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Abstract. A two dimensional version of Farey dissection for function fields K = Fq(t) is developed and
used to establish the quantitative arithmetic of the set of rational points on a smooth complete intersection
of two quadrics X ⊂ Pn−1

K , under the assumption that q is odd and n ≥ 9.
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1. Introduction

Let X ⊂ Pn−1
K denote a smooth projective complete intersection defined over a global field K of multi

degree type (d1, ..., dR), i.e., it corresponds to the zero locus of a non-singular system of homogeneous
polynomials F1(x), ..., FR(x) of degrees d1, ..., dR respectively. Establishing properties of the set of K-
rational points on X, denoted by X(K), is a key focus of Diophantine Geometry. An important tool
in establishing the Hasse principle and weak approximation is presented by the Hardy-Littlewood circle
method. A feature of this method is that it not only gives the existence of the rational points on X, but
also provides an asymptotic formula for the number of rational points in an expanding box, establishing
the quantitative arithmetic of X(K).

Let K = Fq(t), let O = Fq[t] be the ring of integers in K and let K∞ denote the completion of K with

respect to the ∞-norm on K, denoted by | · | defined by |a/b| = qdeg(a)−deg(b). Let T = {|x| < 1} ⊂ K∞ be
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an analogue of the unit interval in this setting. The circle method starts with considering an integral

(1.1)

∫
TR
S(α)dα,

where dα denotes a suitably normalised Haar measure and S(α) denotes a suitable exponential sum, made
explicit in Section 5. Given any Q > 0, a version of Dirichlet’s approximation theorem (see [22, Lemma
5.1], [23]) gives

(1.2) TR =
⋃
r∈O
|r|≤qQ
r monic

⋃
a∈OR

|a|<|r|
gcd(a,r)=1

D(a, r,Q), where D(a, r,Q) =
{
ξ ∈ TR : |ξ − a/r| < |r|−1q−Q/R

}
.

Here, given any x ∈ KR
∞, |x| = max{|x1|, |x2|, ..., |xR|} denotes the maximum norm of its co-ordinates.

The study of rational points on low degree d smooth hypersurfaces (R = 1) has seen major advances
over the years. However, this success has not been mirrored in the R > 1 case, with Myerson’s recent
works being one of the notable exceptions. We will try to explain one of the major hurdles here. When
R = 1 and K = Fq(t), (1.2) provides an exact splitting of T, effectively enabling us to utilise non-trivial
cancellations in the averages ∑

r∈O
|r|=qY
r monic

∑
a∈O
|a|<|r|

gcd(a,r)=1

S(a/r + z),

usually called as a double Kloosterman refinement. This was a key idea in the author’s previous work (w.
Browning) [8]. This idea was employed there to establish the quantitative arithmetic of cubic hypersurfaces
over Fq(t), as long as n ≥ 8 and Char(Fq) > 3. When R ≥ 2, a major log-jam is posed by the fact that so far
there is no known way for obtaining a suitably symmetric partition of TR with approximating fractions of
the type a/r, namely, a multi-dimensional version of Farey dissection. The only other available approach is
due to Munshi [25]. WhenK = Q and R = 2, he essentially used a hybrid of two 1-dimensional Kloosterman
refinements. Upon translating his approach to the function field setting, it amounts to using approximating
fractions of the type (a1/r1, a2/r2), which in turn needs too many sets to cover T2. Therefore, it fails to
generalise beyond the d = (2, 2) case in a fruitful way.

The primary goal of this paper is to overcome this lacuna by producing a two dimensional version
of Farey dissection for T2. This will provide a route for establishing a double Kloosterman refinement,
capable of dealing with a system of two forms (R = 2) over K = Fq(t). We illustrate the utility of this new
approach by providing an asymptotic formula for a suitable counting function for any smooth complete
intersection of two quadrics (d = (2, 2)) defined over K, as long as, n ≥ 9 and 2 - q. Being able to obtain
a multi-dimensional version of Farey dissection is a well known open problem in number theory. As far as
our knowledge, our version here is the first of its kind for any global field.

We begin with a survey of some existing results. For X of the type (d, ..., d) over K = Q, a long standing
result by Birch [2] implies that n > (d− 1)2d−1R(R+ 1) suffices for the Hasse Principle to hold. This was
generalised to a general d type by Browning and Heath-Brown [6]. In Birch’s original setting, a recent
major breakthrough was achieved by Myerson in [27], [28], [26], where he managed to obtain the Hasse
principle as long as n ≥ d2dR + R and X is suitably generic. When d = 2 and 3, he is able to drop the
genericity condition on X and obtain results for all smooth complete intersections. However his results do
not improve those of Birch’s when d and R are relatively small. The above results use the Hardy-Littlewood
circle method and therefore also provide us with an asymptotic formula for the number of rational points
on X, when counted in an expanding box.
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When K = Fq(t), the Hasse Principle for n > d2
1+...+d2

R is an easy consequence of the Lang-Tsen theory.
Establishing weak approximation turns out to be a much harder task. A folklore conjecture predicts that
X should satisfy weak approximation as long as n > d2

1 + ...+ d2
R. It is usually believed that perhaps with

a lot more technical work, most of the previously mentioned results over K = Q could be translated to the
function field setting. This is seen in Lee’s PhD thesis [23], [22], where he obtained an Fq(t) analogue of [2].
A novelty is typically attained when one obtains better results over Fq(t) as compared with the Q-setting,
often aided by the proven analogue of the generalised Riemann hypothesis over function fields.

When d = (2, 2) and 2 - Char(K), a conjecture of Colliot-Thélène, Sansuc and Swinnerton-Dyer [13,
Sec 16] predicts weak approximation to hold as long as n ≥ 6. The geometry of a complete intersection
of two quadrics is well understood and therefore the geometric methods have been quite effective. When
K is an arbitrary number field, weak approximation for n ≥ 9 was established by Colliot-Thélène, Sansuc
and Swinnerton-Dyer [12] and [13]. This was improved by Heath-Brown in [18], where he established the
n = 8 case. When K = Fq(t), a remarkable result of Tian [32] establishes weak approximation as long
as 2 - q and n ≥ 6, settling the aforementioned folklore conjecture in this case. The methods in all these
results however are purely geometric and fail to shed further light on the structure of rational points X(K).
Moreover, they do not generalise to be able to deal with a more general types of complete intersections.
The only known improvement of Birch’s result in this setting is due to Munshi [25], where for K = Q,
he established the quantitative arithmetic as long as n ≥ 11. Browning and Munshi [7] established the
quantitative arithmetic when K = Q and n ≥ 9 under the assumption that the singular locus of X consists
of a pair of conjugate singular points defined over Q(i). When d = (2, 3), Browning, Dietmann and Heath-
Brown established an asymptotic formula for the Hasse principle as long as n ≥ 29. Heath-Brown and
Pierce [19] and Pierce, Schindler and Wood [29] investigated systems of quadratic forms attaining almost
every integer value simultaneously.

1.1. Main results. We start by stating our main results. From now on, we fix K = Fq(t) and d = (2, 2).
While inspecting (1.2), it is easy to construct sub-families of overlapping sets appearing there. For instance,
the sub-family

{D((a, a), r,Q) : gcd(a, r) = 1, r monic , |r| ≤ qQ},

contains a lot of sets which overlap with each other. However, this phenomenon can be easily explained
by the fact that they cover a region around {x1 − x2 = 0} ∩T2, a rational line segment of low height. The
Diophantine approximation of rational points lying on {x1 − x2 = 0} is explained by the R = 1 case in
(1.2). This rationale sets the stage for our partition of T2.

Before stating the result, we begin by making our notion of a generalised line concrete: given d ∈ O,
and a primitive vector c ∈ O2, we define the corresponding generalised line as

(1.3) L(dc) := {a/r ∈ T2 ∩ L1(dc, k) for some k ∈ O : gcd(a1, a2, r) = gcd(d, k) = 1},

where L1(dc, k) denotes the affine line

(1.4) L1(dc, k) := {x ∈ K2
∞ : dc · x = k}.

To clarify our previous comments, |dc| will denote the height of L(dc). Note that a/r ∈ L(dc) would imply
that q | dc · a. Here and throughout the rest of this work, we say that c = (c1, c2) ∈ O2 is primitive
if gcd(c1, c2) = 1, and either c1 is monic or c1 = 0 and c2 is monic. As a result, the relevant vectors
dc 6= (0, 0). The following theorem, the key innovation in this work features our partition of T2:
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Theorem 1.1. Given any Q > 0, we have the following:

(1.5) T2 =
⊔

r monic
|r|≤qQ

⊔
d|r monic, c∈O2 primitive

|r|q−Q/2≤|dc|≤|r|1/2
|dc2|<|r|1/2

⊔
a∈O2

|a|<|r|
gcd(a,r)=1
a/r∈L(dc)

D(a, r,Q).

Theorem 1.1 will eventually be proved in Section 2. Let us give a brief explanation of how (1.5) will be
derived from (1.2). We first begin by using the pigeon hole principle to prove that every rational a/r lies

on a generalised line of height at most |r|1/2. The extra condition |dc2| < |r|1/2 guarantees that these lines
don’t intersect each other at rationals of relatively small denominators. The rational points on each line of
low height are much closer to each other and therefore, we remove neighbourhoods around the rationals of
relatively high denominator lying on these lines, as each such rational is sufficiently close to one with the
denominator ≤ |dc|qQ/2, effectively handing us the condition |r|q−Q/2 ≤ |dc|. Finally, the condition d | r is
guaranteed from our definition of L(dc). We crucially use here that in a non-Archimedean setting if two
open balls intersect each other then one of them must contain the other.

It should be noted that the partition obtained in (1.5) is a true two dimensional version of Farey dissection
where for a fixed r, the intervals are symmetrically placed around of Farey fractions a/r, which belong to a
fixed line. (1.5) provides a decomposition of T2 as a disjoint union of the sets D(a, r,Q) placed at rationals
a/r lying on lines L(dc) satisfying the conditions

|r|q−Q/2 ≤ |dc| ≤ |r|1/2, |dc2| < |r|1/2, d | r.(1.6)

An important observation to make here is that apart from the condition d | r, (1.6) only depends on the
absolute values |r|, |c1|, |c2| and |d|. We may therefore readily interchange the sums over dc and r. After
an application of Theorem 1.1 to (1.1), we are able to consider averages of the type∑

|dc|=qY1

∑
|r|=qY2

d|r

∑
a/r∈L(dc)

S(a/r + z).(1.7)

For a fixed value of z, this presents us with a way to utilise oscillations in the values S(a/r+z), for rationals
a/r appearing in (1.7). Theorem 1.1 should be able to be inductively generalised to produce partitions of
TR, for arbitrary values of R. We intend to return to this topic in a subsequent work.

We now move on to an application of Theorem 1.1. Let F1(x), F2(x) ∈ O[x1, ..., xn] be two quadratic
forms defining a smooth complete intersection. We fix N ∈ O and a vector b such that F1(b) ≡ F2(b) ≡
0 mod N . An object of focus for us is the following affine counting function: given a non-zero parameter
P ∈ O and a smooth, compactly supported function ω over Kn

∞, let

(1.8) N(P ) := NX,K,ω(P,b, N) :=
∑
x∈On

F1(x)=F2(x)=0
x≡b mod N

ω(x/P ).

We apply Theorem 1.1 to detect the condition F1(x) = F2(x) = 0 to obtain the following asymptotic
formula for N(P ):

Theorem 1.2. Let X ⊂ Pn−1
K be a smooth complete intersection of two quadrics over K = Fq(t) satisfying

2 - q. Let x0 be a non-singular point in X(K∞) and for an integer L ≥ 1, let ω denote characteristic
function of the set {|x− x0| < q−L}. Then there exist constants Cω,F1,F2,N > 0 and 0 < ε0 �n 1 such that
given any non-zero P ∈ O, any L� 1 and any 0 < ε < ε0, we have

N(P ) = Cω,F1,F2,N |P |n−4 +O(|P |n−4−ε),
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as long as n ≥ 9. Here, throughout, the implied constants are allowed to depend freely on F1, F2, N, q and
ε.

We thus establish the quantitative arithmetic for a pair of quadrics in the setting of the aforementioned
folklore conjecture requiring n > d2

1 + ...+ d2
R and thus also record an improvement of [25] in the function

field setting. The asymptotic formula, without the condition Cω,F1,F2,N > 0, could essentially be proved for
the characteristic function ω of any fixed hypercube in Kn

∞. However, for it to be meaningful, we must have
Cω,F1,F2,N > 0. The constant Cω,F1,F2,N is a product of local densities whose positivity can be established
under the assumption that there are no local obstructions and that the hypercube is close enough to a
smooth point x0 ∈ Kn

∞. The hypothesis 2 - q is vital as well.

Our bounds for the exponential sum (1.7) for a fixed vector dc ∈ O2 and for generic values of the
denominators r are sufficient to establish Theorem 1.2 for n ≥ 8. However, the corresponding bounds for
special values of the denominators r make our method not work for n = 8. We elaborate on this further in
Remark 6.2. To stablish a hypothetical limit of our method, if one is able to obtain further cancellations
utilising the sum over vectors dc in (1.7) one may reach n ≥ 7, which would amount to a full double
Kloosterman refinement. However, it is not clear to us how to achieve this.

Theorem 1.2 will finally be proved in Section 8 where we establish satisfactory bounds for the contribution
from the minor arcs. Here is a short roadmap of rest of the sections. Sections 3 and 4 provide supporting
results for Fq(t) analysis and results about complete intersections of a pair of quadrics respectively. In
Section 5 we will set up the circle method to prove Theorem 1.2 and deal with the major arcs contribution.
Section 6 obtains explicit bounds for quadratic exponential sums. Some of these bounds were already
known over Q due to many relevant previous works on quadratic forms including [7], [16] and [19] but
were not explicitly available in the literature in the function field setting. Finally in Section 7 we use the
proved Riemann hypothesis in the Fq(t) setting to obtain cancellations in averages of exponential sums
over square-free moduli, which is crucial in establishing the n = 9 case.

Finally, there are wider implications of obtaining analogous asymptotic formulae (where deg(P ) remains
fixed but q →∞) for the counting function (1.8) over Fq(t). Let X be a smooth complete intersection over
C. Akin to [9], [10], [11] and [24], techniques in this work are likely to facilitate us to understand geometry
of the space of rational curves on X, which is crucial in understanding rationality properties of X.

1.2. Acknowledgements. We would like to thank Tim Browning and Roger Heath-Brown for helpful
discussions and providing us with useful references. Special thanks are also due to Will Sawin whose
generous help is greatly acknowledged. We also thank the anonymous referees for their comments.

2. Proof of Theorem 1.1

The focus of this section is to prove our key result Theorem 1.1, providing us with the required dissection
of T2. Our proof of Theorem 1.1 is proved by first principles of Diophantine approximation. Here is an
outline. In Lemma 2.1, we will begin by first showing that each rational point a/r ∈ T2 lies on a line
L(dc) of a suitable height. Lemmas 2.2 through 2.7 establish the precise distribution of rational points on
individual lines L(dc). This essentially follows from the one dimensional Dirichlet approximation theorem.
Later, Lemma 2.9 establishes that the lines L(dc) stay sufficiently far away from one another. Theorem
1.1 is proved by combining all these ingredients together.

As before, let | · | denote the ∞ norm on K, let K∞ denote the completion of K with respect to this
norm. K∞ can be seen as the space of truncated Laurent series with Fq co-efficients. Given x ∈ K2

∞,
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let |x| = max{|x1|, |x2|} denote the maximum norm. Throughout this work, for any real number R, let

R̂ := qR. Let O = Fq[t] be the ring of integers of K.

Let C ∈ Mk(O) be an arbitrary k × k matrix. We will frequently use a Smith normal form to write
C = TDS, where S, T ∈ GLk(O) are matrices satisfying det(S),det(T ) ∈ F×q . Here D = diag(µ1, ..., µn) is
a diagonal matrix satisfying µ1 | µ2 | ... | µn.

Throughout this section, just for the sake of convenience of the notation, we will treat the tuples x ∈ K2
∞

as column vectors (instead of the row vector notation used in Section 3.1 and the rest of the paper). This
choice makes little difference to the analysis in the remaining sections, where x ∈ K2

∞ can be purely viewed
as a tuple (either a row vector or a column).

We start by recalling the definition of lines L(dc):

L(dc) := {a/r ∈ T2 ∩ L1(dc, k) : where k ∈ O, gcd(a1, a2, r) = gcd(d, k) = 1},
where L1(dc, k) denotes the affine line defined by the equation dc · x = k. Note that

(2.1) a/r ∈ L(dc)⇒ dc · a = kr, where gcd(k, d) = 1⇒ d | r.

We first start by proving that every rational pair a/r satisfying gcd(a, r) = 1 lies on one of the lines of
suitable height.

Lemma 2.1. Given any rational a/r satisfying gcd(a, r) = 1, there exists a primitive c =

(
c1

c2

)
∈ O2 and

a monic d ∈ O satisfying |dc1| ≤ |r|1/2, |dc2| < |r|1/2, such that a/r ∈ L(dc).

Proof. Let |r| = qL. We will start by proving the existence of a possibly non-primitive vector c1 such that

r | c1 · a. Using the fact that for any N ∈ N, #{x ∈ O : |x| < N̂} = N̂ , we have

qL < #{(c1, c2) : |c1| ≤ L̂/2, |c2| < L̂/2} = qL+1.

Therefore, for any triple (a1, a2, r), at least two distinct elements in {c1a1 + c2a2 : |c1| ≤ L̂/2, |c2| < L̂/2}
must have the same residue modulo r. This implies that a · c1 = kr for some 0 6= c1 ∈ O2, k ∈ O, satisfying
the required bound on the size of the co-ordinates of c1. If c1 is not primitive, let d = gcd(c1, r). Let
d′ = gcd(c1)/d and c = c1/ gcd(c1), where upon possibly multiplying by a unit, we may ensure that c is
monic as well. Note that gcd(d′, r/d) = 1. We then have

a · c1 ≡ 0 mod r ⇒ a · d′c ≡ 0 mod r/d⇒ a · c ≡ 0 mod r/d⇒ a · dc ≡ 0 mod r.

We have now proved that dc · a = k1r for some k1 ∈ O, where c is primitive. If gcd(d, k1) = 1, then we
are done. Otherwise, if d2 = gcd(d, k1), then note that a/r ∈ L1((d/d2)c, k1/d2), which further implies
that a/r ∈ L((d/d2)c). The required bound for the coordinates of dc follows from further observing
|d/ gcd(c1)| ≤ 1. �

We next prove a refinement of the one dimensional Diophantine approximation [8, Lemma 4.2]:

Lemma 2.2. Given any a, r ∈ O such that gcd(a, r) = 1 and |r| = M̂ , there exist a1, r1, such that

|r1| = M̂ + 1, gcd(a1, r1) = 1 and |a/r − a1/r1| = ̂−2M − 1 = (|r||r1|)−1.

Proof. The proof is a direct consequence of [8, Lemma 4.1]. Let y = a/r + z, where z = t−2M−1. For any

a′, r′ such that a′/r′ 6= a/r, |r′| ≤ |r|, note that |y − a′/r′| ≥ M̂−1|r′|−1. However, a further application

of [8, Lemma 4.1] produces a1, r1, satisfying |r1| ≤ M̂ + 1 and |a1/r1 − y| < M̂ + 1
−1
|r1|−1. Clearly,
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|r1| = M̂ + 1 by our earlier observation. This implies that |a1/r1 − y| < M̂ + 1
−2

. A simple triangle
inequality establishes the lemma. �

We now investigate the structure of the rational points on each individual line, starting with a line L(c),
where c is primitive.

Lemma 2.3. Let c1, c2, r ∈ O satisfying gcd(c1, c2, r) = 1. Then we have the following equality of residues
modulo r:

{a mod r : gcd(a, r) = 1, c · a ≡ 0 mod r, |a| < |r|} = {ac⊥ mod r : |a| < |r|, gcd(a, r) = 1},

where c⊥ = (−c2, c1)t.

Proof. We will assume that r = $k, for some prime $. Without loss of generality, we can assume that
$ - c1. Clearly, modulo r, the left hand side is equal to

{y(−c−1
1 c2, 1) : gcd(y, r) = 1, y mod r} = {yc1(−c−1

1 c2, 1) : gcd(y, r) = 1, y mod r}.

In general, if r = $k1
1 ...$

km
m is a prime decomposition of r into co-prime prime powers, then our previous

analysis shows that c · a ≡ 0 mod r would necessarily imply that for each 1 ≤ i ≤ m, there exists bi such

that $i - bi and a ≡ bic⊥ mod $ki
i . An application of the Chinese remainder theorem will finish the proof

of the lemma. �

As a direct corollary of Lemma 2.3, we get

Corollary 2.4. For every a/r ∈ L(c), there exists a unique |a| < |r|, gcd(a, r) = 1 and a unique d ∈ O2

satisfying |d| < |c| and a/r = ac⊥/r + d.

Similarly for any general line L(dc), we have the following generalisation:

Lemma 2.5. Let c ∈ O2 be primitive and d ∈ O. Then, for every a/r ∈ L(dc), there exists a unique
a′/(r/d) ∈ L(c) and a unique d′ ∈ O2 satisfying |d′| < |d| such that a/r = a′/r + d′/d, where |d′| < |d|.
Consequently, a/r = ac⊥/r + d/d, where (a, r/d) = 1, |a| < |r/d|, gcd(d, d) = 1, d ∈ O2.

Proof. We begin by recalling that a/r ∈ L(dc) implies that dc · a = kr, where gcd(k, d) = 1. Thus, c · a ≡
0 mod r/d. The first part of the lemma is established upon choosing |a′| < |r/d| such that a′ ≡ a mod r/d.
This choice of a′ is also unique, since any representation a/r = a1/r + d1/d must satisfy a ≡ a1 mod r/d.

Corollary 2.4 implies that a′/(r/d) = ac⊥/(r/d) + d′′, for some d′′ ∈ O2, gcd(a, r/d) = 1. Thus,
a/r = ac⊥/r + d/d, for some d ∈ O2. This implies that dc · (ac⊥/r + d/d) = c · d = k. Since (k, d) = 1,
gcd(d, d) = 1. �

As a consequence of the previous lemmas, we are now set to establish results about the distribution of
rational points on the generalised lines L(dc). As before, we start by investigating the lines of the type
L(c). The following lemma is a consequence of the one dimensional Dirichlet approximation.

