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Abstract

The primary focus of this thesis is using dynamical ideas to rapidly compute L-

functions. The main results can be summarized as:

Rapid algorithm in the T -aspect. Let Γ be a lattice of SL(2,R) and let f be a

holomorphic or Maass cusp form on Γ\H. We use the slow divergence of the

horocycle flow in Γ\SL(2,R) to get an algorithm to compute L(f, 1/2+ iT ) up to a

maximum error O(T−γ) using O(T 7/8+η) operations. Here γ and η are any positive

numbers and the constants in O are independent of T . We hence improve the

current approximate functional equation based algorithms which have complexity

O(T 1+η).

Rapid algorithm in the q- aspect. Let Γ = SL(2,Z), f a modular cusp form on

Γ\H and χq be a Dirichlet character on Z/qZ. Let q = MN . Here M = M1,M2

such that M1|N and (M2, N) = 1, where q,M,N,M1,M2 are integers. We use the

dynamics of the Hecke orbits to get an algorithm to compute L(f × χq, 1/2) up

to any given error O(q−γ) using O(M5 + N) operations. In the case when q has

a factor less than q1/5, we improve current approximate functional equation based

algorithms which need O(q) time complexity. Our algorithm is most effective when

q has a suitable factor of size q1/6.
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Chapter 1

Introduction

The primary focus of this thesis is finding rapid algorithms for L-value compu-

tations. We consider the problem of computing fast algorithms to compute L-

functions in T and q aspect separately in sections 5 and 6 respectively.

In particular, in section 5, we consider the problem of finding a fast algorithm

to compute the L-function of a (holomorphic or Maass) cusp form at 1/2 + iT .

We get an efficient algorithm which has time complexity O(T 7/8+o(1)). We thus

improve the current “approximate functional equation” based algorithms which

require O(T 1+o(1)) complexity. In section 6, we consider the problem of computing

L(s, f × χq), where f is a modular (holomorphic or Maass) cusp form, χq is a

Dirichlet character on Z with conductor q and s is any fixed point in H. We

consider the case where q = MN . Let M = M1M2 where M1|N and (M2, N) = 1.

In this case we get a O((M5 + N)1+o(1)) complexity algorithm. When q has a

factor of size ≤ q1/5, we thus improve the corresponding “approximate functional

equation” based algorithms which require O(q1+o(1)) time complexity.

Let us start by briefly discussing the model of computation used throughout the
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paper. In practice, completely specifying a real number requires an infinite amount

of data. For simplicity however, we will use the real number (infinite precision)

model of computation that uses real numbers with error free arithmetic having

cost as unit cost per arithmetic operation. Our algorithms also work if we work

with numbers specified by O(log T ) bits (O(log q) bits). We will discuss about

the floating point error analysis for our algorithms if we use numbers specified by

O(log T ) (or O(log q)) bits briefly in 7.4.

Specifying Γ and f requires (a priori) an infinite amount of data. Specifying

χq (a priori) requires O(q) amount of data. Throughout the thesis, we will assume

that given any point x in H (or any point y in SL(2,R)) and any γ, T > 0 , we

can compute any derivative of f at x (or rather any “derivative” of a “lift” f̃ of

f defined in (1.1.4)) up to an error of O(T−γ) in unit time. We also assume that

given any 0 ≤ n ≤ q − 1, we can compute χq(n) in unit time. The feasibility

of these assumptions and what we exactly mean when we say ‘given f , co-finite

volume subgroup Γ of SL(2,R) and a Dirichlet character χq’ will be discussed in

section 7.4. We now turn to a more detailed description of contents in this thesis.

1.1 Contents of the thesis

The main focus of this thesis is to use dynamical properties of certain flows on

homogeneous spaces to get the desired rapid algorithms.

1.1.1 Background and existing methods

The idea behind “computing” values for the zeta function effectively goes as far

back as Riemann. Riemann used an “approximate functional equation” (also called
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the Riemann Siegel formula) to compute values of the zeta function. The Rie-

mann Siegel formula, writes ζ(s) as the sum of a finite Dirichlet series and some

small error term. More explicitly, let s = 1/2+ iT ∈ C, a =
√

T/2π and M = ⌊a⌋

, the Riemann Siegel formula is given by

ζ(s) =
M
∑

1

1

ns
+

πs−1/2Γ((1− s)/2)

Γ(s/2)

M
∑

1

1

n1−s
+R(s). (1.1.1)

The error was originally bounded by Riemann using the saddle point method.

