
Partially specified beliefs
and

imprecisely specified utilities
in

health technology assessment

Malcolm Farrow and Kevin Wilson
Newcastle University

September 2016



Outline

1. Motivation: Expert opinion in health technology assessment.

2. Decisions with imprecise utility functions.
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methods.



Expert opinion in health technology assessment

I Focus on diagnostics tests.

I NIHR Newcastle Diagnostic Evidence Co-operative (DEC)
(NIHR: National Institute for Health Research)

I “Diagnostic tests affect outcomes in several ways.
. . . A test may also have direct effects itself, such as
test side effects, or direct benefits when the
diagnostic test provides treatment . . . Diagnostic
tests can provide information that may affect
treatment and the outcomes that the patient
experiences as a result of that treatment.”

NICE (2013) “Guide to the methods of technology appraisal.”

(National Institute for Health and Care Excellence).
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Expert opinion in health technology assessment

1. Suitable structures for multi-attribute utility functions for
HTA.

2. Requisite expectations for evaluation of overall expected
utility.

3. Elicitation:
I Relationships between dependent quantities.
I Epistemic and aleatory uncertainty.
I Structures. Copulas?
I Combining expert judgements.

4. Imprecise specifications.

5. Choosing decisions, sensitivity.
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Utility functions and prior beliefs — Experts

I Need to elicit utility functions and prior beliefs.

I What do we actually need from experts?

I What can we reasonably get from experts?

I Imprecise utility.

I Partial belief specification.
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Imprecise utility: Introduction

I Design (experiment or diagnostic test) is a multi-attribute
decision problem.

I F & G approach: we build a utility hierarchy.

I At each child (non-marginal) node, we have mutual utility
independence between utilities combined at that node.

I F & G developed the theory for imprecise trade-offs.
I Now extended to allow imprecision in marginal utility

functions.

I Hence imprecision in risk aversion.
I Theory for imprecise trade-offs carries over to this.
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Bayesian Experimental Design

Example: Life testing

I Compare two (or more) treatments of components.

I Several different conditions (eg load, temperature).

I Initial decision DX – choice of design dX .

I Observe data X — distribution depends on dX and on
unknown quantities (parameters) θ .

I Various pay-offs (costs) CX — eg financial but there may be
others — depend on dX and X .
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Example: Life testing
Having seen the data X we make a terminal decision DY about
treating future components (choose dY ).

I Outcomes Y — distribution depends on dY and on unknown
θ .

I Various pay-offs CY — eg financial, effects of failures —
depend on dY and Y .

I Discount outcomes further into the future.

I Overall utility U = U(CX ,CY ) depends on CX and on CY .
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Bayesian Experimental Design

I After observing data, choose
dY = arg max

dY∈DY

[EdY {U(CX ,CY )}] = arg max
dY∈DY

[U(dY ;CX ,CY )].

I Expected utility at this stage is max
dY∈DY

[U(dY ;CX ,CY )].

I Before observing data, choose design
dX = arg max

dX∈DX

{ max
dY∈DY

[U(dY ;CX ,CY )] }.
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Example: Renewals experiment

I We wish to choose an age replacement policy. That is we
wish to choose the age at which items
(machines/components/whatever) should be replaced.

I Experiment: life testing of items.

I Design choice: number to test, censoring time(s).



Renewals experiment utility hierarchy
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Structure: Utility Hierarchy

I Utility hierarchy

I At each node we have mutual utility independence over
parents.

I This allows a finite parameterisation of the combined utility
function.

I All utilities are on a standard scale.
I Worst outcome considered: U = 0.
I Best outcome considered: U = 1.

This allows us to interpret utilities and trade-offs at all nodes.
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Combining utilities at child nodes

I Additive node

U =
s∑

i=1

aiUi

with
∑s

i=1 ai ≡ 1 and ai > 0 for i = 1, . . . , s.

I Binary node

U = a1U1 + a2U2 + hU1U2

where 0 < ai < 1 and −ai ≤ h ≤ 1− ai , for i = 1, 2, and
a1 + a2 + h ≡ 1.



Combining utilities at child nodes

I Multiplicative node

U = B−1

{
s∏

i=1

[1 + kaiUi ]− 1

}
with

B =
s∏

i=1

(1 + kai )− 1

a1 ≡ 1, k > −1 and, for i = 1, . . . , s, we have
ai > 0, kai > −1.