Lemma 2.6. Let c be primitive and let a1/r1 6= a2/r2 ∈ L(c) satisfying |c|2 ≤ |r1||r2|, then

|a1/r1 − a2/r2| ≥
|c|
|r1||r2|

.
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Moreover, given any a/r ∈ L(c) satisfying |c|2 ≤ |r|, there exist a1/r1 ∈ L(c) satisfying |r| < |r1| and

|a/r − a1/r1| =
|c|
|r||r1|

.

We can further guarantee that a/r and a1/r1 both lie on the line L1(c, k), for some k ∈ O.

Proof. We begin by proving the first part of the lemma. Since a1/r1, a2/r2 ∈ L(c), we have (ai/ri) · c = ki,
for k1, k2 ∈ O. Thus, (a1/r1−a2/r2) · c = k1−k2. If k1 6= k2, then this implies that |a1/r1−a2/r2| ≥ |c|−1.
The first part now follows from the condition on r1, r2 and c. On the other hand, Corollary 2.4 implies
that a1/r1 = a1c⊥/r1 + d1 and a2/r2 = a2c⊥/r2 + d2. As a result, if k1 = k2, then this necessarily implies
(d1 − d2) · c = 0. Now we use the fact that c is primitive, along with the fact that |d1|, |d2| < |c| to get
that d1 = d2. The first part now follows from the observation |a1/r1 − a2/r2| = |(a1/r1 − a2/r2)(−c2, c1)|.

To prove the second part, we appeal to Lemma 2.2. Suppose, a/r = a(−c2, c1)/r+d. Lemma 2.2 provides
us a1/r1 such that |r1| = q|r| and |a/r − a1/r1| = (|r||r1|)−1. Now, let a1/r1 = a1(−c2, c1)/r1 + d. Clearly

|a/r − a1/r1| = |(a/r − a1/r1)(−c2, c1)| = |c|
|r||r1| < 1. Thus, a1/r1 ∈ T. We must also have gcd(a1, r1) = 1,

since a1 ≡ a1c⊥ mod r1. We thus have a1/r1 ∈ L(c). The final part of the lemma follows from choosing
k = d · c. �

We further extend this result to the lines of general type:

Lemma 2.7. Let c be primitive, let d ∈ O and let a1/r1 6= a2/r2 ∈ L(dc) satisfying |dc|2 ≤ |r1||r2|, then

|a1/r1 − a2/r2| ≥
|dc|
|r1||r2|

.

Moreover, given any a/r ∈ L(dc) ∩ L1(dc, k), where |dc|2 ≤ |r|, there exists a2/r2 ∈ L(dc) ∩ L1(dc, k)
satisfying |r| < |r2| such that

|a/r − a2/r2| =
|dc|
|r||r2|

.

Proof. The first part is almost immediate from Lemmas 2.5 and 2.6. The first part of Lemma 2.5 implies
that ai/ri = a′i/(dri/d) + d′i/d, where a′i/(ri/d) ∈ L(c), for i = 1, 2. Thus,

a1

r1
− a2

r2
=

1

d

(
a′1
r1/d

− a′2
r2/d

)
+

d′1 − d′2
d

.

The second term is clearly bigger than the first one on the right side of the above expression, except when
d′1 = d′2, since |dc|/(|r1r2|) ≤ 1/|d|, the bound 1/|d| is admissible. This leaves us with the case d′1 = d′2.

We use Lemma 2.6 to get
∣∣∣ a′1
r1/d
− a′2

r2/d

∣∣∣ ≥ |d2c|
|r1||r2| , which settles this part.

For the second part, we again begin by applying the first part of Lemma 2.5 to write a/r = a′/r + d/d,
where a′/(r/d) ∈ L(c). We next use the second part of Lemma 2.6, to obtain a1/r1 ∈ L(c) satisfying
|r/d| < |r1|, |a′/(r/d)− a1/r1| = d/(|r||r1|) and a′ · c = a1 · c. Set a2/r2 = a1/(r1d) + d/d. Clearly,

(a2/r2) · dc = c · a1/r1 + d · c = c · a′/(r/d) + d · c = k.

Since gcd(d, k) = 1, it follows that d | r2. This implies that a2/r2 ∈ L(dc) ∩ L1(dc, k). Moreover,∣∣∣∣ar − a2

r2

∣∣∣∣ =

∣∣∣∣1d
(

a′

r/d
− a1

r1

)∣∣∣∣ =
|c|
|r||r1|

≤ |dc|
|r||r2|

.
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The last inequality comes from the fact here that |dr1| ≥ |r2|. However, since |dc|2 ≤ |r|, the first part of

the lemma is applicable. This gives
∣∣∣ar − a2

r2

∣∣∣ ≥ |dc|
|r||r2| , which implies the equality, and that r2 = dr1. �

We are now almost ready to prove the fact that the lines L(dc) stay sufficiently far away from one
another, cf. Lemma 2.9 below. We will start with proving an auxiliary result.

Lemma 2.8. Let C ∈M2(O) be a matrix satisfying that $ - C , for some prime $ ∈ O. Let ν$(det(C)) =
k0, then for any k ∈ N, if k > k0 we have

{a mod $k : gcd(a, $) = 1, Ca ≡ 0 mod $k} = ∅.

Proof. Let C = TDS be a Smith normal form of C. The matrices S, T ∈ GL2(O) and D =
(
d1 0
0 d2

)
is a

diagonal matrix. Clearly, ν$(d1d2) = k0. Since S and T are invertible modulo $, gcd(Sa, $) = 1 ⇐⇒
gcd(a, $) = 1. We thus have the equality:

#{a mod $k : gcd(a, $) = 1, Ca ≡ 0 mod $k} = #{a mod $k : gcd(a, $) = 1, Da ≡ 0 mod $k}.
The right hand side is empty, as ν$(d1d2) = k0 < k. �

Lemma 2.9. Let c1 =

(
c1

c2

)
, c2 =

(
c3

c4

)
∈ O2 be two primitive vectors, and let d1, d2 ∈ O be monic such

that there are points a1/r1 ∈ L(d1c1), a2/r2 ∈ L(d2c2), satisfying |d1c1|2 ≤ |r1| and |d2c2|2 ≤ |r2|, and

|a1/r1 − a2/r2| <
max{|d1c1|, |d2c2|}

|r1r2|
,

then a1/r1 = a2/r2.

Moreover, if a/r ∈ L(d1c1) ∩ L(d2c2), where |d1c1|2 and |d2c2|2 ≤ |r|, and |c1c4|, |c2c3| < |r/d1d2|, then
we must have d1c1 = d2c2.

Proof. We start by proving the second part of the lemma first. We begin by noting that if a/r ∈ L(d1c1)∩

L(d2c2), then this implies C

(
a1

a2

)
≡
(

0
0

)
mod r/`, where C =

(
c1 c2

c3 c4

)
, and ` = lcm(d1, d2). Since

both c1, c2 are primitive, we can use Lemma 2.8 to get that r/` | det(C). Since |c1c4| < |r|/|d1d2| and
|c2c3| < |r|/|d1d2|, we have |det(C)| < |r/`|. This must imply that det(C) = 0. This would then confirm
that c1 = c2 = c, since c1, c2 are primitive and therefore monic according to our definition in Sec 3.1.

We now set r′ = gcd(a · c, r), d = r/r′, where d is monic. Clearly, dc · a/r = c · a/r′ ∈ O. We also have
gcd(d, a · c/r′) = 1, which implies a/r ∈ L(dc). Moreover, since d1a · c = k1r, where d1 | r, gcd(d1, k1) = 1,
we then have d1(a · c/r′) = (d1a · c/r)d = k1d. Since gcd(d, a · c/r′) = 1, we must have d | d1, but on the
other hand, gcd(d1, k1) = 1 implies that d1 | d. Since both of them are monic, this must mean d1 = d. We
can similarly prove d2 = d, settling the second part of the lemma.

For the first part, let a1/r1 6= a2/r2. Without loss of generality, we assume |d1c1| ≥ |d2c2| and let
|a1/r1 − a2/r2| < |d1c1|/(|r1r2|). The first part of Lemma 2.7 asserts a2/r2 /∈ L(d1c1). Using the second

part of Lemma 2.7, we have a′/r′ ∈ L(d1c1) such that |a1/r1 − a′/r′| =
∣∣∣d1c1
r1r′

∣∣∣, and moreover, a1/r1, a
′/r′ ∈

L1(d1c1, k), where gcd(d1, k) = 1. If a2/r2 /∈ L1(dc, k), the volume of the parallelepiped with vertices

a1/r1, a2/r2, a
′/r′ must be non-zero. This volume is also given by

∣∣∣∣det

(
a1/r1 − a2/r2

a1/r1 − a′/r′

)∣∣∣∣. Clearly, this

volume ≥ 1
|r1||r2||r′| . On the other hand, it is <

|d1c1|2
|r1|2|r′||r2| ≤

1
|r1r2r′| , which is a contradiction.



10 P. VISHE

We are now reduced to the case a2/r2 ∈ L1(d1c1, k). This implies that (a2/r2) · d1c1 = k. Since
gcd(d1, k) = 1, we must have a2/r2 ∈ L(d1c1) which is a contradiction, unless, a1/r1 = a2/r2. �

As an immediate corollary of the second part of Lemma 2.9 we have:

Corollary 2.10. For any r ∈ O, we have

{a ∈ O2 : |a| < |r|, gcd(a, r) = 1} =
⊔

d monic, c primitive
d|r

|dc1|≤|r|1/2,|dc2|<|r|1/2

{a : gcd(a, r) = 1, a/r ∈ L(dc)}.

Proof. The disjointness of the sets on the right hand side follows immediately from the second part of
Lemma 2.9. The right hand side is obviously contained in the left hand side. Lemma 2.1 implies that the
left hand side is contained in the right hand side. �

We are now ready to establish a refinement of (1.2), our main objective in this section,namely, the proof
of Theorem 1.1:

Proof of Theorem 1.1. Throughout this argument, we assume that d, d1, d2, ... ∈ O are monic and c, c1, c2 ∈
O2 are primitive. Lemma 2.1 implies that every a/r ∈ L(dc), for some d, c satisfying |dc1| ≤ |r|1/2, |dc2| <
|r|1/2. This also implies that |dc|2 ≤ |r|. The proof will follow from an induction on |r|. We begin noting
that proving Theorem 1.1 is equivalent to proving

(2.2) T2 =
⊔

0≤Y≤Q

⊔
r,d monic ,c primitive

|r|=Ŷ ,d|r
̂Y−Q/2≤|dc|≤Ŷ/2
|dc2|<Ŷ/2

⊔∗
|a|<|r|

a/r∈L(dc)

D(a, r,Q).

Here ∗ beside t denotes that the union is over a ∈ O2 such that gcd(a, r) = 1. We begin by proving
the disjointness of the intervals on the right hand of (2.2). Let a1/r1 ∈ L(d1c1), a2/r2 ∈ L(d2c2), where
di, ri, ci satisfy the constraints appearing on the right hand side of (2.2). Lemma 2.9 then implies that
either a1/r1 = a2/r2 or

|a1/r1 − a2/r2| ≥
max{|d1c1|, |d2c2|}

|r1||r2|
≥ q−Q/2 max{|r1|, |r2|}

|r1||r2|
≥ q−Q/2 max{|r1|−1, |r2|−1}.

On the other hand, if a/r ∈ L(d1c1) ∩ L(d2c2) then the second part of Lemma 2.9 forces d1c1 = d2c2,
implying disjointness of the right hand side of (2.2).

Clearly, the right side of (2.2) is contained in the left. To prove the other way around, we proceed with
induction. We intend to prove that for any 0 ≤M ≤ Q,

(2.3)
⋃
|r|≤M̂

⊔∗
|a|<|r|

D(a, r,Q) ⊆
⊔

0≤Y≤M

⊔
r,d monic ,c primitive

|r|=Ŷ ,d|r
̂Y−Q/2≤|dc|≤Ŷ/2
|dc2|<Ŷ/2

⊔∗
|a|<|r|

a/r∈L(dc)

D(a, r,Q).

The base case M = 0 is obvious, since we only have one term on the left hand side, namely, D(0, 1, Q).

Clearly, it is contained in L(e1), where e1 =

(
1
0

)
. Let us assume the validity of (2.3) for all M ≤M0 < Q.
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Note that d | r is forced upon us from (2.1). Now, let us choose a/r, |a| < r, gcd(a, r) = 1, such that

|r| = M̂0 + 1. Lemma 2.1 implies that a/r ∈ L(dc), where |dc1| ≤ |r|1/2, |dc2| < |r|1/2. This forces

|dc|2 ≤ |r|. If |r| ≤ |dc|Q̂/2, we are done. Otherwise, using Lemma 2.5, we write a/r = ac⊥/r+ d/d, where

|a| < |r/d|, gcd(a, r/d) = 1. A further application of [8, Lemma 4.3] gives us a′/r′ satisfying |r′| ≤ |c|Q̂/2
such that |a/(r/d)− a′/r′| < (|r′||c|Q̂/2)−1. We now set

a1
r1

= a′c⊥

r′d + d
d . If dc · a/r = k, for some (k, d) = 1,

then clearly, dc · a1/r1 = c · d = k, as well. Moreover, d | r1, and

|a/r − a1/r1| = |d|−1|a/(r/d)− a′/r′||c| < (|dr′|Q̂/2)−1 ≤ (|r1|Q̂/2)−1

We use here that |r1| ≤ |dr′|. However, since |r′| < |r/d|, we have |r1| < |r|. Thus, we have found an
a1/r1 ∈ L(dc) satisfying |r1| < |r|, such that a/r ∈ D(a1, r1, Q), which further implies that D(a, r, Q) ⊆
D(a1, r1, Q). We are now through using induction. �

Remark 2.11. For any |r| ≤ Q̂/2 and |a| < r, gcd(a, r) = 1, by Lemma 2.1, a/r ∈ L(dc), where

|dc1| ≤ |r|1/2, |dc2| < |r|1/2. Moreover, since |r| ≤ Q̂/2, D(a, r,Q) appears exactly once on the right hand
side of (1.5). Since a/r is was chosen to be arbitrary, this shows that

(2.4) T2 =
⊔

|r|≤Q̂/2
r monic

⊔∗
|a|<|r|

D(a, r,Q)
⊔

r,d monic, c primitive

Q̂/2<|r|≤Q̂
|r|≤|dc|Q̂/2,d|r

|dc1|≤|r|1/2,|dc2|<|r|1/2

⊔∗
|a|<|r|

a/r∈L(dc)

D(a, r,Q).

This is the same idea that handed us Corollary 2.10. This is expected, since if r1 and r2 are small, then we
do not expect any overlaps in the intervals D(a1, r1, Q) and D(a2, r2, Q). (2.4) could be used to estimate
contribution from low values of r more effectively. More explicitly, we may be able to save a factor of size

O(|r|3/2) from all square-free values of |r| ≤ Q̂/2. This saving is not required in this work, but it may be
useful in further applications.

3. Auxiliary results for Fq(t)

The objective of this section is to state and prove various auxiliary results about K = Fq(t) which will
be useful for proving Theorem 1.2 at various junctures of this work.

3.1. Notation. We will follow the notation in [8, Sec 2] closely. We refer the reader there for the proofs
and explanations of many of the facts stated below. We will always assume that 2 - q. Let Ω denote the set
of places of K including the infinite place. Given any finite prime v ∈ Ω, let νv(x) := ordv(x) denote the
standard valuation. Each valuation νv gives rise to an absolute value | · |v on K, with a special notation
| · | := | · |∞ as used before. For each v ∈ Ω, let Kv denote the completion of K with respect to the absolute
value | · |v, and let Ov = {x ∈ Kv : |x|v ≤ 1}. We also define

O] := {b ∈ O : b monic, $2 - b,∀$ prime },
to be the set of monic, square-free integers in O.

An important role will be played by K∞. We will set T = {x ∈ K∞ : |x| < 1}. Let dα denote the Haar
measure on K∞, normalised so that ∫

T
dα = 1.
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Let ψ : K∞ → C∗ denote the non-trivial unitary character as defined by ψ(
∑

i≤N ait
i) = exp(2πiTr(a−1)/p),

where p denote the characteristic of Fq. Given any x ∈ Km
∞ for any m ≥ 1, let |x| = maxi{|xi|} denote the

maximum norm of the co-ordinates of x.

Given a polynomial f(x) ∈ K∞[x], let Hf denote the maximum of the ∞-norms of the coefficients
appearing in the equation of f . Similarly, given any tuple f(x) = (f1(x), ..., fR(x)) of polynomials f1, ..., fR,
Hf will denote the maximum of Hf1 , ...,HfR .

To distinguish between the integral over T2 and over Kn
∞ appearing in our work later, we will typically

use the notation x = (x1, x2) to denote a pair in K2
∞, and the notation x = (x1, ..., xn) to denote a vector

in Kn
∞, with our notation d = d defined in Section 8 being an exception.

Our integral bounds would require us to often integrate on regions of the form {z ∈ K2
∞ : |zi| = Ẑi},

where Zi ∈ Z. We will therefore introduce the following notation: given Z ∈ Z2, let

(3.1) {〈z〉 = 〈Ẑ〉} := {z ∈ K2
∞ : |zi| = Ẑi}.

In order to facilitate our optimisation process in Section 8, given any x, y ∈ O, we define:

(3.2) y | x∞ ⇒ {$ | y ⇒ $ | x}.
Throughout, we will use the notation A� B to denote A ≤ CB for some absolute constant C. For a large
portion of this work, we have tried to keep the implied constant to be independent of q, which will mainly
be useful in our future applications to arithmetic geometry.

3.2. Some exponential integral bounds. Given non-zero polynomials G1, G2 ∈ K∞[x1, . . . , xn], given
α ∈ K2

∞ and w ∈ Kn
∞, integrals of the form

(3.3) JG(α; w) =

∫
Tn
ψ (α1G1(x) + α2G2(x) + w.x) dx

will feature prominently in our work. Our goal here will be to build on the results in [8, Section 2.4] and
obtain analogues of Lemmas 2.6 and 2.7 from there. Generalising [8, Lemma 2.6] is relatively straight-
forward. We will therefore omit its proof. After noting Hα1G1+α2G2 ≤ max{|α1|HG1 , |α2|HG2}, a slight
modification of [8, Lemma 2.6] gives us

Lemma 3.1. We have JG(α; w) = 0 if |w| > max{1, |α1|HG1 , |α2|HG2}.

We also need a generalisation of [8, Lemma 2.7], obtained in the following lemma:

Lemma 3.2. Given any Z = (Z1, Z2) ∈ Z2 and for any w ∈ Kn
∞ satisfying |w| ≤ max{1, Ẑ1, Ẑ2}HG, we

have ∫
〈α〉=〈Ẑ〉

JG(α; w)dα =

∫
Λ
ψ (α1G1(x) + α2G2(x) + w.x) dxdα,

where 〈α〉 = 〈Ẑ〉 as in (3.1) and

Λ = {(α,x) ∈ {〈α〉 = 〈Z〉} × Tn :|α1G1(x)|, |α2G2(x)| ≤ max{1, HG}max{1, Ẑ1
1/2
, Ẑ2

1/2
},

|α1∇G1(x) + α2∇G2(x) + w| ≤ HG max{1, Ẑ1
1/2
, Ẑ2

1/2
}}.

(3.4)

Note that the new ingredient here, as compared with [8, Lemma 2.7], is provided by the condition

|α1G1(x)|, |α2G2(x)| ≤ max{1, HG}max{1, Ẑ1
1/2
, Ẑ2

1/2
}. This will be obtained by utilizing the extra

average over α in the integral. This refined bound will be useful in the proof of Lemma 7.2.
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Proof. Without loss of generality, let us assume that Z1 ≥ Z2. We may also assume that Z1 ≥ 0, since
otherwise, the lemma is trivial. For now, we proceed with an extra assumption Z2 ≥ Z1/2. Let

Ω0 = {〈α〉 = 〈Ẑ〉} × Tn \ Λ.

We break the integral over Λ0 into a sum of integrals over smaller regions. Let δ ∈ K∞ be such that

|δ| = Ẑ1
−1/2

. We introduce dummy sums over a ∈ {〈α〉 = 〈Ẑ〉}/(δ−1T)2 and y ∈ (T/δT)n. Here, the

sum over a will run through a fixed set of coset representatives of {〈α〉 = 〈Ẑ〉}/(δT)2. Using the change of
variables α = a + δ−1b, x = y + δz, we obtain∫

Λ0

ψ (α ·G(x) + w.x) dxdα

= |δ|2−n
∑

a

∑
y∈(T/δT)n

∫
{(b,z)∈Tn+2:(a+δ−1b,y+δz)∈Λ0}

ψ
(
(a + δ−1b) ·G(y + δz) + w · (y + δz)

)
dzdb.

(3.5)

For a fixed value of y and a, for any i = 1, 2 and for any |b|, |z| < 1,

|(ai + δ−1bi)Gi(y + δz)− aiGi(y)| < max{Ẑ1|δ|HG, HG/|δ|} = HGẐ1
1/2
.

Thus, if for some a and y we have

(3.6) |aiGi(y)| ≥ Ẑ1
1/2

max{1, HG}, for some i ∈ {1, 2},

then this implies that the above holds for all (a + δb,y + δz) for all |b|, |z| < 1, further implying that all
these points belong to Λ0. For such a choice of a and y, the integral over bi could be evaluated separately.
Using the orthogonality of additive characters on K∞ (see [8, Section 2.1]), for any y satisfying (3.6), we
have ∫

|bi|<1
ψ(δ−1biGi(y + δz))dbi = 0, since |Gi(y + δz)| ≥ max{1, HG}Ẑ1

1/2
/Ẑi ≥ Ẑ1

−1/2
= |δ|

Thus, the contribution from the values of a and y satisfying (3.6) to the corresponding inner integrals in
(3.5) is zero. We may now assume that for remaining a,y we must have

|(ai + δ−1bi)Gi(y + δz)| ≤ max{1, HG}|δ|−1,

for all |b|, |z| < 1 and for i = 1, 2. For a and y satisfying the above condition, they appear in (3.5) only if
for some |z0| < 1 and for some |b0| < 1,

|(a + δ−1b0) · ∇G(y + δz0) + w| > HG/|δ|.

Since, |(a + δ−1b0) · ∇G(y + δz0)− a · ∇G(y)| < HG/|δ|, we must further have

|a · ∇G(y) + w| > HG/|δ| ⇒ ∀|b|, |z| < 1, |(a + δ−1b) · ∇G(y + δz) + w| > HG/|δ|.

