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Interval Data
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Interval Data

interval data, more generally “imprecise”, “coarse”, “messy”, “deficient”
data are quite common

There is an underlying true value that is not observed

in the granularity originally intended.

epistemic point of view (cp., e.g., Couso & Dubois (2014, IJAR),
Couso, Dubois & Sánchez (2014, Springer) )

finite precision of measurements

response effects like heaping

anonymization

compliance, increase of respond rate

special case: missing data

categorical data: indecision between certain alternatives

matching of data

a better name would be “non-idealized data”
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The two-layers perspective

ideal Yi
� effects � ideal Xi

? ?

? ?

6

data - inference � data

observation model observation model

observable Yi observable Xi
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Interval Data: Example

German General Social Survey (ALLBUS) 2010:
2827 observations from Germany in total, 2000 report personal income
(30% missing). An additional 10% report only income brackets.
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Interval Data: Example

1 We see heaping at 1000 e, 2000 e, . . ., less so at 500 e, 1500 e, . . .

2 Both heaping and grouping depend on the amount of income reported.

3 Missingness (some 20% of the data) might as well depend on the
amount of income.

Consequences:

1 Missingness, grouping, and heaping will rarely conform to the
assumption of “coarsening at random” (CAR).

2 Missingness, grouping, and heaping add an additional type of
uncertainty apart from classical statistical uncertainty. This
uncertainty can’t be decreased by sampling more data.

Use credible inference procedures that do not rely on unsustainable

“assumptions”!
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Probability Model

Joint distribution of exact and interval-valued random variables with
marginal distributions P (exact data) and P* (observable, e.g. coarsened
data):

(Ω, ℱ̊ ,𝒫) ((𝒳 * × 𝒴*),ℱ*,𝒫*)

((𝒳 × 𝒴),ℱ ,𝒫)

ideal, exact model

(X,Y)

(X ,Y ) Assumptions
deficiency model

X* ⊂ 𝒫(X),𝒴* ⊂ 𝒫(𝒴)

For coarse data: consistency condition (error freeness)

Pr(X ∈ X,Y ∈ Y) = 1
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Reliable Inference instead of Overprecision
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Interval Data: Representations

(1)
(2)

(3)

Epistemic point of view: Couso & Dubois (2014, IJAR), Couso, Dubois &
Sánchez (2014, Springer)
We represent interval-valued data as follows:

x := [x , x ] = {(x1, . . . , xn) | x1 ≤ x1 ≤ x1, . . . , xn ≤ xn ≤ xn}

where it is assumed that the intervals contain the actual, underlying, “true”
x ∈ x.
Analogously for Y -variable.
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Manski’s Law of Decreasing Credibility

Reliability !? Credibility ?

"The credibility of inference decreases with the strength of the

assumptions maintained." (Manski (2003, p. 1))
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Reliable Inference Instead of Overprecision!!

Consequences from Manski’s Law of Decreasing Credibility:

Adding untenable assumptions to produce precise solution may distroy
credibility of statistical analysis, and therefore its relevance for the
subject matter questions.

Make realistic assumptions and let the data speak for themselves!

Extreme case: Consider the set of all models that are compatible with
the data (and then add successively additional assumptions, if
desirable)

The results may be imprecise, but are more reliable

The extent of imprecision is related to the data quality!

As a welcome by-product: clarification of the implication of certain
assumptions

Often still sufficient to answer subjective matter question
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Work in that direction

Interval analysis/reliable computing, i.i.d. case, e.g. Nguyen,
Kreinovich, Wu, Xiang (2011, Springer)

Linear regression, e.g.,
I Rohwer & Pötter (2001, Juventa)
I Manski & Tamer (2002, Econometrica)
I Chernozhukov Hong &Tamer (2007, Econometrica)
I Beresteanu & Molinari (2008, Econometrica)
I Cattaneo & Wiencierz (2012, IntJAproxReason)
I Beresteanu, Molchanov,& Molinari. (2012, J Econometrics)
I Bontemps, Magnac & Maurin (2012, Econometrica)
I Schollmeyer & Augustin (2015, IntJAproxReason)

