
- learning (IP) models to get set of optimal models from all completions of partial data. For example, the paper of [E. Hullermeier, 2014].

 \rightarrow No or few assumptions on the missingness process

This work

 \diamondsuit We adopt the second view regarding data completions

 \diamond We wonder about which data to query to make better predictions

Some formalisation

- A training set $D = \{x_i, \mathbf{y}_i\}$ with
 - $x_i \in \mathbb{R}^d$ are precise values
 - $\mathbf{y}_i \subseteq \mathscr{Y} = \{\lambda_1, ..., \lambda_M\}$ are partial, a.k.a. superset labels
- An evaluation set $T = \{t_i\}$ of input instances, $t_i \in \mathbb{R}^d$
- Possibly a decision function $h: D \rightarrow \mathscr{Y}$ providing a precise prediction

Which labels \mathbf{y}_i should we query to improve our model accuracy/decisiveness?

~

K-nn classifier for partially labelled data

A simple (maximax) way to take decision despite partial labels [E. Hullermeier & J. Beringer, 2006]

$$h(\mathbf{t}) = \arg \max_{\lambda \in \Omega} \sum_{\mathbf{y}_k \in \mathbf{N}_{\mathbf{t}}} w_k \mathbb{1}_{\lambda \in \mathbf{y}_k}.$$
 (1)

$$X^{2} \uparrow \qquad \mathbf{y}_{2} = \{\lambda_{3}\} \qquad \mathbf{y}_{4} = \{\lambda_{1}, \lambda_{2}\} \mathbf{y}_{4} = \{\lambda_{1}, \lambda_{2}\} \mathbf{y}_{4} = \{\lambda_{1}, \lambda_{2}\} \mathbf{y}_{4} = \{\lambda_{1}, \lambda_{2}\} \mathbf{y}_{6} = \{\lambda_{1}\} \mathbf{y}_{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{6} = \{\lambda_{1}\} \mathbf{y}_{1} = \{\lambda_{2}\} \mathbf{y}_{2} = \{\lambda_{2}, \lambda_{3}\} \mathbf{y}_{2} = \{\lambda_{2}, \lambda_{3}\} \mathbf{y}_{2} = \{\lambda_{2}, \lambda_{3}\} \mathbf{y}_{2} = \{\lambda_{2}, \lambda_{3}\} \mathbf{y}_{3} = \{\lambda_{3}, \lambda_{3}\} \mathbf{y}_{3} = \{\lambda_{3},$$

♦ Which partial label is the more informative?

- 1. define a given number K of neighbours
- 2. for each x_i with partial label, count the number of items in T of which it is a neighbour
- 3. query the item \mathbf{y}_i involved in most decisions

 \diamond **y**₃ involves in decision of {**t**¹}.

- \diamond **y**₃ involves in decision of {**t**¹}.
- $\diamondsuit \ y_4 \text{ involves in decisions of } \{t^2\}.$

 X^{2} $y_{2} = \{\lambda_{3}\}$ $\cdot t^{1} \quad y_{4} = \{\lambda_{1}, \lambda_{2}\}$ $\cdot t^{2}$ $\cdot y_{3} = \{\lambda_{2}, \lambda_{3}\}$ $y_{1} = \{\lambda_{2}\}$ X^{1}

◊ y₃ involves in decision of {t¹}.
◊ y₄ involves in decisions of {t², t³}.

- \diamond **y**₃ involves in decision of {**t**¹}.
- $\diamondsuit \ y_4 \text{ involves in decisions of } \{t^2,t^3\}.$

 \triangleright This strategy chooses y_4 as the optimal query.

◇ It is simple, but is it a good idea ?
> What do we gain if we query y₄ ?

$$X^{2} \uparrow \qquad \mathbf{y}_{2} = \{\lambda_{3}\} \qquad \mathbf{y}_{4} = \{\lambda_{1}\} \qquad \mathbf{y}_{5} = \{\lambda_{1}\}$$
$$\mathbf{y}_{4} = \{\lambda_{1}\} \qquad \mathbf{y}_{5} = \{\lambda_{1}\}$$
$$\mathbf{y}_{3} = \{\lambda_{2}, \lambda_{3}\} \qquad \mathbf{y}_{6} = \{\lambda_{1}\}$$
$$\mathbf{y}_{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{1} = \{\lambda_{2}\}$$

- If $\mathbf{y}_4 = \lambda_1$, then decisions are λ_1 .

$$X^{2} \uparrow \qquad \mathbf{y}_{2} = \{\lambda_{3}\} \qquad \mathbf{y}_{4} = \{\lambda_{2}\} \qquad \mathbf{y}_{5} = \{\lambda_{1}\}$$
$$\mathbf{y}_{4} = \{\lambda_{2}\} \qquad \mathbf{y}_{6} = \{\lambda_{1}\}$$
$$\mathbf{y}_{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{6} = \{\lambda_{1}\}$$
$$\mathbf{y}_{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{1} = \{\lambda_{2}\}$$

- If $\mathbf{y}_4 = \lambda_1$, then decisions are λ_1 .
- If $\mathbf{y}_4 = \lambda_2$, then decisions are λ_1 .

$$X^{2} \uparrow \qquad \mathbf{y}_{2} = \{\lambda_{3}\} \qquad \mathbf{y}_{4} = \{\lambda_{2}\} \qquad \mathbf{y}_{5} = \{\lambda_{1}\} \\ \downarrow \qquad \mathbf{y}_{3} = \{\lambda_{2}, \lambda_{3}\} \qquad \mathbf{y}_{6} = \{\lambda_{1}\} \\ \downarrow \qquad \mathbf{y}_{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{2} = \{\lambda_{2}\} \qquad \mathbf{y$$

- If $\mathbf{y}_4 = \lambda_1$, then decisions are λ_1 .
- If $\mathbf{y}_4 = \lambda_2$, then decisions are λ_1 .