Gabcke in [4] gave better bounds for RM(s). More explicitly for any positive

integer m,

R(s) =
(−1)M+1

a
1
2

m
∑

r=0

Cr(a)

ar
+Rm(s). (1.1.2)

Here, Cr are computable constants and Rm(s) = O(T−(2m+3)/4). This gives us

a O(
√
T ) complexity algorithm to compute the zeta function at 1/2 + iT . Most

existing algorithms for computing the zeta function start with the approximate

functional equation and try to compute the Dirichlet series faster than O(
√
T ).

In general, let L(f, s) be a GL(2) L-function with Dirichlet series L(f, s) =
∑∞

1
b(n)
ns . The corresponding approximate functional equation is given by

L(f, s) =
M
∑

1

b(n)

ns
f1(s, n) +

M
∑

1

b(n)

n1−s
f2(1− s, n) +RM(s). (1.1.3)

We refer the readers to [12, section 3] for more details about (1.1.3). Effective

bounds are known for the error term RM(s) in (1.1.3). Using this we get an

algorithm to compute L(f, s) with time complexity O(T 1+o(1)).

We discuss these and other methods for computing the L-values in the section

2.
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1.1.2 Rapid algorithm in the T -aspect

Let Γ be a lattice of SL(2,Z). Let f be a weight k (holomorphic or Maass) modular

cusp form on Γ\H and let s = 1/2 + iT . We deal with the problem of computing

the corresponding L-function L(f, s) on the critical line up to any given precision.

The main theorem can be given as:

Theorem 1.1. Given a holomorphic or Maass cusp form for a congruence sub-

group of SL2(Z), and positive reals γ, η, T , we can compute L(1/2+ iT, f) up to an

error of O(T−γ) in time O(T
7
8
+η) using numbers of O(log T ) bits. The constants

involved in O( ) terms are polynomials in γ
η
and are independent of T .

We use an integral representation of L(f, s) to convert the problem of comput-

ing L- values to the problem of computing an integral of f̃ on an “approximate

horocycle”. Here, a lift f̃ : Γ\SL(2,R)→ C is defined by

f̃(







a b

c d






) = (ci+ d)−kf(

ai+ b

ci+ d
). (1.1.4)

In particular, in the case of holomorphic cusp forms, we use:

∫ ∞

0

f((−1 + i/T )t)ts−1dt = (2π)−sΓ(s)(i+ 1/T )−sL(f, s− (k − 1)/2). (1.1.5)

The factor (i + 1/T )−s takes care of the exponential decay of Γ(s) in (1.1.5).

We use the “lift” f̃ of f and the exponential decay of f at the cusps to write this

integral as an integral of f̃ over an approximate horocycle of hyperbolic length

≈γ T in Γ\SL(2,R) up to any given error O(T−γ).

We then write the integral over the approximate horocycle as a sum of integrals

4



0x-axis

(−1 + i/T )t

Figure 1.1: The approximate horocycle reduced to a fundamental domain.

over smaller segments of equal length M . We sort the starting points of the

segments into groups S1, S2, ... such that the points in each group are very close

to each other. We will give the “sorting” algorithm in detail in subsection 7.2.

The key point is that we can compute all the integrals over all the segments with

starting points in Si “in parallel”.

To accomplish this, we use the critical fact: if two points x1, x2 in

Γ\SL(2,R) are “sufficiently close” to one other, then the images x1(t), x2(t) of

these points under the time t horocycle flow stay very close to each other “for a

long time.” The “approximate” horocycles also have a similar property. We quan-

tify these in propositions 5.1.2 and 5.2.2 later. This is a very special property of

the horocycle flow. For example, the geodesic flow does not satisfy such a property.

We return to the description of how to compute the integrals over various
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x1

x2

x1(t)

ξ1

ξ2
x2(t)

Figure 1.2: The horocycles starting at two “close” points x1 and x2 in two close
directions ξ1 and ξ2 respectively.

segments “in parallel.” Consider S1, for instance. Let I be the segment with

starting point v1, and let J be any other segment with starting point in S1. Let

F (J) denote the value of the integral over segment J . We use proposition 5.2.2 to

compute f̃ at each point in J using a power series expansion around a corresponding

point in I. In the case of L-value computations, this converts F (J) into sum:

F (J) =
∑

i,j

aij(J)

∫

I

tifij(t)g(t)dt. (1.1.6)

Here, fij(t) are smooth functions independent of J . g is a smooth function indepen-

dent of I and J . aij are precomputable constants depending on J . We can compute

each integral on right hand side of (1.1.6) using O(M1+o(1)) operations. Therefore,

by precomputing certain constants, we are able to compute all the J-integrals in

at most a further O(|S1|) time.