We may now emulate the recipe of [8, Lemma 2.7] and utilise the integral over z to obtain that the inner
integral in (3.5) vanishes if a,y satisfy

(3.7) |a · ∇G(y) + w| > HG|δ|−1,

which would further imply that (a+δ−1b,y+δz) ∈ Λ0 for all (b, z) ∈ Tn+2 and thus the whole contribution
from (3.5) is 0.

Recall that throughout, we have assumed that Z2 ≥ Z1/2. If Z2 < Z1/2, then this automatically implies

|α2G2(x)| < HGẐ1
1/2

, rendering this condition as vacuously true. We may now fix α2 and modify the
above process by utilising the integrals over over α1 as well as over x to get the required bound. �



14 P. VISHE

3.3. Quadratic exponential sum bounds. The bounds for exponential sums corresponding to a qua-
dratic polynomial will play a key part in our analysis. Throughout, let

f(x) = F (x) + f · x +m,(3.8)

be a quadratic polynomial in O[x]. Here, F (x) = xtMx be the leading quadratic form defined by an n×n
symmetric matrix M with entries in O and with a non-zero determinant. Let

F ∗(v) = det(M)vtM−1v,(3.9)

denote the dual form of F . Let

(3.10) Sr(v) =
∑∗

|a|<|r|

∑
|x|<|r|

ψ

(
af(x)− v · x

r

)
,

denote a complete quadratic exponential sum. It is well known that as long as a prime does not divide
det(M), Q-analogues of these sums could be explicitly evaluated modulo any power of such a prime. Our
main goal here will be to establish this in the function field setting, the focus of Lemma 3.4 below.

We will first begin by obtaining explicit bounds for the function field avatars of the Gauss sums, τr
defined below. Given r ∈ O, let

τr =
∑

x mod r

ψ(x2/r).

Lemma 3.3. Let $ be a prime such that |$| = qL and let q = p`0, then for any integer k,

τ$k =

{
|$|k/2 if k is even,

−|$|k/2iL`0p if k is odd,

where,

ip =

{
−1 if p ≡ 1 mod 4,

−i if p ≡ 3 mod 4.
(3.11)

Proof. Let k0 = b(k − 1)/2c. We begin by writing

τ$k =
∑

|a0|,...|ak−1|<|$|

ψ((a0 + a1$...+ ak−1$
k−1)2/$k) =

∑
|a0|,...|ak−1|<|$|

ψ

(
$−1

k−1∑
i=0

aiak−1−i

)
.

Since 2 - q, for any fixed choice of ak0+1, ..., ak−1, the sum on the right hand side vanishes unless ak0+1 =

... = ak−1 = 0. Therefore, τr = |$|k/2, if k is even, and

τ$k = |$|(k−1)/2
∑
|a|<|$|

ψ
(
$−1a2

)
= |$|(k−1)/2τ$.

The lemma now follows from the standard bounds for quadratic Gauss sums over finite fields, cf. [14, Eq.
(6)] for example. �

The following lemma will follow a proof similar to [16, Lemma 26].

Lemma 3.4. Let f be a quadratic polynomial as in (3.8). Let $ be a prime satisfying $ - det(M). Let
|$| = qL, and q = p`0. Then

S$k(v) = ψ

(
2f tM−1v

$k

)(
det(M)

$k

)
τn$kKn(−4F1(f) +m,−4F1(v), $k).
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Here, Kn denotes the Kloosterman sum when n is even and the Salié sum when n is odd, and F1(x) =
xtM−1x, where the inverse could be assumed to be taken modulo $k. As a consequence,

|S$k(v)| ≤ |$|(n+1)k/2| gcd(F ∗(f)− 4 det(M)m,F ∗(v), $k)|1/2.(3.12)

More explicitly, when f = 0 and m = 0, we have:

S$k(v) =


|$|nk/2(|$|kδ$k|F ∗(v) − |$|k−1δ$k−1|F ∗(v)), if 2 | k,(

det(M)
$

)
|$|kn/2iL`0np (|$|kδ$k|F ∗(v) − |$|k−1δ$k−1|F ∗(v)), if 2 | n, 2 - k,(

−F ∗(v)
$

)
|$|k(n+1)/2i

L`0(n+1)
p , if 2 - n, 2 - k,

with ip as in (3.11).

Proof. Since aF (x + M−1(f/2 − v/2a)) + am = af(x) − v.x + aF1(f)/4 + F1(v)/4a − f tM−1v/2, where
F1(v) = vtM−1v modulo $k. Therefore by a suitable change of variables,

S$k(v) = ψ

(
2f tM−1v

$k

) ∑∗

|a|<|$|k
ψ

(
−F1(v)/4a− a(F1(f)/4−m)

$k

) ∑
|x|<|$|k

ψ

(
aF (x)

$k

)
.

At this point, we use the fact that since $ - det(M), M may be diagonalised, i.e., M = RtDiag(β1, ..., βn)R.
After changing the variable again to y = Rx

ψ

(
−2f tM−1v

$k

)
S$k(v) =

∑∗

|a|<|$|k
ψ

(
−F1(v)/4a− a(F1(f)/4−m)

$k

) n∏
i=1

∑
|yi|<|$|k

ψ

(
aβiy

2
i

$k

)

=

(
det(M)

$k

)
τn$k

∑∗

|a|<|$|k
ψ

(
−F1(v)/4a− a(F1(f)/4−m)

$k

)( a

$k

)n
,

=

(
det(M)

$k

)
τn$k

∑∗

|a|<|$|k
ψ

(
−F1(v)/4a− a(F1(f)/4−m)

$k

)( a

$k

)n
using some standard Gauss sum manipulations. We thus end up with

S$k(v) = ψ

(
2f tM−1v

$k

)(
det(M)

$k

)
τn$kKn(−4F1(f) +m,−4F1(v), $k),

where when n is even, Kn denotes the Kloosterman sum, and the Salié sum when n is odd. Using a
standard bound for the Kloosterman sums, we get

|S$k(v)| � |$|(n+1)/2| gcd(F1(f)− 4m,F1(v), $k)|1/2

� |$|(n+1)/2| gcd(F ∗(f)− 4 det(M)m,F ∗(v), $k)|1/2,

where F ∗(v) = det(M)F1(v), as before. In the special case when f = 0,m = 0, the sums Kn simplify. We
will henceforth assume that f = 0,m = 0. If 2 | k, Lemma 3.3 gives

S$k(v) = |$|nk/2
∑∗

|a|<|$|k
ψ

(
F1(v)a

$k

)
= |$|nk/2(|$|kδ$k|F1(v) − |$|k−1δ$k−1|F1(v)).

Similarly, when k is odd and n is even,

S$k(v) =

(
det(M)

$

)
|$|k/2iL`0np (|$|kδ$k|F1(v) − |$|k−1δ$k−1|F1(v)),
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where ip is defined by (3.11). Lastly, when both n, k are odd, then

Kn(0,−4F1(v), $k) =
∑∗

|a|<|$|k
ψ

(
−F1(v)a

$k

)( a
$

)
=

(
−F1(v)

$

)
τ$k .

The final bound follows from applying Lemma 3.3, along with the fact that det(M)F1(v) ≡ F ∗(v) mod
$k. �

The above lemma although is powerful, it only works when M is invertible and $ doesn’t divide det(M).
When this is not the case, we may supplement this using the following bound, which is obtained using a
standard squaring argument (see [19, (4.17)]):

Lemma 3.5. Let S =
∑
|x|<$k ψ

(
f(x)
$k

)
, where f(x) = xtMx + f · x + m is any quadratic polynomial.

Then,

|S| ≤ |$|nk/2N($k)1/2.

where N($k) = #{x mod $k : $k |Mx}.

Proof. The lemma follows from essentially squaring the sum and applying a change of variable x3 = x1−x2

|S|2 =
∑

x1,x2 mod $k

(
f(x1)− f(x2)

$k

)
≤

∑
x2 mod $k

∣∣∣∣∣∣
∑

x3 mod $k

(
(Mx2 + f) · x3

$k

)∣∣∣∣∣∣ ≤ |$|nkN($k).

The last equality follows from the fact that the difference between any two solutions x′2 and x′′2 of Mx2+f ≡
0 mod $k satisfy the equation M(x′2 − x′′2) ≡ 0 mod $k. �

3.4. Integer points on affine hypersurfaces. In this work, we will need to supplement the integer point
counting estimate in [8, Lemma 2.9] with two others, obtained in Lemmas 3.7 and 3.8 below.

Let F (x) be a non-singular quadratic form in O[x1, ..., xn]. We need an estimate on the number of integer
solutions of F (x) = x2

n+1, with an explicit dependence on HF . This will be obtained by producing a slight
generalisation of an Fq(t)-analogue of [17, Theorem 2]. We start by proving an auxiliary result (cf. [20,
Theorem 3]). The proofs of these results are almost straightforward adaptations of those of Heath-Brown
in Fq(t) setting. Therefore, we shall be brief.

Lemma 3.6. Let F be a non-singular ternary quadratic form in O[x1, x2, x3] such that the binary form
F (x1, x2, 0) is also non-singular. Then there exists an absolute constant A such that for any k ∈ O, the
equation F (x1, x2, k) = 0 has at most O((log(BHF ))A) solutions satisfying |x1|, |x2| ≤ B.

Proof. We may diagonalise F using a matrix M with entries in r−1O, for some r ∈ O satisfying |r| � HA
F ,

for a fixed constant A. We may also choose the last row to be (0 0 1). This transforms (after possibly
multiplying by a power of r) F (x) = 0 to

(3.13) aL1(x1, x2, k)2 + bL2(x1, x2, k)2 = ck2,

where L1 and L2 are linearly independent linear forms over O, and |a|, |b|, |c|, ‖L1‖, ‖L2‖ � HA′
F . The

problem of bounding the number of solutions of (3.13) can be easily converted to that of estimating the
number of solutions for the equation x2 + dy2 = e, for a fixed choice of d, e ∈ O.

The bound now follows from a standard bound for the number of elements of a specified norm in
quadratic extensions of K. �
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This leads to our first main estimate:

Lemma 3.7. Let F (x) denote a non-singular quadratic form in n ≥ 2 variables. Then there exists a
constant A such that given any B > 0,

(3.14) #{|x| ≤ B : F (x) = x2
n+1} �ε,q (log(HFB))ABn−1.

Proof. Following the steps in [17, Section 5], we may find M ∈ GLn(O) satisfying |M | � 1, and

(3.15) det(M)T11 det(Tij)1≤i,j≤2 det(Tij)1≤i,j≤3 6= 0.

Here, T is the defining matrix of the quadratic form f(y) = F (My). Since if F (x) = x2
n+1 for some x ∈ On

and some xn+1 ∈ O, then (det(M)M−1x,det(M)xn+1) is a solution of f(y) = y2
n+1, to establish (3.14), it

is enough to bound the set {f(x) = x2
n+1 : |x| � B}. For any choice of u ∈ On−1, we now set

Qu(x, y, z) := f(y, zu)− x2.

The determinant of the matrix defining this form is a quadratic polynomial D(u), say. This does not vanish
since D((1, 0..., 0)) = −det(Tij)1≤i,j≤2 6= 0. Moreover, the form Qu(x, y, 0) is non-singular, since T1,1 6= 0.
We now set z = 1. Thus, we would like to bound

{Qu(x, y, 1) = 0 : |x| � HFB
A′ , |y| � |B|, |u| � B},

for some constant A′. For any fixed value of D(u) 6= 0, we may invoke Lemma 3.6 to get that we only
have O((log(HFB))A) choices for (x, y), which suffices. On the other hand, there are only O(Bn−2) choices
for D(u) = 0, and for each of those, there are at most O(B) choices for the pair (x, y). Combining these
bounds, we establish the lemma. �

We will also need a bound for the number of integer solutions to the equation F (x, y) = z2, where F (x, y)
is a square-free irreducible polynomial of even degree. This will be an Fq(t)-analogue of a very special case

of [3, Theorem 5]. We have kept the (log Ẑ)2 factor in our bound below to have the appearing constant
independent of q.

Lemma 3.8. Let F (x, y) ∈ O[x, y] be a homogeneous square-free polynomial of even degree 2d and let

Z ∈ N such that HF ≤ ẐA for some positive constant A, then for any ε > 0

#{|x|, |y| < Ẑ : F (x, y) = z2, x, y, z ∈ O} �ε,d,A Ẑ
1+ε(log Ẑ)2.

Proof. The proof of this theorem resembles closely that of [3, Theorem 5]. We shall therefore be brief. It
is easy to see that it is enough to prove the asymptotic for primitive tuples

#{|x|, |y| < Ẑ : gcd(x, y) = 1, F (x, y) = z2, x, y, z ∈ O} �ε,d,A Ẑ
1+ε(log Ẑ)2.

Let F1(x, y, z) = F (x, y) − z2. Since F is irreducible, the discriminant ∆F (x, y) is a non-zero polynomial
of degree Od(1). If ∆F (x, y) = 0, then the bound

#{|x|, |y| < Ẑ : x∆F (x, y) = 0} �d Ẑ,

is rather straightforward. It is therefore enough to establish the bound

#{F (x, y) = z2 : |x|, |y| < Ẑ, x, y, z ∈ O, x∆F (x, y) 6= 0} �A,d,ε Ẑ
1+ε(log Ẑ)2.

As in [17, Lemma 4], for some r = Od(dlog(HF Ẑ)e), and for any P ≥ P0 = log2(HF Ẑ), there exist primes
$1, ..., $r satisfying P �d |$j | �d P and

#{F (x, y) = z2 : |x|, |y| < Ẑ, x, y, z ∈ O, x∆F (x, y) 6= 0} ≤
r∑
i=1

N(F,Z,$i),
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where

(3.16) N(F,Z,$) = #{F (x, y) = z2 : |x|, |y| < Ẑ, x, y, z ∈ O, $ - x∆F (x, y)}.

We may therefore focus on bounding N(F,Z,$) for a prime $ satisfying

(3.17) log2(Ẑ)Ẑ1+ε � |$| � log2(Ẑ)Ẑ1+ε,

where the implied constants are ≥ 1. Let (x1, y1, z1), ..., (xm, ym, zm) be all distinct triples in N(F,Z,$).
For any 1 ≤ j ≤ m, we must have

|zj | ≤ Ẑd+A/2.

Let f(u, v) = F (1, u) − v2. For every 1 ≤ j ≤ m, let (uj , vj) = (yj/xj , zj/x
d
j ). Then (uj , vj) ∈ O2

$

and f(uj , vj) = 0. There are Od(|$|) solutions of f(u, v) mod $O$. Upon a possible re-labelling, we
may assume that there exists 1 ≤ k such that (uj , vj) ≡ (u1, v1) mod $O$ for all 1 ≤ j ≤ k, and
(uj , vj) 6≡ (u1, v1) mod $O$ for all j > k. The lemma will now follow upon showing that k = Od(1). This
is achieved by producing a polynomial g(u, v) of degree OA1,d,ε(1) which is not divisible by f(u, v), such
that g(u1, v1) = ... = g(uk, vk) = 0. Since f(u, v) is irreducible, we may then resort to Bezout’s theorem to
infer k = Od,A,ε(1).

Let D be the minimal positive integer satisfying

(3.18) D > max{2, (4d+A− 1)/ε},

and let (a1, b1), ..., (a2D, b2D) be an enumeration of the set {0, ..., D − 1} × {0, 1}. Let

M = [u
aj
i v

bj
i ]1≤i≤k,1≤j≤2D,

be a k× 2D matrix with O$ entries. If the rank of M < 2D, using the fact that O$ is complete, this must
produce a non-trivial polynomial g(u, v) of degree at most D in O$[u, v], which is at most linear in v, such
that g(u1, v1) = ... = g(uk, vk) = 0. Since g is at most linear in v, it must not be a multiple of f(u, v),
which would prove the lemma. The result is obvious if k ≤ 2D. We may therefore assume that k > 2D. It
is enough to show that all 2D × 2D minors of M vanish. Without loss of generality, let

∆ = det[u
aj
i v

bj
i ]1≤i≤2D,1≤j≤2D.

We will show that ∆ vanishes as long as D satisfies (3.18).

Since $ - ∆F (u1, v1), we may use the lifting argument of Hensel’s Lemma [17, Lemma 5] to prove that

ui ≡ h(vi) mod $4D2
, for some polynomial h(z) ∈ O$[z]. The 2D × 2D matrix defining ∆ above is a

generalised Vandermonde matrix. Therefore, upon making some elementary column operations over O$

as in [4, Page 201] analogous to the proof of determinant of Vandermonde matrix and further noting that
$ divides the difference of any two entries in this matrix, we may further prove that

$D(2D−1) | ∆.

On the other hand, if ∆ 6= 0, then since (uj , vj) = (yj/xj , zj/x
d
j ), and that $ - xj , the valuation

ν$(∆) = ν$

(
det[xD+d−1

i u
aj
i v

bj
i ]1≤i≤2D,1≤j≤2D

)
= ν$

(
det[x

D+d−1−aj−dbj
i y

aj
j z

bj
j ]1≤i≤2D,1≤j≤2D

)
.

Here, note that |zj | < ẐA/2+d, |xj |, |yj | < Ẑ, and xj , yjzj ∈ O. Thus,

|$|ν$(∆) ≤ Ẑ2D(D+d−1)+(A/2+d)2D = Ẑ2D(D+2d+A/2−1).(3.19)
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On the other hand, the condition $D(2D−1) | ∆ implies

|$|ν$(∆) ≥ |$|D(2D−1) ≥ ẐD(2D−1)+εD(2D−1) ≥ ẐD(2D−1)+εD2
,(3.20)

Since D ≥ 2. (3.19) and (3.20) give a contradiction if D > (4d+A− 1)/ε. �

3.5. Bounds for the character sums. We will need a bound on twisted averages of the quadratic
exponential sums in Section 3.3 over square-free moduli. In the light of Lemma 3.4, this is equivalent to
obtaining suitable bounds for one dimensional character sums. This fact will simplify our work immensely
as compared with bounding the averages of cubic exponential sums considered in [8, Section 3].

We begin by making our setting more explicit. Let N ∈ Z>0 and let

χDir : (O∞/t
−NO∞)∗ → C∗

be a Dirichlet character. Putting x = t−1 and A = Fq[x], we note that (O∞/t−NO∞)∗ ∼= (A/xNA)∗. As in
[8, Section 3.5], given a ∈ K∗ and u ∈

∏
$ O∗$, we may now define a Hecke character χHecke : IK → C∗ via

χHecke(au) = χDir(u∞).

It is constant on K∗ and gives a character on the idèle class group IK/K
∗. Using this construction, the

first relevant character for us is η : O → C∗, given by

η(r) = χDir(r/t
deg r)

for any r ∈ O. Note that r/tdeg r ∈ O∗∞ for any r ∈ O. The second is a Dirichlet character

η′ : (O/yO)∗ → C∗

modulo y, for some y ∈ O. Let Y = deg(y). Our ultimate goal will be to establish the following bound for
a character sum:

Lemma 3.9. Let η and η′ be Hecke characters as above such that η ⊗ η′(x) is not equal to |x|ib, for any
b ∈ R. Let β = ±1 and given any x ∈ O, let Ω(x) denote the number of prime factors of x including their

multiplicities. Let S ⊂ {b ∈ O] : |b| ≤ Ẑ} be a subset of square-free integers of cardinality at most O(Z).
Then given any ε > 0, ∣∣∣∣∣∣∣∣∣

∑
b∈O],|b|≤Ẑ
gcd(b,S)=1

βΩ(x)η(b)η′(b)

∣∣∣∣∣∣∣∣∣�ε Ẑ
1/2+εN̂ + Y

ε
.

The proof of this result is standard and will follow that of [8, Lemmas 3.4, 3.5] closely. To keep this
paper self contained, we will include it here. We consider the Hecke L-function

L(η ⊗ η′, s) :=
∑

x∈O,x monic

η(x)η′(x)

|x|s
.

This Dirichlet series is a-priori convergent for σ := Re(s) > 1. However, due to Tate’s thesis, this function
has a meromorphic continuation to the whole complex plane. Moreover, Tate’s thesis also implies that it
is entire unless η(x)η′(x) = |x|ib, for some real number b. As a consequence, unless η(x)η′(x) = |x|ib,

(3.21) L(η ⊗ η′, s) = P (q−s) =

N+Y∏
j=1

(1− αjq−s)



20 P. VISHE

is a polynomial of degree at most N+Y , with |αj | = q1/2. This a standard fact about the Hecke L-functions
over Fq(t). We will give an outline of how it can be proved. The fact that the L-function is a polynomial
of degree O(N +Y ) follows from proving that the averages

∑
|r|=R̂ η(r)η′(r) vanish as long as R� N +Y .

If η′ is non-trivial, note that the value of η(r) only depends on the top N coefficients appearing in the
expression for r as a polynomial in Fq[t]. One may thus write r = tR−Nr1 + r2, and treat r1 as fixed and
average over r2, which must vanish as long as R−N ≥ Y , (see [31, Prop 4.3]). If η′ is trivial, then η must

be non-trivial and this strategy can be recycled by working with η instead. Further, |αj | = q1/2, since the
zeroes of this L-function lie on the s = 1/2 line. (3.21) is a key in the proof of Lemma 3.9.

Since we are interested in a sum over square-free values, we proceed to study the Dirichlet series

F (s) =
∑
b∈O]

gcd(b,S)=1

βΩ(b)η(b)η′(b)

|b|s
=
∏
$/∈S

(
1 +

βη ⊗ η′($)

|$|s

)
.

We will begin by obtaining a satisfactory bound for |F (s)| for Re(s) = σ ≥ 1/2 + ε. This will be done in a
manner completely analogous to [8, Lem 3.4]. We will obtain a good bound for σ > 1, and a weaker bound
for σ > 1/2. The final bound will follow from a use of the Hadamard three circle theorem. We begin by
noticing that, for σ > 1, we have

(3.22) |F (s)| ≤ ζK(σ),

where ζK is the usual zeta function for K = Fq(t). Moreover, for any prime $ we have

1 +
η ⊗ η′($)

|$|s
=

(
1− η ⊗ η′($)

|$|s

)−1(
1 +O

(
1

|$|2σ

))
,

leading us to

(3.23) F (s) =

{
L(η ⊗ η′, s)E(s), if β = 1

L(η ⊗ η′, s)−1E(s), if β = −1,

where

(3.24) E(s) =
∏
$/∈S

(1 +O(|$|−2σ))
∏
$∈S

(1 +O(|$|−σ)).