Imprecise Utility Tradeoffs

Standard utility theory : The decision maker (DM) may state
preferences between all combinations of outcomes.

Imprecise utility : DM can state preferences for some, but not all,
outcomes. Imprecise utility is defined by obeying all
of the constraints implied by the stated preferences.

Imprecise utility tradeoffs : We suppose that DM can make
preference statements over all outcomes of each
individual attribute, and so may specify precise
marginal utilities, but can only make preference
statements for some, but not all, combinations of the
various attributes. Each such preference statement
imposes constraints on the tradeoff parameters which
are used to combine the individual attributes into an
imprecise multi-attribute utility.
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Elicitation and feasible set: Binary node
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Reducing the number of choices

I Pareto optimality

I Almost-preference leading to Almost-Pareto sets .

I Reduce the number of choices to be considered.
I Select a proposed choice d∗.
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Imprecision in risk aversion

I Scalar attribute Z .

I Rescale Z so that z = 0 is “worst value”, z = 1 is “best
value”.

I Simple family of functions: quadratics.

U(z) = a0 + a1z + a2z
2

I U(0) = 0 and U(1) = 1 imply

U(x) = az + (1− a)z2
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Imprecision in risk aversion

U(x) = az + (1− a)z2

d

dz
U(z) = U ′(x) = a + 2(1− a)z

I U ′(0) ≥ 0 and U ′(1) ≥ 0 imply 0 ≤ a ≤ 2.

I

a = 0 : U1(z) = z2

a = 2 : U2(z) = 2z − z2
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Imprecision in risk aversion
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I Reparameterise:

U(z) = (1− b)U1(z) + bU2(z)

0 ≤ b ≤ 1
b = a/2
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Imprecision in risk aversion
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Imprecision in risk aversion

I Can we improve on this?

I Other families of functions?

I More than two basis functions to give greater flexibility of
shape?



Imprecision in risk aversion

Quadratic utility:

U(z) = (1− b)U1(z) + bU2(z)

U1(z) = z2 = z − (z − z2)

U2(z) = 2z − z2 = z + (z − z2)

General form:

U1(z) = z − h(z)

U2(z) = z + h(z)



Imprecision in risk aversion

General form:

U1(z) = z − h(z)

U2(z) = z + h(z)

Subject to U1(z) and U2(z) both increasing functions, widest
difference with this form when

h(z) =

{
z (0 ≤ z ≤ 0.5)

1− z (0.5 ≤ z ≤ 1)



Imprecision in risk aversion
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Imprecision in risk aversion

I Limited range and shape with this method.
I More direct method:

I Determine a range for U(z∗) where 0 < z∗ < 1.
I Probability equivalent method.
I Offer the decision maker a choice between

I dA : the attribute value corresponding to z = z∗, with
certainty, and

I dB : with probability α, the attribute value corresponding to
z = 1 and, with probability 1 − α, the attribute value
corresponding to z = 0.

I The lower utility for z∗, U1(z∗) is the largest value of α at
which the decision maker would choose dA.

I The upper utility for z∗, U2(z∗) is the smallest value of α at
which the decision maker would choose dB .
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I Determine a range for U(z∗) where 0 < z∗ < 1.

I Probability equivalent method.
I Offer the decision maker a choice between

I dA : the attribute value corresponding to z = z∗, with
certainty, and

I dB : with probability α, the attribute value corresponding to
z = 1 and, with probability 1− α, the attribute value
corresponding to z = 0.

I The lower utility for z∗, U1(z∗) is the smallest value of α at
which the decision maker would choose dB .

I The upper utility for z∗, U2(z∗) is the largest value of α at
which the decision maker would choose dA.

I Repeat this process at a range of values z∗.

I Interpolate (linear?). Obtain lower and upper utility functions,
U1(z) and U2(z).

I These can then be our two basis functions.



Imprecision in risk aversion

I Possibility of additional basis functions to give more flexibility
in shape.

I Eg one which is closer to U1(z) for some of the range of z
and otherwise closer to U2(z).



Imprecision in risk aversion: Effect on trade-offs

U ′1(z) 6= U ′2(z)

I Suppose

Un = anUz + (1− an)Ux .

