Checking avoiding sure loss and a problem in gambling

Nawapon Nakharutai
Under supervision of Dr Matthias Troffaes and Dr Camila Caiado
Department of Mathematical Sciences
Durham University, England
$6^{\text {th }}$ September 2016

Avoiding sure loss

- A possibility space \mathcal{X}
- A gamble g
- A set of desirable gambles \mathcal{D}
- Desirability axioms
- \mathcal{D} avoids sure loss if for all $n \in \mathbb{N}, g_{i} \in \mathcal{D}$ and $\lambda_{i} \geq 0$:

$$
\begin{equation*}
\sup _{x \in \mathcal{X}}\left(\sum_{i=1}^{n} \lambda_{i} g_{i}(x)\right) \geq 0 . \tag{1}
\end{equation*}
$$

Linear programming problems

We can check whether \mathcal{D} avoids sure loss by solving linear programming problems

$$
\begin{array}{cc}
\text { (P) } \quad \min \alpha & \text { (D) } \\
\text { s.t. } \forall x \in \mathcal{X}: \sum_{i=1}^{n} \lambda_{i} g_{i}(x) \leq \alpha: \sum_{x \in \mathcal{X}} g_{i}(x) p(x) \geq 0 \\
\text { where } \quad \lambda_{i} \geq 0 . & \sum_{x \in \mathcal{X}} p(x)=1 \\
\text { where } & p(x) \geq 0
\end{array}
$$

Gambling company

Consider a gambling company offering bets

Premier League Winner 16/17
Premier League | Tuesday 16th May 2017 | 16:00

Outrights	
Win Outright	
Manchester City $11 / 8$	Manchester Utd $5 / 2$
Chelsea $9 / 2$	Arsenal $9 / 1$
Liverpool $12 / 1$	Tottenham 20/1 Way. $1 / 5$ for first 3 places
Leicester 66/1	Everton 100/1
West Ham 250/1	Southampton 500/1
Middlesbrough 750/1	Swansea 1000/1
West Brom 1000/1	Stoke 1000/1
Bournemouth 1000/1	Hull 1000/1
Watford 1000/1	Burnley 1000/1
Crystal Palace 1000/1	Sunderland 1500/1

Can we exploit this situation to make a profit?
On the other hand, if we were the betting company, then we would like to prevent gamblers to earn money.

Formulate a problem

- We can view these odds as a set of desirable gambles \mathcal{D} to the company.
- This set avoids sure loss \Longrightarrow the company avoids sure loss.
- Checking whether \mathcal{D} avoids sure loss is very quick.

Theorem 1

Let $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$. Suppose a_{i} / b_{i} are odds on x_{i} where a_{i} and $b_{i} \geq 0$. For each $i=1, \ldots, n$,

$$
g_{i}(x):=\left\{\begin{align*}
-a_{i} & \text { if } x=x_{i} \tag{2}\\
b_{i} & \text { otherwise }
\end{align*}\right.
$$

Then $\mathcal{D}=\left\{g_{1}, \ldots, g_{n}\right\}$ avoids sure loss if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{b_{i}}{a_{i}+b_{i}} \geq 1 \tag{3}
\end{equation*}
$$

Gambling company

Consider several gambling companies offering bets

Theorem 2

Let $\mathcal{X}=\left\{x_{1}, \ldots, x_{n}\right\}$. Suppose there are m different companies. For each $k=1, . ., m, a_{i k} / b_{i k}$ is betting odds on x_{i} provided by company k where $a_{i k}$ and $b_{i k} \geq 0$. For each $i=1, \ldots, n$ and $k=1, \ldots, m$,

$$
g_{i k}(x):=\left\{\begin{align*}
-a_{i k} & \text { if } x=x_{i} \tag{4}\\
b_{i k} & \text { otherwise }
\end{align*}\right.
$$

Let a_{i}^{*} / b_{i}^{*} be the maximum betting odds on outcome x_{i}, that is,

$$
\begin{equation*}
a_{i}^{*} / b_{i}^{*}:=\max _{k}\left\{a_{i k} / b_{i k}\right\} \tag{5}
\end{equation*}
$$

Then $\mathcal{D}=\left\{g_{i k}: i=1, \ldots, n, k=1, \ldots, m\right\}$ avoids sure loss if and only if

$$
\begin{equation*}
\sum_{i=1}^{n} \frac{b_{i}^{*}}{a_{i}^{*}+b_{i}^{*}} \geq 1 \tag{6}
\end{equation*}
$$

Free coupons

- Suppose the company offers an extra bet which is not fit for eq. (2). This bet can be viewed as another desirable gamble f. For example, a "free coupon".
- Check whether the company still avoids sure loss, i.e. whether $\mathcal{D} \cup f$ avoids sure loss.

Discussion 1

$\mathcal{D} \cup f$ avoid sure loss if or all $n \in \mathbb{N}, g_{i} \in \mathcal{D}, \lambda_{i} \geq 0$ and $\alpha \geq 0$:

$$
\begin{equation*}
\sup _{x \in \mathcal{X}}\left(\sum_{i=1}^{n} \lambda_{i} g_{i}(x)+\alpha f(x)\right) \geq 0 \tag{7}
\end{equation*}
$$

$\bar{E}(f):=\inf \left\{\alpha \in \mathbb{R}: \alpha-f \geq \sum_{i=1}^{n} \lambda_{i} g_{i}, n \in \mathbb{N}, g_{i} \in \mathcal{D}, \lambda_{i} \geq 0\right\}$.

Theorem 3

$\mathcal{D} \cup f$ avoids sure loss if and only if $\bar{E}(f) \geq 0$.
A proof is easy and we can reduce the size of a linear programming problem.

Q: Can we simplify this theorem, e.g. without solving a linear programming problem?

Discussion 2

- Two sets of desirable gambles \mathcal{D}_{1} and \mathcal{D}_{2}.
- \mathcal{D}_{1} : large, avoiding sure loss (formulate from given odds)
- \mathcal{D}_{2} : small (formulate from free coupons)

Aim: check whether $\mathcal{D}_{1} \cup \mathcal{D}_{2}$ avoid sure loss?
Possible way: add one desirable gamble to \mathcal{D}_{1} and check whether it avoids sure loss. Do we have a better way?

Discussion 3

Get free coupon if you lose

- You first bet with the company, say Man city $11 / 8$.
- If Man city wins, you get your reward.
- If not, the company give you a free coupon to bet on other tournaments.

Aim: formulate this problem to a problem of checking avoiding sure loss.