What to do with generalized linear models?
I logit regression: Plass, Augustin, Cattaneo, Schollmeyer (2015,

ISIPTA)
I

I Seitz (2015, Springer Best Masters)
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Generalized Linear Models; Maximum Likelihood
Estimation
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Basic Notation, Regression Models

n observations („large “)

Y = (Y1, · · · ,Yn)T response variable

X = (X1, · · · ,Xn)T covariates

(Xi ,Yi )i=1,··· ,n i.i.d

here Yi one dimensional, of metrical, ordinal, or categorical scale

Xi p-dimensional, (metric or binary)

joint distribution: density with respect to appropriate dominating
measure

f(X ,Y )(x , y) =
n∏︁

i=1

f(Xi ,Yi )(xi , yi ) =
n∏︁

i=1

fYi |Xi
(yi |xi )⏟  ⏞  

model

·fXi
(xi )
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Typically parametrization of fY |X (·) only,
fX (·) is assumed to contain ancillary information

regression parameters 𝛽 = (𝛽0, 𝛽1, . . . , 𝛽p)T , further parameter 𝛾

parametric model for [Yi |Xi ]

Here generalized linear model

Augustin et al. A Notion of Sufficiency for Interval Data 16 / 49



Generalized Linear Models

E.g. Fahrmeir, Kneib, Lang, Marx (2013, Spinger)

Generalizing linear regression

Yi = 𝛽0 + 𝛽′1Xi + 𝜀i ⇐⇒ Yi |Xi ∼ N(X ′
i 𝛽, 𝜎

2)

to other distributions

* Gamma distribution, inverted Gaussian, Beta distribution
* Poisson distribution −→ count data
* Bernoulli/Multinomial distribution −→ categorical data: logit/Probit

model

f (yi ||𝜈i , 𝛾) = const(yi , 𝛾) · exp(
𝜈iyi − b(𝜗i )

𝛾
), i = 1, · · · , n

𝜈i = 𝛽0 + 𝛽1 · xi1 + · · · + 𝛽p · xip

exponential family with individual canonical parameter 𝜈i =

(︂
1
X ′
i

)︂′
𝛽

("canonical link")

Augustin et al. A Notion of Sufficiency for Interval Data 17 / 49



DGP

?

6

DGP

Data
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Maximum Likelihood Estimation

After having observed the data, reinterpret the density as a function of
the parameters, describing how likely each parameter has produced the
data.

Maximum Likelihood-Estimator (MLE): root of the derivative of the
logarithmized likelihood −→ score function

score(𝛽) =
1

𝛾

n∑︁
i=1

(︂
1
Xi

)︂
(Yi − E (Yi |Xi ))
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For discussion later; general form

score(𝛽) = XD(𝛽)𝜎2(𝛽) · (Y − E(Yi |Xi )

Quasi-likelihood models

multivariate Y

“Weibull-type”: Y 𝛼
i , Yi ≥ 0
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E(Yi |Xi ) = h(𝜂i ) response function
and
g(E(Yi |Xi )) = 𝜂i link function
E(Yi |Xi ) = b′(𝜗i ), 𝜗i = 𝜓(E(Yi |Xi ))
Var(Yi |Xi ) = 𝜑 · · ·
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Collecting Regions from Estimating Equations
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Estimating Equations–> Collection Regions

Generalizing from the linear case, suppose there is a consistent (score-)
estimating equation for the ideal model {𝒫𝜗 |𝜗 ∈ Θ}, i.e.:

∀𝜗 ∈ Θ : E𝜗 (𝜓(X ,Y ;𝜗)) = 0

Then
𝜗 := root (𝜓(X ,Y ;𝜗))

With interval data, one gets a set of estimating equations, one for each
random vector (selection) (X ,Y ) ∈ (X,Y):