I If
Uz = (1− b)U1(z) + bU2(z),

the effect on Un of a fixed change in z may depend on the
choice of b.

I This may be acceptable.

I Otherwise consider joint feasible region for a and b so that
the range of a can depend on the choice of b.



Sample size example

I Two groups, binary outcomes, eg
I Success: still working after t hours.
I Failure: failed before t hours.

I Group g : give treatment g to ng items. Observe Xg successes.

I Choose treatment for future items.

I Unknown success rate with treatment g is θg .



Sample size example: Terminal decision

I Terminal prior:
I θg ∼ Beta(at,g , bt,g )
I θ1, θ2 independent.
I at,1 = at,2 = bt,1 = bt,2 = 1.5.

I Terminal utility:
I Such that choose according to which posterior mean for θg is

greater. (See Appendix).



Sample size example: Design prior

I θ1, θ2 NOT independent.
I Copula?
I Probit/logit — bivariate normal?
I Mixture?

I Use mixture. Details in appendix.
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Sample size example: Design utility – Benefit

I Attribute: θ. See Appendix.

I Elicit a lower and an upper utility function UB,L(θ) and
UB,U(θ).

I Evaluations at a range of values of θ and linear interpolation.

I

θ 0 0.25 0.5 0.75 1

UB,L(θ) 0 0.25 0.5 0.75 1 – risk neutral
UB,U(θ) 0.00 0.45 0.85 0.95 1.00 – risk averse



Sample size example: Design utility – Benefit
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Sample size example: Design utility – Cost

I For simplicity in this example we use a simple (precise) form.

I Let nmax,1 and nmax,2 be the largest sample sizes which we
would consider.

I Let

ZC ,g =

{
1 (ng = 0)

1− h0,g+h1,gng
h0,g+h1,gnmax,g

(ng > 0)
.

I Marginal cost utility is

UC = ac,1ZC ,1 + ac,2ZC ,2.

I We use ac,1 = ac,2 = 0.5, h0,1 = h0,2 = 10, h1,1 = h1,2 =
1, nmax,1 = 100, nmax,2 = 60.



Sample size example: Design utility – Overall

I The overall design utility is

U = bCUC + bBUB

I We use 0.03 ≤ bC ≤ 0.07, bB = 1− bC .

I Evaluation of expected utilities: see Appendix.
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I The overall design utility is

U = bCUC + bBUB

I We use 0.03 ≤ bC ≤ 0.07, bB = 1− bC .

I Evaluation of expected utilities: see Appendix.



Sample size example: Choosing a design

I With 0 ≤ n1 ≤ 100 and 0 ≤ n2 ≤ 60, there are 6161 potential
designs.

I Of these, 38 are Pareto-optimal.
I With the exception of (0, 0),

I all of the Pareto-optimal designs have 12 ≤ n1 ≤ 25
I all have 0.6n1 < n2 ≤ n1
I and all but three have 0.7n1 < n2 ≤ n1.



Sample size example: Results
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Almost preference

Two alternatives A, B.
Set Q of parameter specifications.
Choose ε ≥ 0, a value to indicate a practical indifference between
utility values.

I A is ε-preferable to B, written A �ε B, over Q if
infQ(U(A)− U(B)) ≥ −ε.

I A, B are ε-equivalent, written A 'ε B, if both A �ε B and
B �ε A.

I A is said to ε-dominate B, written A �ε B, if A �ε B but
B 6�ε A.

I Setting ε = 0, an alternative which is not 0-dominated by any
other is Pareto optimal.
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Almost preference

Two alternatives A, B.
Set Q of parameter specifications.
Choose ε ≥ 0, a value to indicate a practical indifference between
utility values.

I A is ε-preferable to B, written A �ε B, over Q if
infQ(U(A)− U(B)) ≥ −ε.

I A, B are ε-equivalent, written A 'ε B, if both A �ε B and
B �ε A.

I A is said to ε-dominate B, written A �ε B, if A �ε B but
B 6�ε A.

I Setting ε = 0, an alternative which is not 0-dominated by any
other is Pareto optimal.



Almost preference: collections

The collection A is ε-preferable to the collection B of alternatives,
written A �ε B if, for each B ∈ B, there is at least one A ∈ A for
which A �ε B.