Using (3.24), E(s) is holomorphic in the half plane σ > 1/2. Moreover, taking a logarithm of both sides,
for any σ ≥ 1/2 + ε, ε > 0, it is easy to establish

(3.25) log |E(s)| � log ζK(2σ) + Z.

Here the implied constant only depends on ε and is independent of q. Similarly, using (3.21), we may
obtain

log |L(η ⊗ η′, s)| � (Y +N)| log(1 + q1/2−σ)| � Y +N.

Combining this bound with the one in (3.25), we obtain that for any σ ≥ 1/2 + ε,

(3.26) log |F (s)| � log ζK(2σ) + Z + Y +N.

Note that since 1/E(s) is also analytic, and since the zeroes of L(η⊗ η′, s) lie on the σ = 1/2 line, logF (s)
is analytic in the half plane σ > 1/2. Moreover,

Re(logF (s)) = log |F (s)| �ε log ζK(2σ) + Z + Y +N.(3.27)

The rest of the argument will follow exactly from the one in [8, Lem 8.4]. Therefore, we will only sketch
the idea here. First, Borel Carathéodory theorem can be used to bound | logF (s)| using our bound (3.27)
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for Re(logF (s)). This obtains a weaker bound for |F (s)| when σ ≥ 1/2 + ε. Then the Hadamard’s three
circle theorem can be used to obtain the following Lindelöf type bound:

(3.28) |F (s)| � c(ε)(Z+N+Y )1−ε/2 �ε ( ̂Z +N + Y )ε,

for some absolute constant c(ε).

Proof of Lemma 3.9. Perron’s formula implies that the sum we need to estimate is equal to∑
k≤Z

ak
qk/2

=
1

2πi

∫ 2+i∞

2−i∞
F (s)

Ẑsds

s
,(3.29)

where ak =
∑

b∈O],|b|=k̂
gcd(b,S)=1

βΩ(b)η(b)η′(b). The right hand side of (3.29) may be rewritten as

∫ 2+iT

2−iT
F (s)

Ẑsds

s
+O

(
̂(Z +N + Y )εẐ3

T

)
,

for any T > 0. Using (3.23) and the fact that L(η⊗η′, s) is an entire function with all its zeros lying on the
line Re(s) = 1/2, F (s) is holomorphic in the half plane σ > 1/2, the integral over the line joining 2 − iT
and 2 + iT may be replaced by that of the three remaining sides of the rectangle joining 2 + iT, 1/2 + ε+
iT, 1/2 + ε− iT, 2− iT . The integral over horizontal sides can be bounded by

( ̂Z +N + Y )εẐ2

T
.

The remaining line segment joining 1/2 + ε− iT and 1/2 + ε+ iT satisfies the bound

� Ẑ1/2+ε ̂(Z +N + Y )ε
∫
|t|≤T

(1 + |t|)−1dt� Ẑ1/2+ε ̂(Z +N + Y )εT ε.

Upon choosing T = Ẑ3, we obtain the statement of the Lemma. �

4. Background on a pair of quadrics

In this section, we will collect some relevant facts regarding smooth complete intersections of two ab-
solutely irreducible quadratic forms. Let F1, F2 ∈ O[x1, ..., xn] be absolutely irreducible quadratic forms
defining a smooth complete intersection X. Throughout, we will assume that Char(K) > 2. Let M1,M2

be symmetric matrices with O entries defining F1 and F2 respectively, i.e., Fi(x) = xtMix, for i = 1, 2.
Since we are interested in obtaining an asymptotic formula for the counting function N(P ) defined in (1.8),
throughout the paper, we will also fix N ∈ O and b ∈ On such that F1(b) ≡ F2(b) ≡ 0 mod N . The
geometry of X is well-understood, see [30] and [19] for example. Most of the geometric properties derived
there are valid for any smooth complete intersection of two quadrics over any field of odd characteristic,
most of which we will just state here without any further explanation.

We begin with defining some notation. For any pair x = (x, y) ∈ K2
ν , let

(4.1) Fx = −yF1 + xF2 and Mx = −yM1 + xM2

denote the matrix defining the quadratic form Fx. As per [30, Proposition 2.1], we can assume that M1 is of
full rank. [30, Proposition 2.1] also implies that the matrices M1 and M2 are simultaneously diagonalisable
over an algebraic closure K. [19, Condition 4] implies that for any primitive c ∈ O2, rank(Mc) ≥ n − 1.

Moreover, when c1 6= 0, rank(Mc) = n − 1 precisely when c2/c1 is an eigenvalue of M−1
1 M2. However,
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since M−1
1 M2 has at most n distinct eigenvalues and each primitive vector c, produces a unique ratio c2/c1,

there are at most n distinct primitive vectors c’s for which rank(−c2F1 + c1F2) = n− 1. We call such c’s
as “bad”.

4.1. The determinant form F (x, y). Given any x, y ∈ K∞, let

(4.2) F (x, y) = det(−yM1 + xM2)

be a homogeneous binary form of degree n. [19, Condition 2] implies that F (x, y) has distinct linear factors
over K. Let K1 denote the splitting field of the polynomial F over K. Thus, we can factor

(4.3) F (x, y) = h−1
n∏
i=1

(λix− µiy),

where h ∈ O, λi, µi ∈ OK1 . Let ρi = λi/µi denote the eigenvalues of M = M−1
1 M2. ρi’s must be pairwise

distinct and therefore, at most one of them could be 0. Throughout, we will assume that ρi 6= 0 for any
1 ≤ i ≤ n − 1. Without loss of generality, let 0 ≤ n1 ≤ n be such that ρi /∈ K∞ if i ≤ n1 and ρi ∈ K∞ if
i > n1. The norm on K∞ could be suitably extended to K1. Note that when K = Q, since M is symmetric,
n1 = 0, and therefore M can be diagonalised over R. In the function field setting however, this might not
hold. However, we may still be able to obtain the following result, which will be necessary in obtaining a
satisfactory bound for our singular integral (see Lemma 5.4):

Lemma 4.1. We can find a matrix U ∈ GLn(K∞) satisfying

U−1MU =

(
M ′n1×n1

M ′′n1×(n−n1)

0(n−n1)×n1
D(ρn1+1, ..., ρn)

)
,

where D is a (n − n1) × (n − n1) diagonal matrix with the prescribed diagonal entries. Moreover, the
eigenvalues of M ′ are precisely given by ρ1, ..., ρn1 and therefore, they do not belong to K∞.

Moreover, we can also find a constant 0 < C1 ≤ 1 such that |ρi| ≤ C−1
1 for any i, C1 ≤ |ρi| for any

i 6= n, C1 ≤ |ρi− ρj | for any i 6= j, and for any z ∈ K∞ and for any 1 ≤ i ≤ n1, we have C1 ≤ |z− ρi| and

C1 ≤ |z − ρ−1
i |. If ρn 6= 0, then we can also make sure that C1 ≤ |ρn| ≤ C−1

1 .

Proof. Let i be any integer satisfying n1 +1 ≤ i ≤ n. We have det(ρiIn−M) = 0. Let ρiIn−M = TDS be
a Smith normal form for the matrix ρiIn −M over K∞. Therefore T, S ∈ GLn(K∞) and D is a diagonal
matrix with entries in K∞. We may also assume that only the last diagonal entry of D is 0. Let en
be the vector which contains 1 at the n-th place and 0’s everywhere else. The vector vi = S−1en 6= 0
satisfies Mvi = ρivi. Moreover, since M is symmetric, we must have vi · vj = 0, for i 6= j. We thus
have an orthogonal system of eigenvectors vn1+1, ...,vn ∈ Kn

∞. Upon extending the basis and changing the
standard basis to this new one, we are now guaranteed a matrix U1 ∈ GLn(K∞) such that U1MU−1

1 is in
the form of the transpose of the required form. We may now use the symmetry of M and choose U = U t1
to get the required expression.

To prove the second part, we begin by observing that ρ1, ..., ρn1 have to be the eigenvalues of M ′. For
any 1 ≤ i ≤ n1, we must have supx∈K∞ |ρi − x| > 0, since otherwise, using the completeness of K∞,
ρi ∈ K∞. The existence of a suitable constant C1 now follows from this fact and due to the fact that ρi’s
are all distinct. �
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4.2. Good and bad primes. Let c be a primitive pair and let Mc = TDS denote a smith normal form
over O. Here, T and S are in GLn(O) satisfying det(T ), det(S) ∈ F×q and D = diag(µ1, ..., µn) is diagonal.
Moreover, µ1 | µ2 | µ3... | µn. Therefore, µi 6= 0 if i 6= n, and µn = 0 ⇐⇒ c is a bad pair. Let ej denote
the j-th vector in the standard basis for On. Let yj = S−1ej be another basis of On. The quadratic form

(4.4) Qc(x1, ..., xn−1) := Fc(x1y1 + ...+ xn−1yn−1),

in n − 1 variables will feature prominently in our bounds for exponential sums. When c is bad, µn = 0.
Therefore, Mcyn = 0. Moreover, since Mc is symmetric, ytnMc = 0t. Therefore,

Fc(x1y1 + ...+ xnyn) = Fc(x1y1 + ...+ xn−1yn−1) = Qc(x1, ..., xn−1).

Qc has to be non-singular, since the set {Mcy1, ...,Mcyn−1} is linearly independent and since the rank of
Mc is ≥ n− 1.

Let

(4.5) DF = Nh∆F

∏
c primitive and bad

∆(Qc)
∏

σ∈Gal(K1/K)

∏
1≤i<j≤n

σ(λiµj − µiλj),

where h, λi, µi as in (4.3), ∆F denotes the discriminant of the binary form F (x, y) and ∆(Qc) denote the
discriminant of the quadratic form Qc. Here, Gal(K1/K) denotes the Galois group of the splitting field
K1 of the polynomial F (x, y) over K. We say that a prime $ is bad if $ | DF , and the rest of the primes
will be called good primes. For any good, primitive c, if a good prime $ is such that $ - det(Mc), then
we say that $ is of type I for c, otherwise, we say that $ is of type II. Note that for a bad pair c, every
good prime $ will be of type I, since $ - ∆(Qc) for any good prime $. Note that our definition of bad
primes differs slightly from that in [19]. For convenience, we have added the primes dividing N as well as
the “type II” primes for bad pairs c to this list.

4.3. The dual variety. In our analysis, an important role will be played by the following family of dual
forms defined by

F ∗(x, y,v) = vt det(−yM1 + xM2)(−yM1 + xM2)−1v.

For a fixed value of v, we may consider F ∗(x, y,v) as a binary, homogeneous polynomial of degree n− 1.
The discriminant of this polynomial, denoted by F ∗(v), is a polynomial of degree 4(n−2). This polynomial
has an albeit more familiar interpretation:

Lemma 4.2. F ∗(v) is the polynomial defining the dual variety X∗ of the complete intersection X.

Proof. F ∗(x, y,v) = 0 if and only if the quadratic variety {−yF1(x) +xF2(x) = v ·x = 0} is singular, since
F ∗(x, y,v) is a non-zero multiple of the determinant of the matrix defining the corresponding quadratic
form. On the other hand, if F ∗(v) = 0, then the polynomial F ∗(x, y,v) = 0 must have a double root

(x0, y0) ∈ K2
. Without loss of generality, let x0 6= 0. Let X1 = {−y0F1(x) + x0F2(x) = v · x = 0} and let

M ′ be a (n− 1)× (n− 1) matrix defining X1.

If the singular locus of this variety is of projective dimension ≥ 1, then it must intersect F1(x) = 0,
thus producing a singular point in the complete intersection of v · x = 0 and X. On the other hand, if
X1 only has one singular point, it means that the matrix M ′ defining X1 (up to scalar multiplication)
has only one zero eigenvector, say x0. Since, F ∗(v) = 0, (∂/∂t)|t=0(det(M ′ + tM ′′)) = 0, where M ′′ is
the matrix defining F1(x) = v · x = 0. M ′ can be diagonalised over K. An easy calculation shows that
(∂/∂t)|t=0(det(M ′ + tM ′′)) is proportional to xt0M

′′x0. Thus we must have xt0M
′′x0 = 0, which means

F1(x0) = 0. This implies that x0 belongs to X ∩ {v · x = 0}. This further implies that X ∩ {v · x = 0}
is singular. Thus, F ∗(v) = 0 implies that v belongs to X∗. Moreover, according to [1, Theorem 3], the
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polynomial defining the dual X∗ is an irreducible polynomial of degree 4(n − 2). Therefore, F ∗(v) must
be a polynomial defining the dual variety X∗.

�

5. Activation of the circle method

Let w denote the characteristic function of Tn ⊂ Kn
∞, and let x0 ∈ Kn

∞ be a fixed point satisfying
F1(x0) = F2(x0) = 0. Since both forms are homogeneous, we may also assume |x0| < 1/HF . Let

ω(x) = w(tL(x − x0)), where L ≥ 0 be a suitable integer to be chosen later. The extra conditions
|x0| < 1/HF and L ≥ 0 are only used to make the constants a bit more explicit. Recall that for any P ∈ O,
we consider the counting function

N(P ) =
∑
x∈On

F1(x)=F2(x)=0
x≡b mod N

ω(x/P ).

We intend to establish an asymptotic formula as |P | → ∞. We may write

N(P ) =

∫
T2

S(α1, α2)dα,(5.1)

where

S(α) =
∑
x∈On

x≡b mod N

ω(x/P )ψ(α1F1(x) + α2F2(x)).

We will apply Theorem 1.1 (version (2.2)) with Q satisfying

(5.2) |P |4/3 ≤ Q̂ ≤ |P |4/3q

to replace the integral over T2 in (5.1) to get∫
T2

S(α)dα =

Q∑
Y=0

∑
r,d monic, c primitive

̂Y−Q/2≤|dc|≤Ŷ/2
|dc2|<Ŷ/2
|r|=Ŷ ,d|r

∫
|z|<Ŷ −1q−Q/2

S(dc, r, z)dz,(5.3)

where

(5.4) S(dc, r, z) =
∑∗

a∈O2

a/r∈L(dc)

S(a/r + z).

This choice of Q is standard for a system of two quadrics. It is chosen in such a way that when Y = Q and r

is such that |r| = Ŷ , then for any gcd(a, r) = 1, the measure of the set D(a, r,Q) in (1.2) is ≤ Q̂−3 � |P |−4,
aiding us to prove the right asymptotic in Theorem 1.2.

For each L(dc), we are going to consider the contribution from a/r ∈ L(dc). Let rN = rN/ gcd(r,N),
the least common multiple of r and N . We next use a standard Poisson summation argument as in [8,
Section 4] applied to (5.3) to establish the following result:
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Lemma 5.1. We have

N(P ) = |P |n
∑

0≤Y≤Q

∑
r,d monic, c primitive

̂Y−Q/2≤|dc|≤Ŷ/2
|dc2|<Ŷ/2
|r|=Ŷ ,d|r

|rN |−n
∫

|z|<Ŷ −1q−Q/2

∑
v∈On

Sdc,r,b,N (v)IrN (z; v)dz,

where

(5.5) Sdc,r,b,N (v) =
∑

a/r∈L(dc)

∑
x∈On

|x|<|rN |
x≡b mod N

ψ

(
a1F1(x) + a2F2(x)

r

)
ψ

(
−v · x
rN

)
,

Is(z; v) =

∫
Kn
∞

ω(x)ψ
(
(z1P

2F1(x) + z2P
2F2(x)) + Pv · x/s

)
dx,

and rN = rN/ gcd(r,N).

We begin by establishing the following multiplicativity relation for the exponential sums:

Lemma 5.2. Let d | r and let r = r1r2, where gcd(r1, r2) = 1, then there exist b1,b2,b3 ∈ (O/NO)n such
that

(5.6) Sdc,r,b,N (v) = Sd1c,r1,b1,N1(v)Sd2c,r2,b2,N2(v)ψ

(
−v · b3

N3

)
,

where d = d1d2 such that di | ri for i = 1, 2, and N = N1N2N3, where N1 | r∞1 , N2 | r∞2 , gcd(N3, r) = 1.
Here, r∞1 and r∞2 as defined by (3.3).

Proof. Recall that a/r ∈ L(dc) ⇐⇒ dc·a = rk,where gcd(a, r) = gcd(k, d) = 1. We start by rewriting a =
r2a1+r1a2, where |ai| < |ri|, gcd(ai, ri) = 1. Firstly, since c·a ≡ 0 mod r/d, this forces c·ai ≡ 0 mod ri/di for
i = 1, 2. i.e. c·ai/(ri/di) ∈ O. Next, since dc·a/r = dc·a1/r1 +dc·a2/r2 = d2c·a1/(r1/d1)+d1c·a2/(r2/d2),
gcd(dc · a/r, d) = 1 if and only if gcd(dic · ai/ri, di) = 1, for i = 1, 2, which implies that

a/r ∈ L(dc) ⇐⇒ ai/ri ∈ L(dic), for i = 1, 2.

(5.6) now follows from exactly following the argument in [8, Lemma 4.5]. �

This multiplicativity relation will be used to obtain finer bounds for the exponential sums, which will
be the focus of Section 6. We now consider bounds for the exponential integral.

5.1. Bounds for the exponential integral. We proceed to study IrN (z; v) for a given r ∈ O. We have

IrN (z; v) =

∫
Kn
∞

w
(
tL(x− x0)

)
ψ
(
z1P

2F1(x) + z2P
2F2(x) + Pv.x/rN

)
dx

=
1

L̂n
ψ

(
Pv · x0

rN

)
JG

(
(z1P

2, z2P
2);

Pt−Lv

rN

)
,(5.7)

in the notation of (3.3), where G(y) = (G1(y), G2(y)), Gi(y) = Fi(x0 + t−Ly) for i = 1, 2.

According to Lemma 3.1, JG((P 2z1, P
2z2);Pv/rN ) = 0 if

|P ||v|
|rN |

> max{1, |P |2|z1|HF1 , |P |2|z2|HF2}.
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Hence we may truncate the sum over v in Lemma 5.1 to arrive at the following result.

Lemma 5.3.

N(P ) = |P |n
∑

0≤Y≤Q

∑
r,d monic, c primitive

̂Y−Q/2≤|dc|≤Ŷ/2
|dc2|<Ŷ/2
|r|=Ŷ ,d|r

|rN |−n
∫

|z|<Ŷ −1q−Q/2

∑
v∈On,|v|≤V̂

Sdc,r,b,N (v)IrN (z; v)dz,

where

(5.8) V̂ = HF |rN ||P |−1 max{1, |z1||P |2, |z2||P |2}.

We will need a good upper bound for Ir(z; v), for r, z,v appearing in the expression for N(P ) in this
lemma. This need is met by the following lemma. A key result in proving it is a decomposition of the
matrix M = M−1

1 M2 obtained in Lemma 4.1.

In the following lemma, we borrow the notation from Lemma 4.1, i.e, the eigenvalues ρj , the matrix U
and the constant C1 are as in the statement of Lemma 4.1.

Lemma 5.4. Let Z ∈ Z and let z be such that |z| = Ẑ. Let |v| ≤ V̂ , where V̂ as in (5.8). Then

|IrN (z; v)| ≤ L̂−n meas(Λz),

where

Λz =
{

x ∈ Tn : |x− x0| < −̂L, |P 2z1∇F1(x) + P 2z2∇F2(x) + Pv/rN | ≤ HFJ(Z)1/2
}
,

where

(5.9) J(Z) = 1 + |P |2Ẑ.
Moreover,∫

|z|=Ẑ
meas(Λz)dz� CFJ(Z)−n/2+1 log(|P |2Ẑ)Ẑ + 1

n∑
j=n1+1

(
1 + |ρj |

min{1, |ρj |}

)
min

{
Ẑ + 1, |P |−2

}
.

where CF = (HU−1HM−1
1
HF )nH

n1(n1−1)
M ′ C

−2n2−2(n−n1)
1 .

Proof. Let G1 and G2 be as in (5.7). Let γi = ziP
2 and w = Pt−Lv/rN , for convenience. Let Ẑi = |zi|,

and therefore Z = max{Z1, Z2}. Since F1(x0) = F2(x0) = 0, |x0| < 1 and L ≥ 0,

(5.10) HG < L̂−1HF .

In particular, when |v| ≤ V̂ , we have

|w| ≤ HF max{1, |γ1|, |γ2|} = HFJ(Z).

Lemma 3.2 in conjunction with (5.7) implies that

|IrN (z; v)| ≤ 1

L̂n

∣∣JG((γ1, γ2); w)
∣∣

≤ 1

L̂n
meas

{
y ∈ Tn : |γ1∇G1(y) + γ2∇G2(y) + w| ≤ HG max{1, |γ1|, |γ2|}1/2

}
≤ meas

{
x ∈ Tn : |x− x0| < −̂L, |γ1∇F1(x) + γ2∇F2(x) + tLw| ≤ HF max{1, |γ1|1/2, |γ2|1/2}

}
= meas(Λz).
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This settles the first part of the lemma. We can further bound

meas(Λz) ≤ meas
{

x ∈ Tn : |x| < 1, |M1(γ1In + γ2M)x + tLw| ≤ HF max{1, |γ1|1/2, |γ2|1/2}
}

≤ meas(R)

where

R =
{

x ∈ Tn : |x| < 1, |(γ1In + γ2M)x + tLw| ≤ HM−1
1
HF max{1, |γ1|1/2, |γ2|1/2}

}
.

If x and x + x′ ∈ R, then |(γ1In + γ2M)x′| ≤ HM−1
1
HF max{1, |γ1|1/2, |γ2|1/2}. If |γ1|, |γ2| ≤ 1, then the

trivial bound 1 will suffice here. Hence from now on, we assume the contrary, i.e. 1 < max{|γ1|, |γ2|}.

At this point, we change the variables to place y = U−1x, where U is as in Lemma 4.1. Thus, it is
enough to estimate the measure of the set

(5.11)

{
|y| < HU−1 :

∣∣∣∣(γ1I + γ2

(
M ′n1×n1

M ′′n1×(n−n1)

0(n−n1)×n1
D(ρn1+1, ..., ρn)

))
y

∣∣∣∣ ≤ H0

}
,

where H0 = HU−1HM−1
1
HF max{1, |γ1|1/2, |γ2|1/2}.