6



This grouping leads to a speed-up by a factor that is roughly the size of the

groups |Si|. In practice, we cannot make these groups very large, because the

amount of time for which the points x1(t) and x2(t) stay “very close” to each other

depends on how close the points x1 and x2 were. Hence, if we try to make the

groups “too large”, the “admissible” length of the segments decreases, resulting in

an increase in the number of segments. This increases the running time.

Upon implementation, this algorithm will allow us to compute the L value for

the “high” points on the critical line much faster than the existing methods for

a large family of L functions. Thus , it can be extremely useful in numerically

checking the GRH, subconvexity bounds, moment conjectures et al. for a large

class of L- functions.

1.1.3 Rapid algorithm in the q-aspect

Let Γ = SL(2,Z) and f be a (holomorphic or Maass) cusp form of weight k on Γ\H.

Let χq be a Dirichlet character of conductor q. We will assume that q has “large”

factors. In particular, we assume that q = MN , where M ≤ N , M = M1M2 such

that M1|N and (M2, N) = 1. Notice that given any decomposition of q = M ′N ′,

we can write q = MN for some M ≤
√
M ′ which satisfies our hypothesis. 1

We deal with the problem of computing L(1/2, f×χq) up to any given precision

with fewer than O(q) arithmetic operations. Our main result can be summarized

into

Theorem 1.2. Let q,M,N be positive integers such that q = MN , where M ≤ N ,

M = M1M2 such that M1|N and (M2, N) = 1. Let f be a modular (holomorphic

1
e.g. if q = M ′N ′ such that M ′ = p2 and N ′ = pN1, for some prime p and (p,N1) = 1. Then

we will choose M = p and N = p2N ′. Clearly this choice of M and N satisfies our hypothesis.
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or Maass) form on Γ\H, s ∈ H and χq a character on Z/qZ. Let γ, η be any

positive reals. Let

E = min{max{M5, N}, q}.

Then we can compute L(s, f × χq) up to an error of O(q−γ) in time O(E1+7η).

The constants involved in O are polynomial in γ/η.

Notice that our method gives us a positive time saving if q has a factor less

than q1/5. The maximum saving of size O(q1/6) can be obtained if q has a suitable

factor of size ≈ q1/6.

Let

T (M) = {(m, k) : m|M, 0 ≤ k < M/m}

and

A(M,m, k) =
1

M1/2







m k

0 M/m






.

The left action of {ΓA(M,m, k)|(m, k) ∈ T (M)} on SL(2,R) corresponds to the

M th Hecke orbits in Γ\SL(2,R). We refer the readers to the section 2 and section

8.5 for more details about the Hecke orbits.

We use an integral representation of L(f × χq, s) to convert the problem of

computing L(f × χq, s) into the problem of computing

S =

q−1
∑

k=0

χ(k)g(A(q, 1, k)x0)

for a small number (for approximately O(qo(1))) of values of x0 in SL(2,R) and for

a real analytic function g on Γ\SL(2,R) with bounded derivatives. We next use

8



   

0 1

i

x-axis

A(4, 1, 0)iA(4, 1, 1)iA(4, 1, 2)iA(4, 1, 3)i

v1 = A(2, 1, 0)i v2 = A(2, 1, 1)i

Notice that

Action of A(2, 1, 0)

Action of A(2, 1, 1)

A(4, 1, 0)i = A(2, 1, 0)v1

A(4, 1, 1)i = A(2, 1, 0)v2

A(4, 1, 2)i = A(2, 1, 1)v1
A(4, 1, 3)i = A(2, 1, 1)v2

Figure 1.3: Let q = 4 = 2 × 2. The points {A(4, 1, k)i} reduced to H and decom-
posed into union of 2 “arithmetic progressions” of size 2 each. Each “arithmetic
progression” comes from the 2th Hecke orbit of points v1 and v2. The points v1 and
v2 themselves come from to the 2th Hecke orbit of i.

the fact that A(q, 1, j + kN) = A(M, 1, k)A(N, 1, j)) to rewrite S as

S =
N−1
∑

j=0

Sj. (1.1.7)

Here, Sj is defined as

Sj =
M−1
∑

k=0

χq(j + kN)g(A(M, 1, k)vj). (1.1.8)

Here

vj = A(N, 1, j)x0.