Reducing the collection of alternatives

I We now eliminate alternatives which are almost dominated or
almost equivalent to others by finding ε-Pareto decision sets
for a range of values of ε.

I Let our set of Pareto optimal rules be D. Then A ⊆ D is an
ε-Pareto decision set if A �ε B where A ∪ B = D and
A ∩ B = ∅.

I Increasing the value of ε eliminates progressively more
alternatives

I We construct a list of decisions and the ε values at which they
are just deleted by ε-preference.
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I Let our set of Pareto optimal rules be D. Then A ⊆ D is an
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A ∩ B = ∅.

I Increasing the value of ε eliminates progressively more
alternatives

I We construct a list of decisions and the ε values at which they
are just deleted by ε-preference.



Sample size example: Results, ε = 0
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Sample size example: Results, ε = 0.00000077
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Sample size example: Results, ε = 0.00000080
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Sample size example: Results, ε = 0.000571
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Sample size example: Results, ε = 0.000724
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Sample size example: Results, ε = 0.004334
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Sample size example: Results

Order n1 n2 ε Order n1 n2 ε Order n1 n2 ε
17 13 25 19 15 0.000084 12 20 15 0.000022

37 0 0 0.004334 24 16 12 0.000067 11 25 19 0.000018
36 19 16 0.000724 23 16 10 0.000048 10 25 16 0.000018
35 14 12 0.000571 22 15 11 0.000048 9 22 19 0.000013
34 18 15 0.000295 21 22 18 0.000048 8 21 17 0.000010
33 21 18 0.000271 20 18 14 0.000044 7 23 17 0.000009
32 13 10 0.000220 19 16 15 0.000043 6 16 16 0.000008
31 15 12 0.000134 18 18 16 0.000043 5 23 19 0.000008
30 21 16 0.000126 17 17 15 0.000040 4 13 13 0.000007
29 17 14 0.000114 16 16 11 0.000037 3 19 17 0.000002
28 13 11 0.000095 15 15 15 0.000033 2 24 18 0.000001
27 24 19 0.000092 14 15 13 0.000023 1 20 16 0.000001
26 16 13 0.000088 13 12 12 0.000022



Sensitivity of choice: Boundary linear utility

I Farrow, M. and Goldstein, M., 2010. Sensitivity of decisions
with imprecise utility trade-off parameters using boundary
linear utility. International Journal of Approximate Reasoning,
51, 1100-1113.

I Explore the sensitivity of the choice to changing emphasis on
different parts of the feasible region.

I Construct a utility function which is a weighted average of the
utilities at the vertices of the feasible region.

I Subject to certain conditions, correspondence between weights
and points in the feasible region.



Choice of diagnostic test

 

 

XCX θ

Y

CY

DX

DY

U



Choice of diagnostic test

I θ: Unknown state of patient

I DX : Choice of test (test procedure and rules)

I X : Result of test

I CX : Cost of using test — may include both financial cost and
discomfort/risk for patient

I DY : Diagnosis – choice of treatment

I Y : Outcome for patient

I CY : Costs after test – involves patient outcome and cost of
treatment

I U: Overall utility



Choice of diagnostic test

I After observing data, choose
dY = arg max

dY∈DY

[EdY {U(CX ,CY )}] = arg max
dY∈DY

[U(dY ;CX ,CY )].

I Expected utility at this stage is max
dY∈DY

[U(dY ;CX ,CY )].

I Before observing data, choose design/test
dX = arg max

dX∈DX

{ max
dY∈DY

[U(dY ;CX ,CY )] }.
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Choice of diagnostic test

I Construct utility hierarchy — may be imprecise.

I Determine what expectations are required to evaluate
(expected) utility of test. Elicit these.

I These expectations might include those of products of
(non-independent) quantities but we might not need a fully
specified joint distribution.

I Evaluation of expected utility of a test via a fully specified
joint distribution is likely to be computationally demanding
and might be unnecessary.

I So . . . consider methods which do not require this.
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I Determine what expectations are required to evaluate
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Bayes linear methods

I Book: Goldstein and Woof (2007)

I Collection of unknowns. Split into two subvectors X , Y .