Ψ(X,Y;𝜗) := {Ψ(X ,Y ;𝜗) |X ∈ X,Y ∈ Y}

Θ̂ :=
{︁
𝜗
⃒⃒⃒
∃X ∈ X,Y ∈ Y : 𝜗 = root (𝜓(X ,Y ;𝜗))

}︁
Named “collection region” in Schollmeyer & Augustin (2015,
IntJAproxReason)
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Envelopes of Estimating Equations: One
Dimensional Case
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Envelopes of Estimating Equations: One Dimensional Case

Seitz (2015, Springer Best Masters, § 3.1)

Common form of estimating function

𝜓(X ,Y ;𝜗) =
n∑︁

i=1

𝜓i (Xi ,Yi ;𝜗).

𝜗 one-dimensional then

min
(X ,Y )∈(X,Y)

𝜓(X ,Y ;𝜗) =
n∑︁

i=1

min
(X ,Y )∈(X,Y)

𝜓i (Xi ,Yi , 𝜗)

If sign of derivative of the score function does not change, Fisher
scoring; based on the sum of the individual lower and upper envelopes
of the score functions, which usually can be calculated analytically
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One Parameter Case
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Figure: Simulation; linear model without intercept.
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Exponential
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Figure: Exponential case

Augustin et al. A Notion of Sufficiency for Interval Data 27 / 49



Penalty Approach
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Parameter Estimation, Basic Form

Linear objective function with nonlinear equality constraint and box
constraints:

𝜗l → min / max

subject to

𝜓k(x , y ;𝜗) = 0 with k = 1, . . . , q
xi ∈ Xi with i = 1, . . . , n
yi ∈ Yi with i = 1, . . . , n.
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Parameter Estimation, Penalty Form

Seitz (2015, Springer Best Masters, § 3.5, 4)

𝜗 root of function 𝜓(·) ⇐⇒ 𝜗 := argmin𝜗 (𝜓)2

Nonlinear objective function with box constraints:

𝜗l ±
q∑︁

k=1

𝜌k (𝜓k(x , y ;𝜗))2 → min / max

subject to x ∈ x, y ∈ y
𝜌k , k = 1, . . . , q penalties
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Parameter Estimation: Heuristic Search

Sequential evaluation

Fix X , Y

Search for optimal vertex in (X1 ×Y1)

Fix this optimum and search for optimal vertex in (X2 ×Y2) etc.

Repeat until no considerable change in optimal solution

Augustin et al. A Notion of Sufficiency for Interval Data 31 / 49



MLE-Equivalence
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Def: MLE-equivalence for A𝜃

Let 𝒫 be a family of distributions parametrized in 𝜗 ∈ Θ ⊆ Rq and denote
for each sample (X ,Y ) ∼ p𝜗 ∈ 𝒫 the maximum likelihood estimator for 𝜗
by 𝜗(X ,Y ).
For a matrix A ∈ Rq̃×q, q̃ ≤ q call two samples (X (1),Y (1)) and
(X (2),Y (2)) MLE-equivalent for A𝜃 if

A𝜗
(︁
X (1),Y (1)

)︁
= A𝜗

(︁
X (2),Y (2)

)︁
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Examples

For arbitrary A and sample (X ,Y ), let
(︁
X (1),Y (1)

)︁
= (X ,Y ) and(︁

X (2),Y (2)
)︁
be an order statistic of (X ,Y ) with respect to one of its

components

Of particular interest are specific A’s such that certain subvectors of
components of 𝜗 = (𝛽T , 𝜁T )T are selected, in particular A such that
A𝜗 = 𝛽
⇒ MLE-equivalent for 𝛽
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Theorem

GLM with canonical link functions and X treated as fixed
all
(︁
X (1),Y (1)

)︁
and

(︁
X (2),Y (2)

)︁
with

n∑︁
i=1

⎛⎜⎜⎜⎜⎝
1

X
(1)
i1
...

