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Learning with superset labels

Features Labels
[0.1,1.5] . . . 0.6 a

0.3 . . . 0.2 {a,b}
0.3 . . . [0.2,0.5] {a,b,c}

Ï Partial data can induce uncertainty in learning process.

Ï May happen in a number of situations :
l Expert labelling,
l Using easily accessible information to get label set (e.g., actor

list to do facial recognition of TV series pictures),
l Data collection with sensors of various qualities,
l Data descriptions using different levels of details (coarsening)
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Learning from partial data

Two view points
Ï adapting classical approaches to learn one optimal model. For

instance, defining specific loss functions [T. Cour et al, 2011.]
→ Necessary assumptions on the missingness process

Ï learning (IP) models to get set of optimal models from all
completions of partial data. For example, the paper of [E.
Hullermeier, 2014].
→ No or few assumptions on the missingness process
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This work

♦ We adopt the second view regarding data completions

♦ We wonder about which data to query to make better predictions
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Some formalisation

l A training set D = {xi ,yi } with
m xi ∈Rd are precise values
m yi ⊆Y = {λ1, . . . ,λM } are partial, a.k.a. superset labels

l An evaluation set T = {ti } of input instances, ti ∈Rd

l Possibly a decision function h :D →Y providing a precise
prediction

Which labels yi should we query to improve our model
accuracy/decisiveness ?
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K -nn classifier for partially labelled data

A simple (maximax) way to take decision despite partial labels [E.
Hullermeier & J. Beringer, 2006]

h(t)= argmax
λ∈Ω

∑
yk∈Nt

wk1λ∈yk . (1)

X 2

X 1
y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 t2

t3

♦ Which partial label is the more informative ?
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First idea : the more decision it is involved in, the
more informative it is

1. define a given number K of neighbours
2. for each xi with partial label, count the number of items in T of

which it is a neighbour
3. query the item yi involved in most decisions
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First idea : the more decision it is involved in, the
more informative it is

X 2

X 1
y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 t2

t3

♦ y3 involves in decision of {t1}.
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First idea : the more decision it is involved in, the
more informative it is

X 2

X 1
y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 t2

t3

♦ y3 involves in decision of {t1}.
♦ y4 involves in decisions of {t2}.
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First idea : the more decision it is involved in, the
more informative it is

X 2

X 1
y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 t2

t3

♦ y3 involves in decision of {t1}.
♦ y4 involves in decisions of {t2, t3}.
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First idea : the more decision it is involved in, the
more informative it is

X 2

X 1
y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 t2

t3

♦ y3 involves in decision of {t1}.
♦ y4 involves in decisions of {t2, t3}.

. This strategy chooses y4 as the optimal query.
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First idea : The more decision it is involved, the
more informative it is

X 2

X 1
y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 t2

t3

♦ It is simple, but is it a good idea ?
. What do we gain if we query y4 ?
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X 2

X 1y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ1}

y5 = {λ1}

y6 = {λ1}

t1 t2 = {λ1}

t3 = {λ1}

- If y4 =λ1, then decisions are λ1.
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X 2

X 1y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ2}

y5 = {λ1}

y6 = {λ1}

t1 t2 = {λ1}

t3 = {λ1}

- If y4 =λ1, then decisions are λ1.
- If y4 =λ2, then decisions are λ1.
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X 2

X 1y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ2}

y5 = {λ1}

y6 = {λ1}

t1 t2 = {λ1}

t3 = {λ1}

- If y4 =λ1, then decisions are λ1.
- If y4 =λ2, then decisions are λ1.

. Querying y4 does not change predictions.
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Second idea : The more uncertainty the label
introduces, the more informative it is

l Assume y1, . . . ,yK are neighbours
l Set Lt = {(l t1, . . . , l tK )|l tk ∈ yt

k } is the selection of partial labels
l Set of possible predicted labels

PLt = {λ ∈Ω|∃lt ∈Lt s.t λ ∈ λ̂lt }

l Set of necessary predicted labels

NLt = {λ ∈Ω|∀lt ∈Lt ,λ ∈ λ̂lt }

An instance t is said to be ambiguous if PLt 6=NLt
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Second idea : The more uncertainty the label
introduces, the more informative it is

X 2

X 1
y1 = {λ2}

y2 = {λ3}

y3 = {λ2,λ3}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 t2

t3

♦ Assuming a weighted 3-nn, PLt1 = {λ2,λ3}, NLt1 = {}
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Second idea : The more uncertainty the label
introduces, the more informative it is

l A data xi can reduce ambiguity on t if after knowing yi , NLt or
PLt can potentially change

l For a given K and xi , count the number of items in T for which
it can reduce ambiguity

l Query the yi with greatest potential ambiguity reductions
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X 2

X 1y1 = {λ2}

y2 = {λ3}

y3 = {λ2}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 = {λ2}
t2

t3

- If y3 =λ2, then decision is λ2.
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X 2

X 1y1 = {λ2}

y2 = {λ3}

y3 = {λ3}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 = {λ3}
t2

t3

- If y3 =λ2, then decision is λ2.
- If y3 =λ3, then decision is λ3.
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X 2

X 1y1 = {λ2}

y2 = {λ3}

y3 = {λ3}

y4 = {λ1,λ2}

y5 = {λ1}

y6 = {λ1}

t1 = {λ3}
t2

t3

- If y3 =λ2, then decision is λ2.
- If y3 =λ3, then decision is λ3.

♦ Querying y3 can reduce ambiguity, while y4 does not.
. This strategy choose y3 as the optimal query.
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Computational considerations

Link with computational social choice
l Computing PL, NL : equivalent to possible/necessary winner

in plurality voting with partial voter preferences
l Querying a label yi : eliciting precise preferences of a voter

Computational issues
l Computing NL : can be done in linear time
l Computing PL in unweighted case : can be done in cubic time

(reducible to maximum flow problem)
l Computing PL in weighted case : seems NP-hard (reducible

to 3-dimensional matching), but dynamical programming
maybe possible, otherwise approximate
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Experimental results illustrated on one data set
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Other related questions

l Each query provides information about the ”imprecisiation“
process → can we use it to improve our results

l In practice, optimal model may be identifiable from partial
information → under which conditions ?

l Can the idea be efficiently extended to other simple settings
(learning NCC, Classification trees) or more complex ones
(learning preferences, dynamical models)
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