I Specify means, variances, covariances:

E

(
X
Y

)
=

(
mx

my

)
, Var

(
X
Y

)
=

(
Vxx Vxy

Vyx Vyy

)



 

 X Y



If we observe X :
adjusted mean and variance of Y :

EY |X (Y | X = x) = my + VyxV
−1
xx (x −mx),

VarY |X (Y | X = x) = Vyy − VyxV
−1
xx Vxy .



I Alternative representation

E(X ) = mX , Var(X ) = VXX ,

Y = my + MY |X (X −mx) + UY |X ,

E(UY |X ) = 0, Var(UY |X ) = VY |X .

I So

E(Y ) = mY ,

Var(Y ) = MY |XVXXM
T
Y |X + VY |X ,

Covar(Y ,X ) = MY |XVXX .
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E(Y ) = mY ,

Var(Y ) = MY |XVXXM
T
Y |X + VY |X ,
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XXVXY .
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Bayes linear kinematics

Y = my + MY |X (X −mx) + UY |X (1)

I What happens if something causes us to change our mean
and variance for X?

I Does (1) still hold?
I Do MY |X and VY |X stay the same?

I If so: Bayes linear kinematics, Goldstein and Shaw (2004)
(cf probability kinematics: Jeffrey, 1965).

I See also
I Wilson and Farrow (2010)
I Gosling et al. (2013)
I Wilson and Farrow (in prep) – survival model
I Wilson and Farrow (in prep) – design
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I Are successive belief updates for B = X ∪ Y by D1,D2, . . .
commutative?

I Goldstein and Shaw (2004): under certain conditions the
commutativity requirement leads to a unique BLK update:

V−11 (B) = Var−1B|D1,...,Ds
(B | D1, . . . ,Ds) = V−1B (B)+

s∑
k=1

Pk(B)

where
Pk(B) = Var−1B|Dk

(B | Dk)− V−1B (B)

and

V−11 (B)EB|D1,...,Ds
(B | D1, . . . ,Ds) = V−1B (B)E(B)+

s∑
k=1

Fk(B)

where

Fk(B) = Var−1B|Dk
(B | Dk)EB|Dk

(B | Dk)− V−1B (B)E(B)



Bayes linear Bayes graphical model

I Goldstein and Shaw (2004)

I Bayes linear belief structure for B = {Y ,X1, . . . ,Xs} where
Y ,X1, . . . ,Xs are (vector) unknowns.

I Full (Bayesian) probability specification for each of
(X1,D1), . . . , (Xs ,Ds) .

I Given Xj , Dj is conditionally independent of everything in
{Y ,X1, . . . ,Xj−1,Xj+1, . . . ,Xs ,D1, . . . ,Dj−1,Dj+1, . . . ,Ds} .

I Use of transformation — Wilson and Farrow (2010).

I Non-conjugate updates — Wilson and Farrow (in future).



 

 

D3

X3

X1

D1

X2

D2

Y



Example: Usability testing

(Simplified version).

I Before new software (eg retail Website) launched.

I Sample of n1 “users” asked to perform a task.

I Inference about n2 future users. Decide whether to launch or
to rewrite.

I Dj out of nj succeed in Group j .

I Dj | θj ∼ Binomial(nj , θj).

I In our beliefs, θ1, θ2 not independent.



Traditional approach.

g(θj) = ηj

Eg g(θj) = log

(
θj

1− θj

)
η1, η2 ∼ Bivariate normal.

I Can we justify full probability specification?

I Requires numerical methods (MCMC in bigger problems, eg
more groups).

I This can be a serious difficulty in design problems.
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Suppose instead:

θj ∼ Beta(aj , bj),

g(θj) = ηj ,

Bayes linear belief specification for η1, η2

E(ηj) = mj , Var(ηj) = Vjj , Covar(η1, η2) = V12,

(mj ,Vjj) = G (aj , bj),

(aj , bj) = G−1(mj ,Vjj).



Suppose we observe D1 = d1.