X
(1)
ip

⎞⎟⎟⎟⎟⎠ · Y (1)
i =

n∑︁
i=1

⎛⎜⎜⎜⎜⎝
1

X
(2)
i1
...

X
(2)
ip

⎞⎟⎟⎟⎟⎠ · Y (2)
i

are MLE-equivalent for 𝛽.
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For the proof remember:

MLE for 𝛽 from the score function

score(𝛽) =
1

𝛾

n∑︁
i=1

(︂
1
Xi

)︂
(Yi − E (Yi |Xi ))
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Corollary

To calculate the collection region for fixed covariates and interval valued
response it suffices to consider certain single representers of MLE
equivalent samples.
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Algorithm (X precise)

Instead of solving the nonlinear (even nonconvex!) optimization problem in
the penalty approach with n box constraints, determine the p-dimensional
“variational areaťť of

n∑︁
i=1

⎛⎜⎜⎜⎝
1
Xi1
...

Xip

⎞⎟⎟⎟⎠ · Yi .

This is linear and even can be described explicitly. ((One dimensional X ,
w.l.o.g. X > 0: Sort by X : Start with taking all minimal Y ’s. The next
point is as large (small) as possible by using that unit with the highest (the
smallest) X value and the corresponding Ymax (Ymin).))
Then work with representers from there.
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Lemma

If domain of covariates is compact, then, without loss of generality, all
covariates can be taken to be positive

for one dimension

min X := mini=1,...,n Xi > 0

else consider
X+
i := Xi −min X > 0

regression with

𝛽+
0

+ 𝛽+
1
Xi = 𝛽+

0
+ 𝛽+Xi − 𝛽+min X = 𝛽0 + 𝛽+Xi
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Corollary

Consider only regression model with a linear predictor and regression
parameter (𝛽0, 𝛽1, . . . , 𝛽p)

′
:

(X̃i ,Yi )i=1,...,n and (Xi ,Yi )i=1,...,n,

where
X̃i = Xi + c , c ∈ R,

are MLE-equivalent for (𝛽1, . . . , 𝛽p)
′
.
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In more detail

Let X be one dimensional.
Consider for
X = (X1, ...,Xn)
the order statistics
X ↑:= (X(1), . . . ,X(n))
and the reverse order statistics
X ↓:= (X(n), . . . ,X(1))
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Sort Y and Y accordingly

Y ↑x = (Y [1],Y [2], . . . ,Y [n])

Y ↑x = (Y [1],Y [2], . . . ,Y [n])
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Describe vertices of "upper polygon"’, starting from

(︃
n∑︁

i=1

Y i ,

n∑︁
i=1

Y iXi

)︃
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order statistics:

X = (X(1), . . . ,X(n))

sort Y ,Y accordingly

Y ↑x = (Y [1],Y [2], . . . ,Y [n]), i.e.

Y ↓x = (Y[n],Y[n−1], . . . ,Y[1])

etc.
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first vertex further on:

increase
n∑︀

i=1

Y i by 𝜖

highest (lowest) point i
put all mass into the largest (smallest) X -value
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vertices of lower envelope (
∑︀
𝜑

:= 0)⎛⎝ j∑︁
i=1

Y [i ] +
n∑︁

i=j+1

Y [i ],

j∑︁
i=1

Y [i ]X(i) +
n∑︁

i=j+1

Y [i ]X(i)

⎞⎠
vertices of upper envelope⎛⎝ j∑︁

i=1

Y [n+1−i ] +
n∑︁

i=j+1

Y [n+1−i ],

j∑︁
i=1

Y [n+1−i ] · X(n+1−i) +
n∑︁

i=j+1

Y [n+1−i ] · X(n+1−i)

⎞⎠
Explicit characterization of vertices.
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⇒ check for given 𝛽* whether or or not it is in the collection region.
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Concluding Remarks
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Concluding Remarks

Interval (coarse(ned)) data in generalized linear models

Optimization approach based on score function

Try to make it more tractable by „MLE-equivalence “

⇒ Sufficiency concept for coarse data (interval data)
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