First, we turn our attention to yn1+1, ..., yn. If |γ1 + γ2ρi0 | < C2
1 max{|γ1|, |γ2|} for some n1 + 1 ≤ i0 ≤

n− 1, then since C1 ≤ |ρi0 | ≤ C−1
1 , this forces that |γ1| = |ρi0γ2| which gives |γ2| ≥ C1|γ1|. Moreover, for

any i 6= i0 we have,

|γ1 + γ2ρi| = |γ1 + γ2ρi0 + γ2(ρi − ρi0)| ≥ |γ2(ρi − ρi0)| ≥ C1|γ2| ≥ C2
1 max{1, |γ1|, |γ2|}.

If i0 = n and ρn 6= 0, then the argument outlined above goes through verbatim. On the other hand, if
ρn = 0, then this forces |γ1| < C2

1 max{|γ1|, |γ2|} which implies that |γ2| > C−2
1 |γ1| and hence |γ2| > 1, and

thus for any i 6= n we get

|γ1 + γ2ρi| = |γ2ρi| ≥ C1|γ2|.

Combining these bounds, the measure of yn1+1, ..., yn appearing in (5.11) is bounded by

(5.12) (HU−1HM−1
1
HF )(n−n1)C

−2(n−n1)
1 max{1, |γ1|, |γ2|}−(n−n1−2)/2(1 + min

n1+1≤j≤n
|γ1 + ρjγ2|)−1.

To bound the size of the first n1 co-ordinates y1 = (y1, .., yn1) appearing in (5.11), note that for a fixed
choice of yn1+1, ..., yn, the two different values of y1 must differ by an element in the set

{|y1| < HU−1 : |(γ1I + γ2M
′)y1| ≤ H0}.

Therefore, it is enough to bound the measure of this set. Suppose, |γ1| ≥ |γ2|, then the eigenvalues of
γ1I + γ2M

′ are

|γ1 + γ2ρi| = |γ1||ρi||γ2/γ1 + ρ−1
i | ≥ |γ1|C2

1 .

We can prove a similar statement when |γ2| > |γ1|. This gives us | det(γ1I+γ2M
′)| ≥ C2n1

1 max{1, |γ1|, |γ2|}n1 .

Thus, (γ1In + γ2M
′)−1 has entries bounded by Hn−1

M ′ C
−2n1
1 max{1, |γ1|, |γ2|}−1. Thus, the condition on y1

transforms to bounding

meas{|y1| ≤HU−1HM−1
1
Hn1−1
M ′ C−2n1

1 max{1, |γ1|, |γ2|}−1/2}

≤ (HU−1HM−1
1
HF )n1H

n1(n1−1)
M ′ C

−2n2
1

1 max{1, |γ1|, |γ2|}−n1/2,
(5.13)

(5.12) and (5.13) give us that

(5.14) meas(Λz) ≤ CFJ(Z)−(n−2)/2(1 + |P |2 min
n1+1≤j≤n

|z1 + ρjz2|)−1.
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This readily gives us the bound

(5.15)

∫
|z|≤Ẑ

meas(Λz)dz ≤ CFJ(Z)−(n−2)/2Ẑ + 1
2
.

To obtain the other bound, note that to bound
∫
|z|=Ẑ meas(Λz)dz, it is clearly enough to bound the integral∫

|z|≤Ẑ meas(Λz)dz. For every n1 + 1 ≤ j ≤ n, let

Ij = {|z| ≤ Ẑ : |z1 + ρjz2| < |P |−2}.

Measure of Ij is clearly ≤ |P |−2Ẑ. We may now bound the required integral by:∫
|z|=Ẑ

(1 + |P |2 min
n1+1≤j≤n

|z1 + ρjz2|)−1dz ≤ (n− n1)|P |−2Ẑ

+ |P |−4
n∑

j=n1+1

∫
{|z|≤|P |2Ẑ}\I′j

(1 + |z1 + ρjz2|)−1dz,

where

I ′j = {|z| ≤ |P |2Ẑ : |z1 + ρjz2| < 1}.

If ρn = 0, {|z| ≤ |P |2Ẑ \ I ′n} = {|z| ≤ Ẑ, |z1| ≥ 1}. Thus,∫
{|z|≤|P |2Ẑ}\I′n

|z1|−1dz1dz2 = q|P |2Ẑ
∫

1≤|z1|≤|P |2Ẑ
|z1|−1dz1 = |P |2Ẑ + 1 log(|P |2Ẑ)

which is clearly admissible. When ρj 6= 0, we may change the variables to put s1 = z1, s2 = z1 + ρjz2 to
get ∫

{|z|≤|P |2Ẑ}\I′j
|z1 + ρjz2|−1dz ≤ |ρj |−1

∫
|s1|,|s2|≤|P |2Ẑ|(1+|ρj |)

1≤|s2|

|s2|−1ds1ds2 ≤ q
1 + |ρj |
|ρj |

log(|P |2Ẑ)Ẑ.

Combining the above bound with (5.14), proves the final part of the lemma. �

5.2. Preparation of the error term. We now come back to our main counting function N(P ). Lemma
5.3 implies

N(P ) = |P |n
∑

0≤Y≤Q

∑
r,d monic, c primitive

̂Y−Q/2≤|dc|≤Ŷ/2
|dc2|<Ŷ/2
|r|=Ŷ ,d|r

|rN |−n
∫

|z|<Ŷ −1q−Q/2

∑
|v|≤V̂

Sdc,r,b,N (v)IrN (z; v)dz,

where Sdc,r,b,N (v), Ir(z,v) and V̂ are as in the statements of Lemmas 5.1 and 5.3 respectively. The main

contribution would arise from the v = 0 terms when |r| ≤ Q̂∆, where 0 < ∆ < 1/2 be a constant to be
decided later, which we fix throughout this argument. i.e. Our main term, the major arcs regime, will
correspond to

(5.16) N0(P ) := |P |n
∑

0≤Y≤∆Q

∑
r,d monic, c primitive

|dc|≤Ŷ/2, |dc2|<Ŷ/2
|r|=Ŷ ,d|r

|rN |−n
∫

|z|<Ŷ −1q−Q/2

Sdc,r,b,N (0)IrN (z; 0)dz.

The rest of the terms will contribute to the error, which we denote by E(P ), the minor arcs contribution.
Here the dependence of both the terms on ∆ is implicit.
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We first observe that using the trivial bound |S(a/r + z)| � |P |n we may satisfactorily bound the
contribution from the regions

|z| < |P |−5,

to (5.3) directly. For any Y ≤ Q, where Q is as in (5.2), the measure

meas(|z| < |P |−5)� |P |−10+ε.

Using this fact, for any ε > 0, the total contribution from this region to (5.3) is at most

Q∑
Y=0

∑
|r|=Ŷ
r monic

∑
|a|<Ŷ

gcd(a,r)=1

∫
|z|<|P |−5

|S(a/r + z)|dz ≤
Q∑
Y=0

∑
|r|=Ŷ
r monic

∑
|a|<Ŷ

gcd(a,r)=1

|P |n−10+ε � |P |n−6+ε,

using the fact that Q̂3 � |P |4. In the light of this bound, we may ignore the contribution from the region
corresponding to the integrals over |z| < |P |−5 in our error term E(P ). Incorporating this observation, we
will further split the error term in two major parts:∫

T2

S(α)dα = N0(P ) + E1(P ) + E2(P ) +Oε(|P |n−6+ε),(5.17)

where

(5.18) E1(P ) := |P |n
∑

0≤Y≤Q

∑
r,d monic, c primitive

̂Y−Q/2≤|dc|≤Ŷ/2
|dc2|<Ŷ/2
|r|=Ŷ ,d|r

|rN |−n
∫

|P |−5≤|z|<Ŷ −1q−Q/2

∑
v∈On\0,
|v|≤V̂

Sdc,r,b,N (v)IrN (z; v)dz,

and

(5.19) E2(P ) := |P |n
∑

Q∆<Y≤Q

∑
d monic, c primitive
̂Y−Q/2≤|dc|≤Ŷ/2
|dc2|<Ŷ/2

|rN |−n
∫

|P |−5≤|z|<Ŷ −1q−Q/2

∑
|r|=Ŷ

r monic, d|r

Sdc,r,b,N (0)IrN (z; 0)dz.

5.3. The main term. We begin by establishing the required asymptotic formula for our main term
N0(P ). Throughout, we will treat q as fixed and the implied constants may depend on it. When v = 0,
the exponential integral Ir(z,0) is independent of r, which we denote by I(z) for simplicity, i.e. set

I(z) =

∫
Kn
∞

ω(x)ψ
(
z1P

2F1(x) + z2P
2F (x)

)
dx.

Thus,

N0(P ) = |P |n
∑

r monic
|r|≤Q∆

|rN |−nSr
∫
|z|<|r|−1q−Q/2

I(z)dz.

where

(5.20) Sr =
∑

d monic, c primitive

|dc|≤|r|1/2
|dc2|<|r|1/2

d|r

Sdc,r,b,N (0) =
∑∗

|a|<|r|

∑
|x|<|rN |

x≡b mod N

ψ

(
a1F1(x) + a2F2(x)

r

)
.
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Here, the second equality is obtained from using Corollary 2.10. We begin by proving the convergence of
the singular series assuming the validity of the bound in Lemma 6.8, which will be proved in the following
section:

Lemma 5.5. For any Y ≥ 1, and for any ε > 0,∑
r∈O

r monic
|r|=Ŷ

|rN |−n|Sr| � Ŷ (7−n)/2+ε.

Proof. We assume the bound (6.16), which gives us:

∑
|r|=Ŷ

|Sr| �
∑
|r|=Ŷ

∑
d monic, c primitive

|dc|≤|r|1/2
|dc2|<|r|1/2

d|r

|Sdc,r,b,N (0)| �
∑
|r|=Ŷ

Ŷ n/2+3/2
∑

d monic, c primitive

|dc|≤|r|1/2
|dc2|<|r|1/2

d|r

|d|1/2 � Ŷ n/2+7/2+ε,

(5.21)

establishing the bound. �

We next deal with the integral over z. We split it over {|z| < Ĉ|P |−2} and {Ĉ|P |−2 ≤ |z| < |r|−1q−Q/2},
where C > 0 is a fixed positive integer to be decided later. To bound the contribution of the second term,
we use Lemma 5.4. Thus, for any Z ≥ |P |−2, we have∫

|z|=Ẑ
|I(z)|dz� L̂−n|P |−2 log(|P |2Ẑ)Ẑ(1 + |P |2Ẑ)1−n/2 �ε L̂

−n|P |−2Ẑ(1 + |P |2Ẑ)1−n/2+ε.

After summing over Z and replacing Z1 = |P |2Ẑ for n ≥ 7,∫
Ĉ|P |−2≤|z|

|I(z)|dz ≤ |P |−4
∑
Ĉ≤Z1

(1 + Z1)−3/2+ε � |P |−4Ĉ−1/2+ε.

This bound, in conjunction with Lemma 5.5 assert that for n ≥ 8 we have

N0(P ) = |P |nS(Q̂∆)

∫
|z|<Ĉ|P |−2

∫
ω(x)ψ(P 2z1F1(x) + P 2z2F2(x))dxdz +O(|P |n−4L̂−nĈ−1/2+ε)

= |P |n−4S(Q̂∆)

∫
|z|<Ĉ

∫
ω(x)ψ(z1F1(x) + z2F2(x))dxdz +O(|P |n−4L̂−nĈ−1/2+ε).

(5.22)

Here, given Y ∈ R≥0,

S(Ŷ ) =
∑

r∈O,r monic

|r|≤Ŷ

|rN |−nSr,

is a truncated singular series. We now switch the order of integrals over x and over z and employ Lemma
[8, Lemma 2.2] to obtain:∫

ω(x)

∫
|z|<Ĉ

ψ(z1F1(x) + z2F2(x))dz1dz2dx = Ĉ2 meas{|x− x0| < L̂−1 : |F1(x)| < Ĉ−1, |F2(x)| < Ĉ−1}.

Let us investigate the measure of the above set. Upon a change of variable, this is bounded by

(5.23) L̂−n meas{|x| < 1 : |F1(t−Lx + x0)| < Ĉ−1, |F2(t−Lx + x0)| < Ĉ−1}.
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For i = 1, 2, from (5.10) we get

|Fi(t−Lx + x0)| < HF L̂
−1.

We may now choose L to be an even integer 2 ≤ L such that HF ≤ L̂/2 for i = 1, 2, and choose C = L/2.
Thus, for such a choice of L and C, we get∫

|z|<Ĉ

∫
ω(x)ψ(z1F1(x) + z2F2(x))dxdz = Ĉ2L̂−n = L̂−n+1.

Finally, as a consequence of Lemma 5.5, we have also established the convergence of the singular series,
namely

|S(Q̂∆)−S| � Q̂−∆/2+ε � |P |−2∆/3+ε,

where

S =
∑

r∈O,r monic

|rN |−nSr,

is the usual singular series. If X(AK) 6= ∅, [22, Cor. 7.7] establishes that S > 0. The argument in [22, Cor.
7.7] is obtained for b = 0, N = 1, however, adapting it to deal with a fixed and general b, N is a routine
exercise, which we skip here.

To summarise, we have established the following asymptotic formula:

Lemma 5.6. For n ≥ 8, for any even integer L satisfying HF ≤ L̂/2, and any 0 < ∆ < 1/2, we have

N0(P ) = S|P |n−4L̂−n+1 +O(|P |n−4L̂−n−1/4+ε) +O(L̂−n+1|P |n−4−2∆/3+ε),

where S > 0 if X(AK) 6= ∅.

6. Complete exponential sums bounds

In this section, we will focus on getting satisfactory bounds for the exponential sums Sdc,r,b,N (v). The
notation and the results in Section 4 will be used throughout this section. Throughout, let v ∈ On, let
d ∈ O be monic and c ∈ O2 be primitive. Recall that given any r ∈ O, we consider the exponential sums

Sdc,r,b,N (v) =
∑

a/r∈L(dc)

∑
x∈On

|x|<|rN |
x≡b mod N

ψ

(
a1F1(x) + a2F2(x)

r

)
ψ

(
−v · x
rN

)
.

The multiplicativity relation in Lemma 5.2 will allow us to consider exponential sums modulo powers of
primes $k. Note that as per our definition, our set of bad primes, defined in Section 4.2, includes all primes
dividing N . We will begin by obtaining bounds for the exponential sums modulo $k, where $ is a type I
prime, which does not divide d. These translate to traditional quadratic exponential sums corresponding
to the quadratic form Fc = −c2F1 + c1F2, which have been considered in Lemma 3.4. The treatment of
type II primes will be similar to that of bad c’s.
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6.1. Exponential sum bounds I. This part will be devoted to obtaining bounds for Sc,r,0,1(v), i.e., when
d = 1 and $ is not a bad prime. When d = 1, Lemma 2.3 implies that the exponential sums Sc,r,0,1(v) are
equal to the familiar quadratic exponential sums:

(6.1) Sc,r,0,1(v) =
∑∗

|a|<|r|

∑
x∈On

|x|<|r|

ψ

(
a(−c2F1(x) + c1F2(x))− v · x

r

)
.

Throughout this section, let

(6.2) f(x) := Fc(x) = −c2F1(x) + c1F2(x).

As before Mc = −c2M1 + c1M2 is the defining matrix for f . If we want to give up on the cancellations
arising from the extra average over a, then using Lemma 3.5 in the generic case, it is expected to be able
to obtain square-root cancellations in the inner sum over x in (6.1), which would hand us the following
generic bound:

(6.3) |Sc,r,0,1(v)| � |r|n/2+1.

We will use this bound only as a reference for comparing with various bounds showing up in this section.

6.1.1. c good case. Let us assume that c is good. [19, Lemma 2.1] implies that when $ is not a bad prime,
rank$(f(x)) ≥ n − 1. Since c is good, det(Mc) 6= 0. Therefore, the set of primes of type I consists of all
good primes which do not divide det(Mc), and the set of primes of type II consists of good primes which
divide det(Mc). Thus the cardinality of the set of type II primes is at most O(log |c|). We simplify our
notation and define

(6.4) Sr(v) =
∑∗

|a|<|r|

∑
|x|<|r|

ψ

(
af(x)− v · x

r

)
,

where f as in (6.2). Since f is a quadratic form, we can explicitly evaluate S$k(v) when $ is a type I
prime using Lemma 3.4:

Lemma 6.1. Let c be a good pair and let $ be a prime of type I. Let |$| = qL, and q = p`0. Then

|S$k(v)| ≤ |$|(n+1)k/2 gcd(f∗(v), $k)1/2,

where f∗(v) = det(Mc)v
tM−1

c v is the dual form. More explicitly, we have:

S$k(v) =


|$|nk/2(|$|kδ$k|f∗(v) − |$|k−1δ$k−1|f∗(v)), if 2 | k,(

det(Mc)
$

)
|$|kn/2iL`0np (|$|kδ$k|f∗(v) − |$|k−1δ$k−1|f∗(v)), if 2 | n, 2 - k,(

−f∗(v)
$

)
|$|k(n+1)/2i

L`0(n+1)
p , if 2 - n, 2 - k,

with ip as in (3.11).

Remark 6.2. Let us consider various implications of the bounds in Lemma 6.1. The bounds depend on
the parities of n and k. When r is generic, i.e., when gcd(r, f∗(v)) = 1, we may always save a factor of

size |r|1/2 as compared with (6.3). We will save another factor of size O(|r|1/2) from an average over the
square-free values of r. As a result, we are able to adequately bound E(P ) as long as n ≥ 9. When n = 8,

and r is square-free and generic, Lemma 6.1 hands us a O(|r|n/2) bound instead of (6.3), effectively saving
a factor of size O(|r|) without even utilising the average over r. In theory, this should lead us to settle
this case. However, when r | f∗(v), we are handed back the bound in (6.3). Moreover, f∗(v) depends
both on v as well as on c, and this is the primary reason why we are unable to deal this contribution in a
satisfactory manner.
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When $ is a prime of type II, our bounds will not be as good as those in Lemma 6.1. Let Mc = TDS,
where T, S are invertible matrices as in Section 4.2 with entries in O and D = diag(µ1, ..., µn) is a diagonal
matrix satisfying µi | µi+1. Let {yj = S−1ej} be a basis for On, and recall that the quadratic form

Qc(x1, ..., xn−1) = f(x1y1 + ...+ xn−1yn−1)

defined in (4.4) is non-singular modulo $. Clearly, $ | Mcyn = µnTen. We will therefore end up giving

up on an extra factor of size gcd($k, det(Mc))
1/2 = gcd($k, µn)1/2, as compared with the bound in (6.3).

However, we will salvage this loss somewhat by obtaining a congruence condition on the vector v:

Lemma 6.3. Let $ be a prime of type II, and let k1 = min{k, ν$(µn)}. Then,

(6.5) |S$k(v)| ≤ |$|k(n/2+1)δ$k1 |((S−1)tv)n
| gcd($k1 , Q∗c(v′))|1/2,

where Q∗c denotes the dual of the quadratic form Qc, and ((S−1)tv)n denotes the n-th entry of the vector

(S−1)tv, and v′ denotes the n− 1 dimensional vector obtained by deleting the n-th entry of (S−1)tv. As a
consequence,

(6.6) |S$k(v)| ≤ |$|k(n/2+1)| gcd($k1 , Q∗c(v′), ((S−1)tv)n)|1/2,

Proof. Recall that Mc = TDS where T, S are in GLn(O) with det(T ),det(S) ∈ F×q . Since $ is a prime of

type II, $ | µn, and $ - µj for any 1 ≤ j ≤ n− 1. Let Q(x) = f(S−1x).

S$k(v) =
∑∗

|a|<|$|k

∑
|x|<|$|k

ψ

(
af(x)− v · x

$k

)
=
∑∗

|a|<|$|k

∑
|x|<|$|k

ψ

(
aQ(x)− ((S−1)tv) · x

$k

)
,(6.7)

using the fact that |det(S)| = 1. We now change the variables to write xn = xn,1 + $k−k1xn,2, and x =

x1 + x2 where x2 = (0, ..., 0, $k−k1xn,2)t. Note that Q(x) = xt(S−1)t(TDS)S−1x. Moreover, McS
−1x2 ≡

0 mod $k, and therefore, using the symmetry of Mc, we must have xt2(S−1)tMc ≡ 0t mod $k, as well.

Therefore, the value of Q(x) mod $k is independent of xn,2. We thus get:

S$k(v) =
∑∗

|a|<|$|k

∑
x1

ψ

(
aQ(x1)− ((S−1)tv) · x1

$k

) ∑
|xn,2|<|$|k1

ψ

(
((S−1)tv)nxn,2

$k1

)
.

The inner sum vanishes unless $k1 | ((S−1)tv)n. On the other hand, Lemma 3.5 gives

|S$k(v)|2 ≤ |$|k(2+n)#{x mod $k : $k |Mcx}.
Using the Smith normal form again,

#{x mod $k : $k |Mcx} = #{x mod $k : $k | Dx} = |$|k1 ,

using the fact that S and T are invertible. This provides us with our first bound:

(6.8) |S$k(v)| ≤ $k1/2|$|k(n/2+1)δ$k1 |((S−1)tv)n
.

Unfortunately, this bound is not enough for us. Therefore we go back to (6.7), and evaluate the sum in a
different way. This time we write x = x′ + xnen, where en = (0, ..., 0, 1) as before, to get:

|S$k(v)| =

∣∣∣∣∣∣
∑∗

|a|<|$|k

∑
|x|<|$|k

ψ

(
aQ(x)− ((S−1)tv) · x

$k

)∣∣∣∣∣∣
≤

∑
|xn|<|$|k

∣∣∣∣∣∣
∑∗

|a|<|$|k

∑
|x′|<|$|k

ψ

(
aQ(x′ + xnen)− v′ · x′

$k

)∣∣∣∣∣∣ .
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We now invoke our general bound (3.12) in Lemma 3.4 by applying it to the inner exponential sums with
the quadratic polynomial g(x′) = Q(x′+ xnen). Note that following the above notation, Q(x′) = Qc(x

′) is
the leading quadratic part of g(x′). We are thus left with:

|S$k(v)| ≤ |$|k(n/2+1)| gcd(Q∗c(v′), $k)|1/2.