I Change (a1, b1) from (a
(0)
1 , b

(0)
1 ) to

(a
(1)
1 , b

(1)
1 ) = (a

(0)
1 + d1, b

(0)
1 + n1 − d1)

I Change (m1,V11) from (m
(0)
1 ,V

(0)
11 ) to

(m
(1)
1 ,V

(1)
11 ) = G (a

(1)
1 , b

(1)
1 )

I Change m2, V22, V12 using

η2 = m2 + M2|1(η1 −m1) + U2|1
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(0)
11 ) to

(m
(1)
1 ,V

(1)
11 ) = G (a

(1)
1 , b

(1)
1 )

I Change m2, V22, V12 using

η2 = m2 + M2|1(η1 −m1) + U2|1



Change m2, V22, V12 using

η2 = m2 + M2|1(η1 −m1) + U2|1

with

M2|1 = V
(0)
21 (V

(0)
11 )−1,

V2|1 = V
(0)
22 − V

(0)
21 (V

(0)
11 )−1V

(0)
12 .



. . . but beware.

I This is not a full probability specification,

I nor is it a fully Bayes linear specification,

I so things might not work as they would in these cases.
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We can use the updating above in one direction.

I Gives conditional distribution for D2 given D1.

I Hence joint distribution of D1,D2 (with marginal for D1 as
given).

I But marginal for θ2 would not be beta and conditioning in the
reverse direction would not work in the same way.



Eg, with specification as given above,

Pj =

n1∑
i=0

Pr(D1 = i) Pr(D2 = j | D1 = i)

=

n1∑
i=0

{
Γ(a1 + b1)

Γ(a1 + b1 + n1)

Γ(a1 + i)

Γ(a1)

Γ(b1 + n1 − i)

Γ(b1)

(
n1
i

)
× Γ(a2(i) + b2(i))

Γ(a2(i) + b2(i) + n2)

Γ(a2(i) + i)

Γ(a2(i))

Γ(b2(i) + n2 − j)

Γ(b2(i))

(
n2
j

)}
6= Pr

marg
(D2 = j).
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Example: Usability testing

I Before new software (eg retail Website) launched.

I Sample of n “users” asked to perform a task.

I Decide whether to launch or to rewrite.

I How large should n be?

I Fully probabilistic Bayesian analysis: Valks (2005).

I Utility involves success rate of future customers.
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Applications of Bayes linear Bayes networks

With Wael al Taie:
I Prognostic index

I non-Hodgkin’s lymphoma

I Selection of lungs for transplant

I covariates of various kinds – some censored
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Sample size example: Design utility – Benefit

I For a future item i , let Zi be 1 or 0 depending on the success
or failure of the item. Suggests:

I Attribute ZB =
∑∞

i=1 kiZi with
∑∞

i=1 ki = 1.

I Example 1, ki = (1− λ)λi−1 with 0 < λ < 1.

I Example 2, ki = m−1 for i = 1, . . . ,m and ki = 0 for i > m.

I For simplicity in this example we use Example 2 and
furthermore let m→∞.

I Given a value of θ, ZB → θ.



Sample size example: Design prior

Mixture:

I In component c , give θ1, θ2 independent Beta(ac,g , bc,g )
distributions.

I Prior predictive distributions analytic.

I Average conditional expectations over components.

I Need to develop method for constructing suitable mixtures.



Sample size example: Design prior

Component Probability Parameters
c ac,1 bc,1 ac,2 bc,2
1 0.25 7.5 3.0 4.5 4.5
2 0.50 4.5 3.0 3.0 4.5
3 0.25 4.5 6.0 3.0 6.0



Sample size example: Design prior
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Sample size example: Evaluation of expected utilities

I Let θ = (θ1, θ2)T and x = (x1, x2)T .

I Joint probability density of component c, parameters θ,
observations X , and the benefit utility UB , given sample sizes
n1, n2:

P = Pr(c)fc,θ,X (θ, x | c)fU(UB | x , θ, c)

fc,θ,X (θ, x | c) =
2∏

g=1

fc,g (θg | c)fX |θ,n1(xg | θg )

=
2∏

g=1

fX |ng (xg | c)fc,g |x(θg | xg , c)



fc,θ,X (θ, x | c) =
2∏

g=1

fX |ng (xg | c)fc,g |x(θg | xg , c)

I fX |ng (xg | c) is the prior predictive probability function of Xg ,
given c .

I fc,g |x(θg | xg , c) is the conditional posterior density, using the
design prior, given c , of θg after observing the data Xg = xg .