▷ Querying **y**₄ does not change predictions.

Second idea : The more uncertainty the label introduces, the more informative it is

- Assume $\mathbf{y}_1, \dots, \mathbf{y}_K$ are neighbours
- Set $\mathbf{L}_{\mathbf{t}} = \{ (l_1^t, \dots, l_K^t) | l_k^t \in \mathbf{y}_k^t \}$ is the selection of partial labels
- Set of possible predicted labels

$$\mathbf{PL}_{\mathbf{t}} = \{ \lambda \in \Omega | \exists \mathbf{l}^{t} \in \mathbf{L}_{\mathbf{t}} \text{ s.t } \lambda \in \widehat{\lambda}_{\mathbf{l}^{t}} \}$$

• Set of necessary predicted labels

$$\mathbf{NL}_{\mathbf{t}} = \{ \lambda \in \Omega | \forall \mathbf{I}^{t} \in \mathbf{L}_{\mathbf{t}}, \lambda \in \widehat{\lambda}_{\mathbf{I}^{t}} \}$$

An instance t is said to be ambiguous if $PL_t \neq NL_t$

Second idea : The more uncertainty the label introduces, the more informative it is

 \diamond Assuming a weighted 3-nn, $PL_{t^1} = \{\lambda_2, \lambda_3\}, NL_{t^1} = \{\}$

Second idea : The more uncertainty the label introduces, the more informative it is

- A data x_i can reduce ambiguity on t if after knowing y_i, NL_t or PL_t can potentially change
- For a given *K* and *x_i*, count the number of items in **T** for which it can reduce ambiguity
- Query the **y**_{*i*} with greatest potential ambiguity reductions

$$X^{2} \uparrow \mathbf{y}_{2} = \{\lambda_{3}\} \bullet \mathbf{t}^{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{4} = \{\lambda_{1}, \lambda_{2}\} \qquad \mathbf{y}_{5} = \{\lambda_{1}\} \qquad \mathbf{y}_{6} = \{\lambda_{1}\} \qquad \mathbf{y}_{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{6} = \{\lambda_{1}\} \qquad \mathbf{y}_{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{2} = \{\lambda_{1}\} \qquad \mathbf{y}_{2} = \{\lambda_{2}\} \qquad \mathbf{y}_{3} = \{\lambda_{3}\} \qquad \mathbf{y}_{3} = \{\lambda$$

- If $\mathbf{y}_3 = \lambda_2$, then decision is λ_2 .

$$X^{2} \uparrow \mathbf{y}_{2} = \{\lambda_{3}\} \bullet \mathbf{t}^{1} = \{\lambda_{3}\} \qquad \mathbf{y}_{4} = \{\lambda_{1}, \lambda_{2}\} \qquad \mathbf{y}_{5} = \{\lambda_{1}\} \qquad \mathbf{y}_{6} = \{\lambda_{1}\} \qquad \mathbf{y}_{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{2} = \{\lambda_{1}\} \qquad \mathbf{y}_{2} = \{\lambda_{2}\} \qquad \mathbf{y}_{3} = \{\lambda_{3}\} \qquad \mathbf{y}_{3} = \{\lambda$$

- If $\mathbf{y}_3 = \lambda_2$, then decision is λ_2 .
- If $\mathbf{y}_3 = \lambda_3$, then decision is λ_3 .

$$X^{2} \uparrow \mathbf{y}_{2} = \{\lambda_{3}\} \bullet \mathbf{t}^{1} = \{\lambda_{3}\} \qquad \mathbf{y}_{4} = \{\lambda_{1}, \lambda_{2}\} \qquad \mathbf{y}_{5} = \{\lambda_{1}\} \qquad \mathbf{y}_{6} = \{\lambda_{1}\} \qquad \mathbf{y}_{1} = \{\lambda_{2}\} \qquad \mathbf{y}_{2} = \{\lambda_{1}\} \qquad \mathbf{y}_{2} = \{\lambda_{2}\} \qquad \mathbf{y}_{3} = \{\lambda_{3}\} \qquad \mathbf{y}_{3} = \{\lambda$$

- If $\mathbf{y}_3 = \lambda_2$, then decision is λ_2 .
- If $\mathbf{y}_3 = \lambda_3$, then decision is λ_3 .

♦ Querying y₃ can reduce ambiguity, while y₄ does not.
▶ This strategy choose y₃ as the optimal query.

Computational considerations

Link with computational social choice

- Computing PL, NL : equivalent to possible/necessary winner in plurality voting with partial voter preferences
- Querying a label y_i : eliciting precise preferences of a voter

Computational issues

- Computing NL : can be done in linear time
- Computing **PL** in unweighted case : can be done in cubic time (reducible to maximum flow problem)
- Computing PL in weighted case : seems NP-hard (reducible to 3-dimensional matching), but dynamical programming maybe possible, otherwise approximate

Experimental results illustrated on one data set

Other related questions

- Each query provides information about the "imprecisiation" process → can we use it to improve our results
- In practice, optimal model may be identifiable from partial information → under which conditions ?
- Can the idea be efficiently extended to other simple settings (learning NCC, Classification trees) or more complex ones (learning preferences, dynamical models)