The lemma now follows upon taking the minimum of this bound and the one in (6.8). �

6.1.2. c bad case (f singular). The strategy for dealing with the bad values of c will emulate that of type
II primes. Note that $ | µn−1 if and only if $ is a bad prime. After using the change of variables as in
(6.7), we have

Sr(v) =
∑∗

|a|<|r|

∑
|x|<|r|

ψ

(
aQ(x)− ((S−1)tv) · x

r

)

= |r|δr|((S−1)tv)n

∑∗

|a|<|r|

∑
|x1|<|r|

ψ

(
aQc(x1)− v′ · x1

r

)
,

where ((S−1)tv)n is the n-th entry of the vector (S−1)tv, v′ denotes the n− 1 dimensional vector obtained
after deleting the n-the entry in (S−1)tv, and x1 = (x1, ..., xn−1). The last exponential sum can again be
evaluated using Lemma 3.4 to obtain:

Lemma 6.4. Let f be singular, and let $ be not a bad prime. Let |$| = qL, and q = p`0. Then we have:

S$k(v) = |$|kδ$k|((S−1)tv)n

×


|$|(n−1)k/2(|$|kδ$k|Q∗c (v′) − |$|k−1δ$k−1|Q∗c (v′)), if 2 | k,(

det(M ′c)

$

)
|$|k(n−1)/2i

L`0(n−1)
p (|$|kδ$k|Q∗c (v′) − |$|k−1δ$k−1|Q∗c (v′)), if 2 - n, 2 - k,(−Q∗c (v′)

$

)
|$|kn/2iL`0np , if 2 | n, 2 - k,

where M ′c is the matrix defining Qc, v′ as in Lemma 6.3, and ip as in (3.11).

6.2. A general bound. So far, the above bounds suffice as long as $ - dDF . We first shift the focus
to $ | d. Using the multiplicativity of the exponential sums in Lemma 5.2, it is enough to look at
the sums of type S$mc,$k,b,$`(v), where m ≤ k. As before, let us first assume that $ - N . First, we

begin by investigating the structure of points a/$k ∈ L($mc). From our definition (1.3), when m ≥ 1,
a/$k ∈ L($mc) if and only if the conditions gcd(a, $) = 1, $k−m | a·c and $ - (a·c/$k−m) simultaneously
hold. Lemma 2.5 implies that

{a mod $k : a/$k ∈ L($mc)} ⊆ {ac⊥ +$k−md mod $k : |a| < |$|k−m, gcd(a,$) = 1, gcd(d, $) = 1}.
d also needs to satisfy an extra condition that $ - c · d, which forces that d itself can not be of the form
a′c⊥ + $d1, where 0 ≤ |a′| < |$|. Therefore, this concludes that when m < k, we have the following
equality of the sets modulo $k:

{a : a/$k ∈ L($mc)} = {ac⊥ +$k−md : |a| < |$|k−m, gcd(a,$) = 1, |d| < |$|m}\

{ac⊥ +$k−m+1d : gcd(a,$) = 1, |a| < |$|k−m+1, |d| < |$|m−1},(6.9)

while when k = m, we get

{a : a/$k ∈ L($kc)} = {d : gcd(d, $) = 1, |d| < |$|k}\

{ac⊥ +$k−1d : gcd(a,$) = 1, |a| < |$|, |d| < |$|k−1}.(6.10)



RATIONAL POINTS ON COMPLETE INTERSECTIONS OVER Fq(t) 35

Using the above structure, it is easy to obtain the bound:

(6.11) #{a/$k ∈ L($mc)} ≤ |$|k−m+2m = |$|k+m.

When c is a bad pair, we will need to obtain some saving from the primes which divide the square-free
part of d. It will be enough to obtain the following bound:

Lemma 6.5. Let c be a bad pair and let $ not be a bad prime further satisfying gcd($,F ∗(v)) =
gcd($,Q∗c(v′)) = 1, then

|S$,c,$,0,1(v)| ≤ |$|n/2+1.

Proof. (6.10) implies

S$c,$,0,1(v) =
∑
|d|<|$|

gcd(d,$)=1

∑
|x|<|$|

ψ

(
d1F1(x) + d2F2(x)− v · x

$

)
− Sc,$,0,1(v).

The bound here follows for a standard Deligne bound (see [21, Lem. 14] for example) for the complete
exponential sums, and our bounds in Lemma 6.4. �

Note that the method of the above lemma could be generalised to obtain further savings from S$mc,$k,0,1(v),
when k,m 6= 1, however this is not needed in this work.

When $ is a bad prime, we know that |$| is absolutely bounded. The argument of [19, Lemma 5.5]
holds here as well, as it only depends on the fact that f(x) has rank at least n− 1 over K$. [19, Lemma
5.5] thus provides us:

Lemma 6.6. For each bad prime $, there is a constant c$ such that

ν$(µn−1) ≤ c$.

We now turn our attention to a more general bound which can be seen as a combination of methods in
Lemma 6.3 and [19, Lemma 5.4]. In the light of (6.11), the bound obtained in the following Lemma, upto

a factor of |$|k1/2, is a direct analogue of (6.3) in this case. The loss of the factor |$|k1/2 essentially arises
from gcd($k−m, F (c)), where F (c) = det(Mc). Akin to Lemma 6.3, we compensate the loss of this factor
by obtaining a congruence condition on v.

Lemma 6.7. Let c be any primitive pair. Then for any good prime $, and for any 1 ≤ m ≤ k we have

|S$mc,$k,0,1(v)| ≤ |$|k(n/2+1)+m+k1/2δ$k1 |((S−1)tv)n
.(6.12)

When $ is a bad prime, then

|S$mc,$k,b,$`(v)| ≤ C$,`|$|k(n/2+1)+m+k1/2δ$k2 |((S−1)tv)n
,(6.13)

where C$,` is a constant which only depends on |$| and `. Here k1 = min{k − m, ν$(µn)}, and k2 =
min{k −m, ν$(µn), k − `}.
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Proof. Since the set of bad primes is bounded and N is fixed, without loss of generality, we may assume
that ` ≤ k/3. This dependence may be absorbed in the constant. Recall that

S$mc,$k,b,$`(v) =
∑

|d|<|$|m
$-c·d

∑∗

|a|<|$|k−m

∑
|x|<|$|k

x≡b mod $`

ψ

(
(ac⊥ +$k−md) · (F1(x), F2(x))− v · x

$k

)

=
∑

|d|<|$|m
$-c·d

∑∗

|a|<|$|k−m

∑
|x|<|$|k

x≡b mod $`

ψ

(
af(x) +$k−m(d1F1(x) + d2F2(x))− v · x

$k

)
.

We follow the recipe of Lemma 6.3 to first change the variables and write y = Sx, and then write
y = y1 + $k−k2y2, where y2 = (0, ..., 0, y2). It is easy to see that f(S−1y) = f(S−1y1). Moreover, the
congruence condition is converted to y1 ≡ Sb mod $`. As a result, akin to the argument in Lemma 6.3,
the sum over y2 hands us the condition $k2 | ((S−1)tv)n.

On the other hand, we substitute x = b +$`y and apply the bound in Lemma 3.5 to get

|S$mc,$k,b,$`(v)| ≤ C ′$,`|$|n(k−`)/2
∑

|d|<|$|m,gcd(d,$)=1

∑∗

|a|<|$|k−m
N(ac⊥ +$k−md, $k)1/2

≤ C ′$,`|$|n(k−`)/2+k−m
∑

|d|<|$|m,gcd(d,$)=1

gcd(F (c +$k−md), $k)1/2(6.14)

where
N(a, $k) = #{x mod $k : $k | (a1M1 + a2M2)x},

and F (x, y) is the determinant form defined in (4.2).

If $ is not a bad prime then ν$(F (c)) = ν$(µn). Therefore, if ν$(F (c)) < k −m, then k1 = ν$(F (c)).
Moreover, for any choice of d and gcd(a,$) = 1, ν$(F (ac +$k−md)) = k1 < k−m as well. (6.12) further
follows from (6.14). When $ is a bad prime, then ν$(µn) ≤ ν$(F (c)) ≤ ν$(µn) + (n− 1)c$. If we further
have that m1 = ν$(F (c)) < k −m, then (6.13) follows from a minor modification of the argument above

after observing that |$|m1 ≤ |$|k1+(n−1)c$ .

It is therefore enough to assume that $k−m | F (c), which we do for the rest of the proof. This in turn
implies that k −m ≤ k1 if $ is not bad and k −m ≤ k1 + (n− 1)c$ otherwise. The rest of the argument
will follow from minor modifications of the proof of [19, Lemma 5.4], which we reproduce below.

We start by rewriting (6.14) as

|S$mc,$k,b,$`(v)|

≤ C$,`|$|nk/2+k−m
m∑
g=0

|$|(g+(k−m))/2#{|d| < |$|m, $ - d, gcd($k, F (c +$k−md)) = $g+k−m}.

≤ C ′$,`|$|nk/2+k−m+k1/2(|$|2m +
m∑
g=1

|$|g/2#{|d| < |$|m, $ - d, gcd($k, F (c +$k−md)) = $g+k−m})

≤ C ′$,`|$|nk/2+k−m+k1/2+2m(1 +

m∑
g=1

|$|−3g/2#{|d| < |$|g, $ - d, gcd($k, F (c +$k−md)) = $g+k−m})

The number of |d| < |$|g such that the second co-ordinate of c +$k−md is co-prime to $ is

≤ |$|g#{|u| < |$|k−m+g : $k−m+g | F (u, 1)}.
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The main result in [15] applied to the polynomial F (u, 1) and its derivative, implies that for any root
u0 ∈ O, satisfying $ | F (u0, 1), we must have ν$(F ′(u0, 1)) ≤ ν$(DF ), where DF is as in (4.5). We may
now further use Hensel’s Lemma to obtain

#{|u| < |$|k−m+g : $k−m+g | F (u, 1)} ≤ n|DF |.

This bound is clearly enough. We can similarly bound the number of terms where the first co-ordinate is
co-prime to $ to finish the proof. �

As an immediate corollary of the above Lemma, we get the following weak bound, which holds for any
r and any primitive c:

Lemma 6.8. Let d,N ∈ O, c ∈ O2 be any primitive pair, let b ∈ On and let ε > 0 be arbitrary. Given
any r we have

|Sdc,r,b,N (v)| �DF |d||r|
n/2+1+ε| gcd(r/d, ((S−1)tv)n,det(Mc))|1/2(6.15)

�DF |d|
1/2|r|n/2+3/2+ε.(6.16)

Observe that our bounds throughout this section are independent of the choice of b and depend only on
|DF |. This will make their application rather convenient.

7. Square-free moduli contribution

Our rest of the effort will be spent in proving that |Ei(P ))| � |P |n−4−ε, for i = 1, 2. We will begin by

considering the term E1(P ) as defined in (5.18). Let |r| = Ŷ and let |z| = Ẑ. Let J(Z) = 1 + |P |2Ẑ. Since
v 6= 0, this forces,

(7.1) Ŷ � |P |
J(Z)

.

From now on, we fix 0 ≤ Y ≤ Q, and dc satisfying |dc| ≤ Ŷ/2, |dc2| < Ŷ/2 and Z ∈ Z such that
−5 logq |P | ≤ Z < −Y − Q/2. Note that there are only O(|P |ε) choices for Y and Z. Let Ei(dc, Y, Z)

denote the contribution to the term Ei from this specific choice of dc after summing over all monic |r| = Ŷ ,

and integrating over |z| = Ẑ. For example:

(7.2) E1(dc, Y, Z) := |P |n
∑
|r|=Ŷ
d|r

|rN |−n
∫
|z|=Ẑ

∑
v∈On\0,
|v|≤V̂

Sdc,r,b,N (v)IrN (z; v)dz,

Let P denote a set of primes to be specified later, containing at least all primes dividing dDF . Next,
we write r = br1, where b denotes the square free part of r satisfying a further constraint: gcd(b,P) = 1.
Recalling the factorisation of the exponential sum in Lemma 5.2, there exist b1 ∈ (O/NO)n, b0 ∈ (O/NO)∗

satisfying

(7.3) E1(dc, Y, Z)� |P |
n

Ŷ n

∑
v∈On
v 6=0

|v|�V̂

∑
r1∈O,d|r1
|r1|≤Ŷ

|Sdc,r1,b1,N1(v)||Σ(Z, r1, Ŷ /|r1|)|,
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where

(7.4) Σ(Z, y, B̂) =

∫
|z|=Ẑ

∑
b∈O]

(b,P)=1

|b|=B̂
b≡b0 mod N

Sc,b,0,1(v)IbyN (z; v)dz.

Let f(x) = −c2F1 + c1F2 as in the previous section. Using notation (6.4), we may rewrite this as

(7.5) Σ(Z, y, B̂) =

∫
|z|=Ẑ

∑
b∈O]

(b,P)=1

|b|=B̂
b≡b0 mod N

Sb(v)IbyN (z; v)dz.

In this section, we will derive a good bound for Σ(Z, y, B̂), and eventually apply it with y = r1, B̂ = Ŷ /|r1|.
Since our bounds for exponential sums differ with the parity of n, so will our treatment. We begin by noting
a weaker bound which is a direct consequence of Lemmas 5.4 and 6.1:

Lemma 7.1. Let c be monic primitive and good, and P be the set of primes dividing ddet(Mc)f
∗(v) and

DF if n is even, and the set of primes dividing ddet(Mc)DF if n is odd. Then

|Σ(Z, y, B̂)| � J(Z)−n/2+1(log |P |)Ẑ min{Ẑ, |P |−2}B̂n/2+1

{
1 if 2 | n
B̂1/2 if 2 - n.

Let c be bad, then let P denote the set of primes dividing dDFQ
∗
c(v′), then

|Σ(Z, y, B̂)| � J(Z)−n/2+1(log |P |)Ẑ min{Ẑ, |P |−2}B̂n/2+3/2

{
1 if 2 - n
B̂1/2 if 2 | n.

In obtaining the above lemma, we are giving up on some extra cancellations we may be able to obtain
from the sum over b. In order to exploit this, we need to look at this contribution more closely. We begin
by noting that

Σ(Z, y, B̂) =
∑
b∈O]

(b,P)=1

|b|=B̂
b≡b0 mod N

Sb(v)

∫
|z|=Ẑ

IbyN (z; v)dz.

We begin by focusing on the average value of the exponential integral:∫
|z|=Ẑ

IbyN (z; v)dz =

∫
|z|=Ẑ

∫
ω(x)ψ(z1P

2F1(x) + z2P
2F2(x))ψ

(
Pv · x
byN

)
dxdz

=

∫
|z|=Ẑ

∫
w(tL(x− x0))ψ(z1P

2F1(x) + z2P
2F2(x))ψ

(
Pv · x
byN

)
dxdz

= L̂−n
∫
|z|=Ẑ

∫
Tn
ψ(z1P

2F1(t−Lx + x0)) + z2P
2F2(t−Lx + x0))ψ

(
Pv · (t−Lx + x0)

byN

)
dxdz

= L̂−nψ

(
Pv · x0

byN

)∫
|z|=Ẑ

JG(z1P
2, z2P

2, t−LPv/(byN ))dz,
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where Gi = Fi(t
−Lx + x0). Note HG < L̂−1HF as noted in (5.10). Using Lemma 3.2, for any w,∫
|z|=Ẑ

JG(z1P
2, z2P

2,w)dz =

∫
|z|=Ẑ

∫
Λ
ψ
(
z1P

2G1(x) + z2P
2G2(x) + w.x

)
dxdz,

where
(7.6)

Λ =
{

x ∈ Tn : |z1P
2G1(x)|, |z2P

2G2(x)| ≤ max{1, HG}J(Z)1/2, |P 2z · ∇G(x) + w| ≤ HGJ(Z)1/2
}
.

Here, z ·∇G(x) := z1∇G1(x) + z2∇G2(x). We now replace w = t−LPv/(byN ) and Gi(x) = Fi(t
−Lx + x0).

Thus, after noting that |t−Lx + x0| ≤ 1 for all x ∈ Tn, we have

|P 2t−L(z1∇F1(t−Lx + x0) + z2∇F2(t−Lx + x0)) + w| ≤ HGJ(Z)1/2

⇒|P 2t−L(t−Lx + x0) · (z1∇F1(t−Lx + x0) + z2∇F2(t−Lx + x0)) + w · (t−Lx + x0)| ≤ HGJ(Z)1/2

⇒|P 2t−L(z1G1(x) + z2G2(x)) + t−LPv · (t−Lx + x0)/(byN )| ≤ HGJ(Z)1/2

⇒|P 2(z1G1(x) + z2G2(x)) + Pv · (t−Lx + x0)/(byN )| ≤ HGL̂J(Z)1/2 ≤ HFJ(Z)1/2.

However, we also have |P 2(z1G1(x) + z2G2(x))| ≤ max{1, HG}J(Z)1/2 ≤ HFJ(Z)1/2. Thus, we must have

(7.7) |Pv · (t−Lx + x0)/(byN )| ≤ HFJ(Z)1/2, ∀x ∈ Λ.

Our findings therefore give:

(7.8) Σ(Z, y, B̂) =
∑
b∈O]

(b,P)=1

|b|=B̂
b≡b0 mod N

Sb(v)

∫
|z|=Ẑ

∫
Λ1

ω (x)ψ
(
z1P

2F1(x) + z2P
2F2(x)

)
ψ

(
Pv · x
byn

)
dxdz,

where

Λ1 = {x ∈ Kn
∞ : |Pv · x/(byN )| ≤ HFJ(Z)1/2} ∩ Λ′,

where

Λ′ =
{

x ∈ Tn : |x− x0| < −̂L, |P 2z1∇F1(x) + P 2z2∇F2(x) + Pv/(byN )| ≤ HFJ(Z)1/2
}

Note that for a fixed value of y, the set {x ∈ Kn
∞ : |Pv · x/(byN )| ≤ HFJ(Z)1/2} only depends on the

absolute value |b|. Let J be the smallest integer such that

(7.9) HFJ(Z)1/2 ≤ qJ ≤ qHFJ(Z)1/2.

If J ≤ B, then, since b is monic, there exist c1, . . . , cK ∈ Fq such that

b = tB + c1t
B−1 + · · ·+ cJ−1t

B−J+1︸ ︷︷ ︸
=tBa

+ cJ t
B−J + · · ·+ cB︸ ︷︷ ︸

=tB−Jb′

,

where a ∈ (A/xJA)∗ and b′ ∈ A, where x = t−1. If B < J , the treatment above still formally works upon
choosing cB+1 = ... = cJ−1 = 0 and b′ = 0. Since |Pv/(byN )| ≤ HFJ(Z), we have∣∣∣∣ Pv

tByN

(
1

a+ xJb′
− 1

a

)∣∣∣∣ ≤ HFJ(Z)Ĵ−1 ≤ J(Z)1/2.

Therefore, the set Λ′ only depends on the value of b/tB mod xJ , i.e. on a. Moreover, an analogous

calculation shows that since |Pv · x| ≤ qJ |byN |, the value of ψ
(
Pv.x/yN

b

)
also only depends on the value

of b/tB mod xJ . We pick up this condition by introducing Dirichlet characters modulo xJ . Moreover, we
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pick up the condition b ≡ b0 mod N by introducing characters modulo N . Letting D1 = (O/NO)∗, and
D2 = Fq[x]/xJFq[x], we establish the identity

Σ(Z, y, B̂) =

∫
|z|=Ẑ

∫
Λ1

ω (x)ψ
(
z1P

2F1(x) + z2P
2F2(x)

)
× 1

#D1#D2

∑
η1 mod N

∑
χ mod xJ

∑
a∈D2

ψ

(
Pv.x/yN
tBa

)
η1(b0)χ(a)Σ0(η1, χ, B̂)dx dz,

(7.10)

where
Σ0(η1, χ, B̂) =

∑
b∈O]

(b,P)=1

|b|=B̂

η1(b)χ(t−Bb)Sb(v).

The strategy will follow closely with that of the proof of [8, Lemma 8.2]. There are two main estimates we
would need. Firstly, we would like to bound the inner sum over a. Note that trivially we can obtain the
bound:

1

#D2

∑
χ mod xJ

∣∣∣∣∣∣
∑
a∈D2

χ(a)ψ

(
Pv.x/yN
tBa

)∣∣∣∣∣∣� Ĵ � qJ(Z)1/2.(7.11)

Note that (7.11) already hands us a saving of an extra factor of J(Z)1/2 as compared with [8, (8.4)]. This
saving is obtained from our refined bounds in Lemma 3.2, which handed us (7.7). As in [8, Lemma 8.3],
this can be further improved by utilising the sum over a. This will be our next focus. The argument here
is almost identical to that of [8, Lemma 8.3].

Lemma 7.2. For any x satisfying |Pv · x| ≤ Ĵ +B|yN |,

1

#D2

∑
χ mod xJ

∣∣∣∣∣∣
∑
a∈D2

χ(a)ψ

(
Pv.x/yN
tBa

)∣∣∣∣∣∣ ≤ d̂J/2e ≤ qJ(Z)1/4.

Proof. Let χ mod xJ be a Dirichlet character. Let ε > 0 and choose J0 ∈ Z such that J0 = dJ/2e. Clearly,
J/2 ≤ J0 ≤ J . Recall that x = t−1 and suppose that a ≡ a′ mod xJ0 , for a, a′ ∈ D2. Then for x as in the
hypothesis of this lemma, ∣∣∣∣Pv · x

tBayN
− Pv · x
tBa′yN

∣∣∣∣ ≤ Ĵ ∣∣∣∣a− a′aa′

∣∣∣∣ ≤ Ĵ

Ĵ0

≤ Ĵ − J0.

Let us write a = a0 + xJ0a1, where a0 ∈ (A/xJ0A)∗ and a1 ∈ A/xJ−J0A. Then∑
a∈D2

χ(a)ψ

(
Pv.x/yN
tBa

)
=

∑
a0∈(A/xJ0A)∗

∑
a1∈A/xJ−J0A

χ(a0 + xJ0a1)ψ

(
Pv.x

tB(a0 + xJ0a1)yN

)
.

For fixed a0 ∈ (A/xJ0A)∗ and x, we proceed to examine the sum

S(x) =
∑

a1∈A/xJ−J0A

ψ

(
Pv.x

tB(a0 + xJ0a1)yN

)
χ(1 + xJ0a1a0),

where a0 denotes the multiplicative inverse of a0 mod xJ−J0 . As seen in the proof of [8, Lemma 8.3], the
function φχ(a) = χ(1 + xJ0a) must be a twist of a standard additive character

φχ(a) = ψ
( aχa

xJ−J0

)
.
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Similarly, since |v · x| ≤ Ĵ +B|yN |/|P |,

ψ

(
Pv.x

tB(a0 + xJ0a1)yN

)
= ψ

(
Pv.x

tBa0(1 + xJ0a0a1)yN

)
= ψ

(
Pv.x(1− xJ0a0a1)

tBa0yN

)
= ψ

(
Pv.x

tBa0yN
+
a1a0

2a′′

xJ−J0

)
,

where a′′ is independent of the choices of χ, a0 and a1. Therefore,

S(x) = ψ

(
Pv.x

tBa0yN

) ∑
a1∈A/xJ−J0A

ψ

(
a1a0(aχ + a′′a0)

xJ−J0

)
.