I The density of UB depends on x both because we use the
posterior density of θ1 and θ2 and because the choice of
treatment (and hence θ1 or θ2) for future items depends on
the posterior distributions, given x , using the terminal prior.

I We can average conditional expectations over the mixture
components. The conditional posteriors are beta distributions
and the conditional prior predictive distributions for Xg can be
evaluated analytically.



Bayes linear kinematic utility

Utility for information gain.

I Farrow and Goldstein (2006): Bayes linear utility

U(β) = 1− 1

r
trace

{
Var−10 (β)Varα(β)

}
I Wilson and Farrow (in prep.):Bayes linear kinematic utility

U(η) = 1− 1

p
trace

{
Var−10 (η)Varp(η; x)

}
I Each can be generalised, eg to give greater weight to some

elements.



Bayes linear kinematic utility

Bayes linear utility Farrow and Goldstein (2006).

I Single scalar quantity β. Base utility on d2(β) where
d(β) = β − E1(β).

I Scale utility so that a precise experiment would give utility 1
and a null experiment would give utility 0.

U(β) = 1− d2(β)

Var0(β)

E[U(β)] = 1− E0[d2(β)]

Var0(β)

= 1− Var1(β)

Var0(β)
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Bayes linear kinematic utility

Bayes linear utility Farrow and Goldstein (2006).

Now suppose β = (β1, . . . , βm)T .

I If β1, . . . , βm uncorrelated then U(β) = m−1
∑m

i=1 U(βi ).

I More generally β1, . . . , βm not uncorrelated. Use principal
components.

U(β) = 1−m−1E0{d (β)TVar−10 (β)d (β)}
E0{U(β)} = 1−m−1trace

{
Var−10 (β)Var1(β)

}
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Bayes linear kinematic utility

Bayes linear utility Farrow and Goldstein (2006).
Generalise to put different weights on different elements:

I Transform β

β̃ = Mβ = (β̃T
1 , . . . , β̃

T
k )T

I

U(β) =
k∑

j=1

ajU(β̃j)
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Bayes linear kinematic utility

Bayes linear utility Farrow and Goldstein (2006).
Generalise to put different weights on different elements:

I Transform β

β̃ = Mβ = (β̃T
1 , . . . , β̃

T
k )T

I

U(β) =
k∑

j=1
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Bayes linear kinematic utility

I Adapt for Bayes linear kinematic case.

I Not always quite straightforward since, in BLK case, adjusted
variance may depend on the observations so we have to take
expectations over prior predictive distribution . . .

I . . . but see bioassay example.



Bioassay

I Chukwu et al. (2009): effect of fertiliser on fish.

I Five doses: 1, 2, 4, 6, 8 ml/l.

I Deaths: Xi | θi ∼ Binomial(ni , θi ).

I Choose (n1, . . . , n5)



Bioassay

I This time we will make 5 observations: X1 . . . ,X5.

I We don’t specify a link function but simply say that

θi | η ∼ Beta(ai , bi )

ηi = g(θi )

with pseudo expectation and pseudo variance

Ê0(ηi ) = g1

(
ai

ai + bi

)
,

V̂ar0(ηi ) = g2

(
1

ai + bi

)
,

where g1 and g2 are suitable monotonic functions.



Bioassay

I

Ê0(ηi ) = g1

(
ai

ai + bi

)
,

V̂ar0(ηi ) = g2

(
1

ai + bi

)
,

I In this example we use

g1(x) = log

(
x

1− x

)
, g2(x) = x .

I Expectation of ηi is unrestricted.

I Variance decreases upon observation of data and only depends
on the numbers of observations, given the doses.



Bioassay: utility hierarchy

Design D

Benefit B Cost C

Financial F Ethical E

�
�
��

@
@
@I

�
�
��

A
A
AK



Bioassay: Information gain utility

I We use an information gain benefit utility which can be
calculated using

U(η) = 1− 1

5
{Var−10 (η)Var5(η;n)},

where Var5(η;n) is the BLK adjusted variance having chosen
sample sizes of n = (n1, . . . , n5)T at the doses.

I Crucially this does not depend on how many fish die at each
dose and so the experimental design problem can be solved
without having knowledge of the full joint distribution of X .



Example result (depends on choice of prior, utility function):

n1 n2 n3 n4 n5
21 8 4 3 5
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