For a fixed a0, we deduce that S(x) = 0 unless aχ ≡ a′′′ mod xJ−J0 , where a′′′ = −a′′a0 mod xJ−J0 , in

which case |S(x)| ≤ Ĵ/Ĵ0. However, for a fixed a′′′ ∈ A/xJ−J0A we have #{χ : aχ ≡ a′′′ mod xJ−J0} ≤ Ĵ0.
Thus

1

#D2

∑
χ mod xJ

∣∣∣∣∣∣
∑
a∈D2

χ(a)ψ

(
Pv.x/yN
tBa

)∣∣∣∣∣∣ ≤ 1

Ĵ

∑
χ mod xJ

∑
a0∈(A/xJ0A)∗

|Sx| ≤ Ĵ0.

This completes the proof of the lemma. �

We now turn our attention to the term Σ0(η1, χ, Ŷ /|y|). Let η2 : O → C∗ be the Hecke character given
by η2(r) = χ(r/tdeg r). We thus focus on the following twisted averages:∑

b∈O]

(b,P)=1

|b|=B̂

η1(b)η2(b)Sb(v).(7.12)

We next replace the exponential sums Sb(v) by their explicit values obtained in Lemma 6.1. This will
transform the sum (7.12) to a character sum. Let

(7.13) α =

{
(i`0p )n if 2 | n,
(i`0p )(n+1) if 2 - n.

where q = p`0 and ip as in (3.11). Moreover, let

(7.14) β =

{
−1 if 2 | n
1 if 2 - n.

Let us finally define a Dirichlet character η3

(7.15) η3(b) =


(

det(Mc)
b

)
if 2 | n(

−f∗(v)
b

)
if 2 - n.

Using Lemma 6.1, we get∑
b∈O]

(b,P)=1

|b|=B̂

η1(b)η2(b)Sb(v) = αB
∑
b∈O]

(b,P)=1

|b|=B̂

βΩ(b)η1(b)η2(b)η3(b)×

{
B̂n/2 if 2 | n
B̂n/2+1/2 if 2 - n.

At this point, we wish to invoke Lemma 3.9 to bound the character sum satisfactorily. In order to achieve
the extra square-root cancellations in the b sum, we need to make sure that η1(b)η2(b)η3(b) is not a character
of type |b|ix for any x ∈ R. η3 can be viewed as a Dirichlet character of order 2, modulo det(Mc) if n is
even and modulo −f∗(v) if n is odd. This is non-trivial if det(Mc) is not a perfect square when n is even
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and when −f∗(v) is not a perfect square when n is odd. However, this is not enough. We also need to
guarantee that the character η1η3 is non-trivial. Since η3 is a quadratic character, it is enough to make
sure that for any b′ ∈ O satisfying b′ | N , b′ det(Mc) is not a perfect square if n is even, and that b′f∗(v) is
not a perfect square if n is odd. This is due to the fact that these conditions would guarantee that f∗(v)
(or det(Mc)) will contain an odd power of a prime not dividing N . We now apply Lemma 3.9 to obtain
the desired square-root cancellations in the character sum (7.12):

Lemma 7.3. For any good pair c, as long as

∀b′ | N,

{
b′ det(Mc) is not a perfect square if 2 | n,
b′f∗(v) is not a perfect square if 2 - n,

(7.16)

we have that given any ε > 0, any B ∈ N we have:

(7.17) Σ0(η1, χ; B̂)�n,‖F‖ |P |ε
{
B̂n/2+1/2 if 2 | n,
B̂n/2+1 if 2 - n.

We will summarize our findings into the following lemma:

Lemma 7.4. Let c be a good primitive pair in O2, let ε > 0, and P be a set of primes dividing d,
f∗(v),det(Mc) and DF when 2 | n and a set of primes dividing d, det(Mc) and DF when 2 - n. If (7.16)
is true then we have

|Σ(Z, y, B̂)| �q,F |P |εJ(Z)−n/2+5/4(log |P |)Ẑ min{Ẑ, |P |−2}B̂(n+1)/2

{
1 if 2 | n
B̂1/2 if 2 - n.

Combining this bound with the weaker one in Lemma 7.1, we get that for any 0 ≤ γ ≤ 1/2, we must have

|Σ(Z, y, B̂)| �q,F |P |εJ(Z)−n/2+5/4−γ/2(log |P |)Ẑ min{Ẑ, |P |−2}B̂(n+1)/2+γ

{
1 if 2 | n
B̂1/2 if 2 - n.

8. Minor arcs bound and proof of Theorem 1.2

We continue our analysis from the last section. In the light of our results in Section 5.2, Theorem 1.2
will be established upon proving that the minor arcs contribution |Ei(P ))| � |P |n−4−ε, for i = 1, 2. This
will be our main focus here. Our treatment in the n odd and even cases will be slightly different, due to
the nature of our exponential sum bounds. n = 9 will be the hardest case for us, n ≥ 10 being relatively
easier, aided by the fact that Lemma 7.1 will be enough for these. In many cases, the bounds for the n = 9
case will subsume those for the even n’s. Therefore, here we shall mostly concentrate on the 2 - n case. In
each case, we will deal with the contributions from the good and bad pairs c’s separately.

Throughout this section, we will assume that q is fixed, and our constants may implicitly depend on it.
We recall that F ∗(v) denotes the dual variety of the complete intersection of F1 and F2.

8.1. Good c contribution: n odd case. Recall the definition of E1(dc, Y, Z) from (7.2). When n is odd
and when c is good, we will split the sum over v in E1(dc, Y, Z) into two subsums:∑

v∈On
v 6=0

|v|�Ŷ |P |−1J(Z)

=
∑
v∈On

F∗(v) 6=0

|v|�Ŷ |P |−1J(Z)

+
∑

v 6=0∈On

F∗(v)=0

|v|�Ŷ |P |−1J(Z)

.
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We call the corresponding contributions E1,1 and E1,2 respectively. The reason behind doing so is that we
can obtain square-root cancellations in Lemma 7.3 as long as b′f∗(v) is not a perfect square for any b′ | N .
For a fixed value of v satisfying F ∗(v) 6= 0, we are able to employ Lemma 3.8 to bound the number of c’s
satisfying b′f∗(v) = y2, for some y ∈ O and b′ ∈ O. The condition that F ∗(v) 6= 0 is crucial here as it
would imply that b′f∗(v) is a square-free polynomial in c. On the other hand, when F ∗(v) = 0, we gain
by sparseness of such v’s using a Serre type bound.

We now turn to our main optimisation process. First and foremost, we write r = br1, where b denotes
the square-free part of r which is co-prime to ddet(Mc)DF if c is good and is co-prime to Q∗c(v)dDF if c
is bad. Due to our separate bounds for good, type II and bad primes, we will write

r1 = r2r3r4,

where rj ’s are all pairwise co-prime. r2r3 is free of any fifth power and furthermore, gcd(r2, ddet(Mc)DF ) =
1 and r3 is a 5-free number satisfying r3 | det(Mc)

∞ according to our notation (3.2), but gcd(r3, dDF ) = 1,
i.e., r3 consists of type II primes which are co-prime to dDF . Lastly, r4 consist of the rest, i.e., it is
composed of the primes dividing dDF and all 5-full numbers. We will now split our sum into the following
dyadic sums

(8.1) d := (|d|, |c|, |r2|, |r3|, |r4|) = d := (D̂, Ĉ, R̂2, R̂3, R̂4),

where |b| = B̂, such that, B + R2 + R3 + R4 = Y and 2(D + C) ≤ Y ≤ D + C + Q/2, with an extra
condition that c is good. We also define R1 = R2 +R3 +R4.

As noted in the previous section, since 0 ≤ Y ≤ Q, and Z ∈ Z such that −5 logq |P | ≤ Z < −Y −
Q/2, there are only O(|P |ε) different choices for vectors d. Therefore, it will be enough to focus on the
contribution from d = d to E1 and E2 for any arbitrary, permissible choice of d.

Let E1,1(d, Y, Z) denote the contribution to E1,1 by the sum over d = d. Throughout, we will adopt the
notation f∗(v) 6= � to denote that b′f∗(v) 6= y2 for any y ∈ O and any b′ | N . We may analogously define
f∗(v) = �. When f∗(v) 6= �, we apply Lemma 7.4 with γ = 1/5, and when f∗(v) = �, Lemma 7.1 to
(7.3), to obtain that there exist b1 ∈ On and N1 | N such that

E1,1(d, Y, Z)� |P |
n

Ŷ n

∑
v∈On

F∗(v)6=0

|v|�V̂

∑
d=d

c good

|Sdc,r1,b1,N1(v)|J(Z)−n/2+1B̂n/2+1×

(
J(Z)1/4−1/10B̂1/5δf∗(v)6=� + B̂1/2δf∗(v)=�

)
min{Ẑ1 + Z2, |P |−2 log |P |max{Ẑ1, Ẑ2}},

Let E1
1,1 denote the contribution from f∗(v) 6= � and E2

1,1 from f∗(v) = �. Thus,

E1
1,1(d, Y, Z)� |P |

n

Ŷ n
J(Z)−n/2+5/4−1/10Ẑ min{Ẑ, |P |−2}

∑
v∈On

F∗(v)6=0

|v|�V̂

∑
d=d

f∗(v)6=�
c good

|Sdc,r1,b1,N1(v)|B̂n/2+6/5,
(8.2)

where V̂ = Ŷ |P |−1J(Z).

Our choice of the decomposition of r1 arises from different bounds in Section 6. Lemma 6.1 provides a
satisfactory bound for the exponential sums modulo r2. Lemma 6.3 bounds the sums modulo r3. Lastly,

for a fixed d, the number of permissible r4 is at most O(R̂4
1/5

). We make our bounds in Lemma 6.8 work
for the sums modulo r4. More explicitly, we write

|Sdc,r1,b1,N1(v)| = |Sr2(v)Sr3(v)Sdc,r4,b2,N (v)|,
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and obtain

|Sr2(v)| � R̂2
(n+1)/2

| gcd(r2, f
∗(v))|1/2,

|Sr3(v)| � R̂3
n/2+1

| gcd(r3, ((S
−1)tv)n, Q

∗
c(v′))|1/2.

|Sdc,r4,b2,N (v)| � D̂R̂4
n/2+1

| gcd(r4/d,det(Mc), ((S
−1)tv)n))|1/2.

(8.3)

We now arrange the various sums in the following order and evaluate them using our previous bounds:∑
d

∑
r4

∑
c

∑
r3

∑
v

∑
r2

.

Note that r2 only consists of square-full numbers and the condition f∗(v) 6= � guarantees that f∗(v) 6= 0.
Therefore, for a fixed value of v, we must have

(8.4)
∑
|r2|=R̂2

|Sr2(v)| � R̂2
n/2+1+ε

.

Combining our bounds, we obtain the following result:∑
v∈On

F∗(v) 6=0

|v|�V̂

∑
d=d

f∗(v)6=�
c good

|Sdc,r1,b1,N1(v)| � |P |εR̂1
n/2+1

D̂

∑
d

∑
r4

∑
c

∑
r3

∑
v

gcd(r4/d,det(Mc), ((S
−1)tv)n)1/2 gcd(r3, ((S

−1)tv)n, Q
∗
c(v′))1/2

� |P |εR̂1
n/2+1

D̂
∑
|d|=D̂

∑
|r4|=R̂4

∑
x1|r4/d

∑
|c|=Ĉ

c good
x1|det(Mc)

∑
x2|r3

∑
0 6=|v|≤V̂
F∗(v)6=0
f∗(v) 6=�

x1x2|((S−1)tv)n
x2|Q∗c (v′)

|x1x2|1/2.(8.5)

Before we start our final computation, we will need an estimate for

#{c : x | det(Mc)} and #{|v| ≤ V̂ : x | ((S−1)tv)n, y | Q∗(v′)}.
Here v′ denotes the vector obtained from the first n− 1 entries of (S−1)tv. This will be our next goal.

Lemma 8.1. Given any n ≥ 2, any x, y ∈ O such that y | x, any primitive c ∈ O2, any V ∈ N≥0, we have
(8.6)

#{|v| ≤ V̂ : x | ((S−1)tv)n, y | Q∗c(v′)} � (V̂ )n−2 min

{
V̂

(
1 +

V̂

|x|

)
,

(
1 +

V̂∏
$|y |$|

)(
1 +

V̂∏
$|x |$|

)}
.

Similarly, given any n ≥ 2, x ∈ O, any c, any ε > 0 and any C ∈ N≥0 we have

(8.7) #{c ∈ O2 primitive : |c| < Ĉ, x | det(Mc)} �∆F ,ε |x|
εĈ

(
1 +

Ĉ

|x|1/2

)
.

Proof. We start by proving (8.6). Let (S−1)t = (si,j)1≤i,j≤n. For each i ≥ 1, let

xi = gcd(x, sn,1, ..., sn,i−1)/ gcd(x, sn,1, ..., sn,i).

Here, by convention, sn,0 = 1. Since det(S) ∈ F×q , each row and column of S−1 should be primitive. Thus,
xn = gcd(x, sn,1, ..., sn,n−1). If x | sn,1v1 + ... + sn,nvn, then note that we must have xn | vn. For a fixed
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choice of such vn, if (v1, ..., vn−1, vn) and (v′1, ..., v
′
n−1, vn) both satisfy x | ((S−1)tv)n, then we must have

x |
∑n−1

i=1 sn,i(vi − v′i). This forces that xn−1 | vn−1 − v′n−1. Continuing inductively, for a fixed choice of

vj , ..., vn, if two vectors (v1, ..., vn) and (v′1, ..., v
′
j−1, vj , ..., vn) are both solutions of x | ((S−1)tv)n, then this

must imply xj−1 | vj−1 − v′j−1. Thus, the quantity in (8.6) is �
∏n
i=1(1 + V̂ /|xi|). This is clearly enough

to obtain

(8.8) #{|v| ≤ V̂ : x | ((S−1)tv)n} � (V̂ )n−1

(
1 +

V̂

|x|

)
,

since |x| = |x1...xn|.

The second bound in (8.6) is obtained by realising this as a counting problem modulo primes. Let V1

be the variety defined by sn,1v1 + ...+ sn,nvn = 0, of affine dimension n− 1 and let V2 denote the complete
intersection of sn,1v1 + ...+ sn,nvn = Q∗c(v′) = 0, an variety of affine dimension n− 2 modulo any prime $

which is not a bad prime. We may clearly bound the left hand side in (8.6) by

#{|v| ≤ V̂ : (v mod $) ∈ V1,∀ $ | x, (v mod $) ∈ V2,∀ $ | y}.
The second bound on the right hand side of (8.6) is then an easy consequence of [5, Lemma 4], which holds
in the function field setting analogously, since it only uses bounds for number of points on varieties over
finite fields.

We now focus on obtaining (8.7). For any decomposition x = x1x2, where gcd(x1, x2) = 1, let

Cx = {|c| < Ĉ : gcd(x1, c1) = gcd(x2, c2) = 1}.
From now on we fix a decomposition x = x1x2 as above, we will establish the bound

#{c ∈ Cx, x | det(Mc)} � (log |x|)n−1Ĉ

(
1 +

Ĉ

max{|x1|, |x2|}

)
.

This bound will clearly suffice for us. Without loss of generality, let us assume that |x2| ≤ |x1|. For a fixed
value of c1, we will bound

#{|c2| < Ĉ : x1 | g(c1c2)},
where g(T ) = det(−TM1 +M2), a polynomial of degree at most n. Here, c1 denotes a multiplicative inverse
of c1 modulo x1. If $ | x1 is not a bad prime, then we know that $ does not divide the discriminant of the
polynomial g(T ), and therefore g(T ) does not have multiple roots modulo $. Thus the number of roots of
g(T ) modulo $ is at most n and each root is necessarily simple. Hensel’s lemma then implies that there
are at most n roots of g(T ) modulo $k for any k and that each root is simple. On the other hand, if $ is
a bad prime, then $ is bounded. Moreover, we know that

g(T ) =

n−1∏
i=1

(T − γi),

where γi are distinct elements of K$. Let γ1, ..., γi ∈ O$ and γi+1, ..., γn−1 /∈ O$. Since O$ is compact,
clearly supT∈O$ |

∏n−1
j=i+1(T − γj)|$ � 1, (since we can’t have a sequence of elements of O$ converging to

γj for any i < j). Thus, |g(T )|$ �
∏i
j=1 |T − γj |$. Moreover, γ1, ..., γi are all distinct elements of O$

and therefore are sufficiently separated from one another. Thus, $k | g(T ) must necessarily imply that
T ≡ γj mod $k−k0 for some k0 �$ 1 and 1 ≤ j ≤ i. We have thus proved that for any $k||x1, the equation

$k | g(c1c2) must imply that c1c2 mod $k−k($) has at most n distinct choices. Here, k($) = 0 if $ is

not bad, and k($) �$ 1 when $ is bad. Thus, c1c2 mod x1 has at most O(nlog(|x|)/ log log(|x|)) = Oε(|x|ε)
different choices modulo x1. This leads to (8.7). �
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8.1.1. Final optimisation for good c’s. We are now set to establish the contribution of all good c’s to E1.
Let us give an overview of how the optimisation process will work. Note that, for a fixed d, the number of

r4 = O(R̂4
1/5

) and for a fixed c, there are only O(|P |ε) choices for r3. We may trivially bound (8.5) by

(8.9) |P |ε ̂2C + 2DR̂1
n/2+3/2

R̂4
1/5
D̂−1/2.

This bound is only enough to obtain n ≥ 11 unfortunately.

Let us get back to (8.5). A critical case for us is when Y � Q,D +C � Q/2. In this case, V � Q/4. In

the worst case, |x1x2|1/2 � Q̂1/2. When C and |x1| are large, we may simultaneously save from the sum
over c by utilising the condition x1 | det(Mc) in conjunction with the linear constraint x1x2 | ((S−1)tv)n
by applying (8.7) and (8.8) respectively. When C is relatively large, but x1 is small, we need to resort to
the second bound in (8.6). Note that x2 is free of any fifth power, so the factor

∏
$|x2

$ is of size at least

|x2|1/4, making the second bound in (8.6) powerful here. When C is very small, the saving by the factor

D̂1/2 � Q̂/4 appearing on the right hand side of (8.9) and the saving of size V̂ from the linear constraint
x1x2 | ((S−1)tv)n together are enough. Lastly, when f∗(v) = � and F ∗(v) 6= 0, we may employ our
counting estimates in Lemmas 3.7 and 3.8, the former being more useful when C is small.

Let us start with bounding E1,1. We first apply the estimate (8.6) to the inner sum over v in (8.5), along

with the observation that x2 appearing there is free of any fifth power and therefore |
∏
$|x2

$| ≤ |x2|1/4
to obtain

#{|v| ≤ V̂ : x1x2 | ((S−1)tv)n, x2 | Q∗c(v′)} � min{V̂ n−1 + V̂ n/|x1x2|, V̂ n−2 + V̂ n/|x2|1/2}

≤ V̂ n−2 + V̂ n/|x1x2|1/2 + min{V̂ n−1, V̂ n/|x2|1/2} = V̂ n−2 + V̂ n/|x1x2|1/2 + V̂ n/|x2|1/2 min{1, |x2|1/2/V̂ }.

Note that in principle, these bounds only work when V ≥ 0. However, since we are summing over v 6= 0,
we may assume their validity for all V ∈ R. Next, we apply (8.7) to obtain

#{|c| = Ĉ : x1 | det(Mc)} � |x1|εĈ(1 + Ĉ/|x1|1/2).(8.10)

Applying these bounds to (8.5), and as before noting that for a fixed c there are only O(|P |ε) choices for

r3, and for a fixed d, only O(R̂4
1/5

) choices for R4, we get∑
v∈On

F∗(v)6=0

|v|�V̂

∑
d=d

f∗(v)6=�
c good

|Sdc,r1,b1,N1(v)|

� R̂1
n/2+1+ε

D̂
∑
d

∑
r4

∑
x1|(r4/d)

∑
c

δx1|det(Mc)

∑
r3

∑
x2|r3

|x1x2|1/2×(
V̂ n/|x1x2|1/2 + V̂ n−2 + V̂ n|x2|−1/2 min{1, |x2|1/2/V̂ }

)
(8.11)

� R̂1
n/2+1+ε

R̂4
1/5 ̂2D + 2CV̂ n + R̂1

n/2+1+ε
R̂4

1/5 ̂2D + 2C(R̂1/D̂)1/2V̂ n−2(8.12)

+ R̂1
n/2+1+ε

R̂4
1/5 ̂2D + C(R̂1/D̂)1/2V̂ n−1.(8.13)

The bounds in (8.12) are obtained from the first two terms in (8.11). It is not important to save from the
sum over c in these bounds. Therefore, we will sum over c trivially here. While dealing with the third
term in (8.11), we substitute our bound (8.10). The second term in (8.10) hands us back the first bound
in (8.12) and the remaining term in (8.10) hands us (8.13).
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We are finally ready to analyse the term E1
1,1. Inserting the bounds in (8.12) and (8.13) to (8.2) we get

E1
1,1 � |P |n+εŶ 6/5−n/2(1 + |P |2Ẑ)−n/2+5/4−1/10Ẑ min(Ẑ, |P |−2)

̂2D + C
(
ĈV̂ n + Ĉ(R̂1/D̂)1/2V̂ n−2 + V̂ n + (R̂1/D̂)1/2V̂ n−1

)
.

(8.14)

We will bound the different terms on the right hand side of (8.14) separately. Let us start with the term

ĈV̂ n. This term corresponds to obtaining perfect square root cancellations. Clearly, this term is at its
maximum when C +D = Y/2. The total contribution is then

� |P |n+εŶ 11/5−n/2(1 + |P |2Ẑ)−n/2+5/4−1/10Ẑ min(Ẑ, |P |−2)V̂ n

� |P |εŶ 11/5+n/2(1 + |P |2Ẑ)n/2+5/4−1/10Ẑ min(Ẑ, |P |−2).

This expression is maximal when Ẑ = −̂Y |P |−2/3 = |P |−2(Q̂/Ŷ ) ≥ |P |−2. Thus, P 2Ẑ = |P |4/3/Ŷ = Q̂/Ŷ .
We thus have that this term is

� |P |εŶ 11/5+n/2(Q̂/Ŷ )n/2+5/4−1/10|P |−4Q̂/Ŷ � |P |εŶ 1/20|P |−4Q̂n/2+9/4−1/10

� |P |ε|P |−4Q̂n/2+9/4−1/20 = |P |n−4|P |−n/3+3−1/15+ε.

This is enough as long as n ≥ 9 and ε ≤ 1/30

We now move to the Ĉ(R̂1/D̂)1/2V̂ n−2 term. This term is maximal when Y = R1, C = Y/2 and D = 0.
Thus, the total contribution is

� |P |n+εŶ 27/10−n/2(1 + |P |2Ẑ)−n/2+5/4−1/10Ẑ min(Ẑ, |P |−2)V̂ n−2

� |P |2+εŶ 7/10+n/2(1 + |P |2Ẑ)n/2−17/20Ẑ min(Ẑ, |P |−2).

The maximum is again achieved when Ẑ = (Q̂/Ŷ )|P |−2 ≥ |P |−2. Thus, this contribution is

� |P |−2+εŶ n/2+7/10(Q̂/Ŷ )n/2+3/20 � |P |−2+εQ̂n/2+7/10 � |P |n−4|P |−n/3+44/15+ε,

which is enough when n ≥ 9 and ε ≤ 1/30.

Now we move on to the last term in (8.14). The maximum value is taken when R1 = Y,D = Y/2, C = 0.
Thus, this contribution is

� |P |n+εŶ 49/20−n/2(1 + |P |2Ẑ)−n/2+5/4−1/10Ẑ min(Ẑ, |P |−2)V̂ n−1

� |P |1+εŶ n/2+29/20(1 + |P |2Ẑ)n/2+3/20Ẑ min(Ẑ, |P |−2).

The maximum is again achieved when Ŷ = Q̂, Ẑ = ̂−Y −Q/2 = |P |−2(Q̂/Ŷ ). Thus, this contribution is

� |P |−3+εQ̂n/2+29/20 � |P |n−4|P |−n/3+44/15+ε � |P |n−4−1/15+ε,

for all n ≥ 9. We thus effectively bound all contributions for E1
1,1, as long as, n ≥ 9 and ε ≤ 1/30.

We now consider the term E2
1,1 which corresponds to the validity of the conditions f∗(v) = � and

F ∗(v) 6= 0. As noted in Section 4, F ∗(v) is the discriminant of the polynomial f∗(v), seen as a polynomial
in c. Thus, this would imply that f∗(v) has distinct roots in P1

K
, and therefore, this polynomial is necessarily

square-free. We may now apply Lemma 3.8 to count the number of c’s for which f∗(v) = �. This bound
will be effective when C is large. Alternatively, for a fixed good c, f∗(v) is a smooth quadratic form and
therefore we may be able to bound the number of possible choices of v’s for which f∗(v) = �, using
Lemma 3.6. We summarize these bounds into:

#{|c| ≤ Ĉ, |v| ≤ V̂ : c primitive, f∗(v) = �} � V̂ + C
ε

min{V̂ nĈ, Ĉ2V̂ n−1}.
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Recall that (8.2) hands us:

E2
1,1(d, Y, Z)�|P |

n+ε

Ŷ n
J(Z)−n/2+1B̂n/2+3/2Ẑ min{Ẑ, |P |−2}

∑
d=d

∑
v∈On

F∗(v)6=0

|v|�Ŷ |P |−1J(Z)
f∗(v)=�

|Sdc,r1,b1,N1(v)|.

In this case, the extra saving obtained from the condition f∗(v) = � will be enough. Using (6.16), we will

use a weaker bound |Sdc,r3r4,b1,N1(v)| � D̂1/2R̂3R4
n/2+3/2

to bound the sums modulo r3r4. This simplifies
our process and we order our sums the following way:

(8.15)
∑
d

∑
c,v

∑
r2,r3,r4

.

For a fixed value of d, c and v, there are at most O(|P |ε) different choices for r3 and r4. Moreover, our
bound (8.4) dealing with the exponential sums modulo r2 still holds. Thus,

E2
1,1 �

|P |n+ε

Ŷ n
(1 + |P |2Ẑ)−n/2+1Ŷ n/2+3/2Ẑ min{Ẑ, |P |−2Ẑ}ĈD̂3/2V̂ n−1 min{Ĉ, V̂ }

� |P |
n+ε

Ŷ n
(1 + |P |2Ẑ)−n/2+1Ŷ n/2+3/2Ẑ min{Ẑ, |P |−2Ẑ} ̂(C +D)

3/2
V̂ n−1/2

� |P |1/2+ε(1 + |P |2Ẑ)n/2+1/2Ŷ n/2+1Ẑ min{Ẑ, |P |−2Ẑ} ̂(C +D)
3/2
.

Again, the maximum is achieved when Z = −Y −Q/2, and when C +D = Y/2. Thus, this contribution is

� |P |−3/2+εŶ n/2+7/4(Q̂/Ŷ )n/2+1/2 ̂−Y −Q/2.

After comparing the powers of Ŷ , the above expression is maximum, when Y = Q and therefore the
contribution is

� |P |−3/2+εQ̂n/2+1/4 � |P |−3/2+2n/3+1/3+ε � |P |n−4+ε−(2n−17)/6 � |P |n−4+ε−1/6,

as long as n ≥ 9 and ε ≤ 1/12.

Next, let us deal with the term E1,2. The main saving will be obtained here from a Serre type bound
[8, Lemma 2.9], which gives us:

#{|v| ≤ V̂ : F ∗(v) = 0} � V̂ n−3/2.

Our strategy will emulate closely that of bounding E2
1,1. We again use the decomposition r = br2r3r4 as

before and use the bound in (6.16) to bound the sums modulo r3r4, and use (8.4) to bound the averages
modulo r2. We also arrange the sums in a simplified way as in (8.15), to get:

E1,2(d, Y, Z)�|P |
n+ε

Ŷ n
(1 + |P |2Ẑ)−n/2+1Ŷ n/2+3/2Ĉ2D̂3/2Ẑ min{Ẑ, |P |−2}V̂ n−3/2

� |P |
n+ε

Ŷ n
(1 + |P |2Ẑ)−n/2+1Ŷ n/2+5/2Ẑ min{Ẑ, |P |−2}V̂ n−3/2

� |P |3/2+ε(1 + |P |2Ẑ)n/2−1/2Ŷ n/2+1Ẑ min{Ẑ, |P |−2}.

(8.16)

We may again assume Z = ̂−Y −Q/2 to get,

E1,2 � |P |−5/2+ε(Q̂/Ŷ )n/2+1/2Ŷ n/2+1 � |P |−5/2+εQ̂n/2+1 � |P |n−4|P |−n/3+17/6+ε � |P |n−4|P |−1/6+ε,

as long as n ≥ 9 and ε ≤ 1/12.
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8.2. Good c contribution: n even case. We will obtain a bound for the contribution to E1 from the
good values of c, when 2 | n. Since we are only aiming for n ≥ 10 here, the analysis here is somewhat
simpler and we may recycle many of our estimates from the previous case. To establish n ≥ 10, we do not
need our refined estimate in Lemma 7.4, we will be content in using Lemma 7.1 instead. When n is even
and c is good, we will split the sum over v in E1 into two subsums:∑

v∈On
v 6=0

|v|�Ŷ |P |−1J(Z)

=
∑
v∈On

f∗(v)6=0

|v|�Ŷ |P |−1J(Z)

+
∑

v 6=0∈On

f∗(v)=0

|v|�Ŷ |P |−1J(Z)

.

We again call the corresponding contributions E1,1 and E1,2 respectively.

As always, we write r = br1, where b denotes the square-free part of r which is co-prime to f∗(v)dDF

if c is good and co-prime to Q∗c(v)dDF if c is bad. Analogous to (8.2), we apply Lemma 7.1 to (7.3) to
obtain b1, N1 such that

(8.17) E1,1(dc, Y, Z)� |P |
n+ε

Ŷ n
B̂n/2+1

∑
v∈On

f∗(v)6=0

|v|�V̂

∑
r1∈O,d|r1
|r1|≤Ŷ
r1 monic

|Sdc,r1,b1,N1(v)|J(Z)−n/2+1Ẑ min{Ẑ, |P |−2}.

We use the same process as in the beginning of Section 8 and write r = br1 = br2r3r4, where r2, r3, r4

are chosen exactly as the analysis of E1,1 in the 2 - n case, and introduce dyadic averages following the
notation in (8.1) to get:

E1,1(d, Y, Z) :=
∑
d=d

c good

E1,1(dc, Y, Z)

� |P |
n+ε

Ŷ n
B̂n/2+1

∑
d=d

c good

∑
v∈On

f∗(v)6=0

|v|�V̂

|Sdc,r1,b1,N1(v)|J(Z)−n/2+1Ẑ min{Ẑ, |P |−2}.
(8.18)

Note that our bounds in (8.3) for the exponential sums modulo r2, r3 and r4 still hold when 2 | n. Therefore,
this contribution is clearly less than our bounds for E1

1,1 when n ≥ 9 was odd (as compared with the

corresponding bound (8.5)). Therefore, our analysis in Section 8.1.1 still holds and is enough to establish
a suitable bound here. Note that the only auxiliary counting estimate which used the fact that n was odd
was in Lemma 3.8, which was used to bound the number of solutions of f∗(v) = �, which is not necessary
here, and was only used to bound E2

1,1 in Section 8.1.1.

In a similar vein, when f∗(v) = 0, [8, Lemma 2.9] gives us:

#{|v| ≤ V̂ : f∗(v) = 0} � V̂ n−3/2.

Thus, the contribution E1,2(d, Y, Z) can be bound using the same process as from the corresponding bound
when 2 - n. Namely, the analysis in (8.16) hands us a suitable bound for this contribution.

8.3. Bad c contribution. We now focus on the contribution of the bad values of c to E1. We will deal
with both odd and even values of n here. Throughout, let c denote an arbitrary, but fixed bad pair. We
know that |c| � 1. In this case, there are no type II primes, as these are already included in our list
of bad primes. However, an extra complication here arises due to the fact that when $ is a good prime
satisfying $ | Q∗c(v′), Lemma 6.4 hands us the bound |S$k(v)| � |$|k(n+3/2), which carries an extra factor

of size O(|$|1/2) as compared with the worst bound in Lemma 6.1. For a fixed v, this bound only affects
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$ | Q∗c(v′), which is a small set if c and v are treated to be fixed. However, this would hinder us from

obtaining any saving from the congruence condition $k | ((S−1)tv)n. Therefore, we will instead save more
from the sum over d. This will be facilitated by the bound in Lemma 6.5. To this end, we split the sum
E1(dc, Y, Z) into two subsums: ∑

v∈On
v 6=0

|v|�V̂

=
∑
v∈On

Q∗c (v)6=0,F∗(v)6=0

|v|�V̂

+
∑

v 6=0∈On

Q∗c (v)=0 or F∗(v)=0

|v|�V̂

.

We call the contribution from the first sum on the right hand side as E3 and from the second sum as E4.
When Q∗c(v) 6= 0 and F ∗(v) 6= 0, we write d = d1d2d3, where d1, d2, d3 are pairwise co-prime. Here d1d2

denote the square-free part of d further satisfying gcd(d1d2, DF ) = 1, gcd(d1, r/d1) = 1 and d2
2 | r. As a

consequence, we may use Lemma 6.5 to deal with the exponential sum Sd1,d1,0,1(v). If d2 is large, we save
from the fact that d2

2 | r, which reduces the number of permitted r’s (as opposed to just using the condition
d | r). d3 consists of square-full numbers and bad primes. Therefore, the total number of permitted d3 is

at most O(D̂3
1/2+ε

).

To this end, as always we first write r = br1, where b denotes the square-free part of r which is co-prime
to dDFQ

∗
c(v′). Next, we write r1 = d1r2r3, where gcd(r2, dDF ) = 1, r3 | (d2d3DF )∞. In other words, r2

consists of the part of r1 which is free of the bad primes and of the primes dividing d, r3 only consist of the

powers of primes diving d2d3DF . Thus, for any given d, there are only O(R̂3
ε
) choices for r3, and O(R̂2

1/2
)

choices for r2. We split our sum into analogous dyadic sums:

d = (|d1|, |d2|, |d3|, |r2|, |r3|) = d := (D̂1, D̂2, D̂3, R̂2, R̂3),

where as before, let |b| = B, B+D1 +R2 +R3 = Y,D = D1 +D2 +D3, 2D ≤ Y ≤ Q/2 +D. Since d2
2 | r3,

we must have B +R2 ≤ Y −D −D2 ≤ Q/2−D2. We begin by applying Lemma 7.1 to (7.3) to get:

E3(d, Y, Z)� |P |
n+ε

Ŷ n

∑
v∈On

F∗(v)Q∗1(v)6=0

|v|�Ŷ |P |−1J(Z)

∑
d=d

|Sdc,r1,b1,N1(v)|J(Z)−n/2+1B̂n/2+(3+δ2|n)/2 × Ẑ min{Ẑ, |P |−2}.

(8.19)

Here, the term δ2|n is 1 when n is even and 0 otherwise. Using the multiplicativity relation in Lemma 5.2,
we may write

Sdc,r1,b1,N1(v) = Sd1c,d1,0,1(v)Sr2(v)Sd2d3c,r3,b2,N2(v).

Lemmas 6.5 and 6.8 imply

|Sd1c,d1,0,1(v)| � D̂1
n/2+3/2

gcd(d1, Q
∗
c(v′)F ∗(v))1/2.

Lemma 6.4, in conjunction with an argument similar to (8.4) implies that for a fixed v satisfying Q∗c(v′) 6= 0,
we have ∑

r2

|Sr2(v)| � R̂2
n/2+1∑

r2

| gcd(r2, Q
∗
c(v′))|1/2 � R̂2

n/2+3/2+ε
.

Lastly, Lemma 6.8 gives us

|Sd2d3c,r3,b2,N2(v)| � D̂2D̂3R̂3
n/2+1

| gcd(r3/d2d3, ((S
−1)tv)n)|1/2.
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As before, for a fixed d, there are only O(R̂3
ε
) choices for r3. We evaluate the sums in the following order∑

d1,d2,d3

∑
r3

∑
v

∑
r2

.

Combining our bounds, we get:∑
d=d

|Sdc,r1,b1,N (v)| � D̂
∑

d1,d2,d3

∑
r3

∑
x1|r3/(d2d3)

∑
x2|d1

∑
v∈On

|v|≤V̂
x1|((S−1)tv)n
x2|Q∗c (v′)F∗(v)

|x1x2|1/2D̂1
n/2+1/2

R̂3
n/2+1

R̂2
n/2+3/2

.

We may use (8.8) to bound the number of permissible v’s satisfying x1 | ((S−1)tv)n and [5, Lemma 4] to
bound the number of v’s satisfying x2 | Q∗c(v′)F ∗(v), to obtain:∑
d=d

|Sdc,r1,b1,N (v)| � D̂R̂1
n/2+1

D̂1
−1/2

R̂2
1/2∑

d

∑
r3

∑
x1|r3/(d2d3)

∑
x2|d1

|x1x2|1/2V̂ n−1(1 + V̂ min{|x1|−1, |x|−1
2 })

� D̂R̂1
n/2+1

D̂1
−1/2

R̂2
1/2∑

d

∑
r3

∑
x1|r3/(d2d3)

∑
x2|d1

|x1x2|1/2V̂ n−1(1 + V̂ /|x1x2|1/2)

� D̂D̂1
1/2
D̂2D̂3

1/2
R̂1

n/2+1+ε
R̂2

1/2
V̂ n−1(R̂3

1/2
D̂1

1/2
/(D̂2D̂3)1/2 + V̂ ).

Feeding this bound back to (8.19), we get:

E3(d, Y, Z)� B̂
δ2|n

2
|P |n+ε

Ŷ n/2−1
D̂D̂1

1/2
D̂2D̂3

1/2
(B̂R̂2)1/2J(Z)−n/2+1V̂ n−1Ẑ min{Ẑ, |P |−2}×

(R̂3
1/2
D̂1

1/2
/(D̂2D̂3)1/2 + V̂ ).

Thus, when 2 - n, E3 can be bounded by

� (B̂R̂2)1/2 |P |n+ε

Ŷ n/2−1
D̂D̂1

1/2
D̂2D̂3

1/2
V̂ n−1((R̂3/(D̂2D̂3)1/2 + V̂ )(1 + |P |2Ẑ)−n/2+1 min{Ẑ, |P |−2}.(8.20)

After replacing V̂ = Ŷ |P |−1(1 + |P |2Ẑ), clearly, the contribution is maximum when Z = −Y −Q/2, which

we assume from now on. Let us first investigate the contribution coming from the term (R̂3/(D̂2D̂3))1/2

on the right hand side of (8.20). This contribution is

� |P |n+ε

Ŷ n/2−3/2
D̂3/2V̂ n−1(1 + |P |2Ẑ)−n/2+1|P |−2Ẑ � |P |−1+εŶ n/2+1/2+3/4(1 + |P |2Ẑ)n/2Ẑ

� |P |−1−2/3+εŶ n/2+1/4(Q̂/Ŷ )n/2 � |P |−5/3+εQ̂n/2+1/4 = |P |2n/3−4/3+ε = |P |n−4−(n−8)/3+ε.

(8.21)

This is admissible for n ≥ 9 and odd, as long as ε ≤ 1/16.

Now let us turn to the remaining contribution to E3. Here, we will use that B+R2 ≤ Y −D1−2D2−D3.
Thus, this contribution is

� (B̂ +R2)1/2 |P |n+ε

Ŷ n/2−1
D̂D̂1

1/2
D̂2D̂3

1/2
V̂ n(1 + |P |2Ẑ)−n/2+1|P |−2Ẑ

� |P |−2+εŶ n/2+3/2D̂(1 + |P |2Ẑ)n/2+1Ẑ � |P |−2+εŶ n/2+2(1 + |P |2Ẑ)n/2+1Ẑ.

(8.22)

We may again assume that Z = −Y −Q/2 to obtain that this is

� |P |−8/3+εŶ n/2+1(Q̂/Ŷ )n/2+1 � |P |−8/3+εQ̂n/2+1 = |P |2n/3−4/3+ε,

which is clearly enough from our previous calculation.
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When 2 | n, the bound in (8.20) gets multiplied with an extra factor of size O(B̂1/2). Here, we will

use a weaker bound B̂ ≤ Ŷ /D̂ and combine it with our above bounds. Note that in the extreme case

when D = Y/2, B̂1/2 factor amounts to the introduction of an extra factor of size O(Ŷ 1/4) in the final
computation. In particular, when 2 | n, the bound corresponding to (8.21) is given by

� |P |n+ε

Ŷ n/2−2
D̂V̂ n−1(1 + |P |2Ẑ)−n/2+1|P |−2Ẑ � |P |−5/3+εŶ n/2+1/2(Q̂/Ŷ )n/2 � |P |n−4+ε−(n−9)/3,

which is admissible as long as n ≥ 10 and ε ≤ 1/6.

Similarly, when 2 | n, the contribution corresponding to (8.22) to E3 is bounded by:

� |P |−2+εŶ n/2+2D̂1/2(1 + |P |2Ẑ)n/2+1Ẑ � |P |−8/3+εQ̂n/2+5/4 � |P |n−4+ε−(n−9)/3,

again enough when n ≥ 10 and ε ≤ 1/6.

We now turn to the term E4. When either F ∗(v) = 0 or Q∗c(v) = 0, we gain from the sparseness of

such v’s. We write r1 = r2r3, where gcd(r2, dDF ) = 1 and r3 | (dDF )∞. We split our sum into the dyadic
sums:

d = (|d|, |r2|, |r3|) = d := (D̂, R̂2, R̂3).

Here, D ≤ Y/2, Y = B+R2 +R3. In this case, we will use the following softer bound coming from Lemma
6.7:

|Sdc,r1,b1,N1(v)| � |d|1/2|r1|n/2+3/2.

Thus, following the recipe before,

E4(d, Y, Z)� B̂
δ2|n

2
|P |n+ε

Ŷ n
V̂ n−3/2D̂3/2Ŷ n/2+3/2J(Z)−n/2+1Ẑ min{Ẑ, |P |−2}.

Again, when 2 | n, an extra factor of B̂1/2 arises due to our worse bounds in Lemma 7.1. When 2 - n, this
contribution is clearly sufficient from our bounds for E1,2, cf. (8.16), as long as ε ≤ 1/12. Similarly, when

2 | n, the extra factor of size B̂1/2 ultimately, adds a factor of size Q̂1/4 to our worst case scenario, i.e.
when D = Y/2 = Q/2. Therefore, following similar steps as in our bounds for E3, this can be shown to be
satisfactory as long as n ≥ 10 and ε ≤ 1/12.

8.4. Bounding E2. Finally, we turn to the term E2. Note that the bounds for E2 are superseded by

those for E1 as long as V̂ = Ŷ
|P |J(Z) ≥ 1. Thus, we only need consider bounding E2 when both conditions

Q̂∆ ≤ Ŷ ≤ |P | and Ẑ ≤ (|P |Ŷ )−1 are satisfied. Here, we may use the bound in (5.21) to get:

(8.23) |rN |−n
∑

|dc|≤Ŷ 1/2

∑
|r|=Ŷ
d|r

|Sdc,r,b,N (0)| � Ŷ (7−n)/2.

Thus,

E2(Y, P, Z) := |P |n+ε
∑
|r|=Ŷ
r monic

∑
d|r monic, c primitive

̂Y−Q/2≤|dc|≤Ŷ/2
|dc2|<Ŷ/2

|rN |−n
∫
|z|=Ẑ

Sdc,r,b,N (0)IrN (z; 0)dz

� |P |n+εŶ −(n−7)/2J(Z)−n/2+1Ẑ min{Ẑ, |P |−2}

� |P |n−2+εŶ −(n−7)/2(1 + |P |2Ẑ)−1Ẑ � |P |n−4+εŶ −(n−7)/2

� |P |n−4+ε−∆/2.
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as long as n ≥ 8 and ε ≤ ∆/4.
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