Let us further assume that (M,N) = 1. This implies that χq = χMχN , χM and

9



χN are characters modulo M and N respectively. Using this, we get

Sj = χN(j)
M−1
∑

k=0

χM(j + kN)g(A(M, 1, k)vj).

Notice that Sj can be rewritten as

Sj = χN(j)
M−1
∑

k=0

hj((1, k))g(A(M, 1, k)vj);

where hj((1, k)) = χM(j + kN). Notice that hj is defined on a subset of T (M).

Let us extend hj to the whole T (M) by defining hj((m, k)) = 0 if m 6= 1. Hence

we rewrite Sj as

Sj = χN(j)
∑

(m,k)∈T (M)

hj(m, k)g(A(M, 1, k)vj). (1.1.9)

Notice that hj = hj′ , if j ≡ j1 mod M . Hence there are only M distinct such

functions on the Hecke orbit T (M).

We next use the following fact: If two points x1 and x2 in Γ\SL(2,R) are

sufficiently close to one another, then their corresponding elements in the Hecke

orbit stay “close” to each other . This allows us to look at the points vj. We then

reduce points {vj} to the points {xj} in an approximate fundamental domain and

“sort” them in the sets Ki’s and choose a representative xni
from each Ki as in

the previous section.

For every j, let γj ∈ SL(2,Z) be such that γjxj = vj. We rewrite (1.1.9) as

Sj = χN(j)
∑

(m,k)∈T (M)

hj((m, k))g(A(M, 1, k)γjxj). (1.1.10)

10



A(N, 1, 0)x

A(N, 1, 0)y

A(N, 1, 1)x

A(N, 1, 1)y

A(N, 1, 2)x

A(N, 1, 2)y

A(N, 1, N − 1)x

A(N, 1, N − 1)y

x
y

0

A(N,N, 0)x

A(N,N, 0)y

Figure 1.4: N th Hecke orbits of two “close” points x and y, when N is prime. The
Hecke orbits has 2 “layers”. For a composite N , the number of such “layers” will
correspond to the divisor function of N .

We will use the fact that the right action of the matrices in SL(2,Z) permutes the

Hecke orbits. In other words, there exists a permutation σγj of T (M) such that

for every (m, k) ∈ T (M),

ΓA(M,m, k)γj = ΓA(M,σj((m, k))).

11



Using this we rewrite (1.1.10) as:

Sj = χN(j)
∑

(m,k)∈T (M)

hj(σγj((m, k)))g(A(M, 1, k)xj). (1.1.11)

We use the fact that the cardinality of T (M) is ≪M1+η. The number of distinct

permutations of T (M) due to the right action of different elements of SL(2,Z)

is at most M3 (proved in section 8.5). We use this crucial fact to get that the

number of distinct functions in the set {hj ◦ σj|j = 0, .., N − 1} is at most M4.

We list all these distinct functions as {r1, r2, ..., rL}. Here L ≤ M4 and for every

0 ≤ j ≤ N − 1, there exists an integer 1 ≤ kj ≤ L such that hj ◦ σj = rkj .

We use this result and the fact that the corresponding points in the Hecke

orbits of the nearby points stay close, to compute the sums over Hecke orbits of

the points in each group “in parallel”. This speeds up our computation by a factor

depending on M . The maximum saving can be obtained when q = MN where

M ≈ q1/6.

This gives us an algorithm in the case when q = MN, (M,N) = 1. We can

deal with the general case similarly.

1.2 Model of computation

In practice, specifying a real number completely requires an infinite amount of

data. Hence as mentioned before, for simplicity, we will use the real number

(infinite precision) model of computation that uses real numbers with error free

arithmetic having cost as unit cost per operation. An operation here means ad-

dition, subtraction, divison, multiplication, evaluation of logarithm (of a complex

12



number z such that | arg(z)| < π) and exponential of complex numbers.

In reality however, one can not work with the real number model. Compu-

tationally, a real number can be specified only by a finite string of digits and a

bounded exponent. Hence there are only a very small finite set of rationals that

can be exactly represented by such representation. One has to check that the total

floating point error in the algorithm does not get too large if we work with finitely

represented numbers. The time needed in each arithmetic operations also depends

on the size of numbers we are using. For instance, if one is working with numbers

specified by 10 digits then adding or subtracting these numbers will approximately

need 10 units of time. This adds to the complexity of the algorithm.

Our algorithms will also work if we work with numbers specified by O(log T )

bits (O(log q) bits, for algorithm in chapter 6). This will at most add a power of

log T (or log q) in the time complexity of the algorithm. We will discuss about

the floating point error analysis for our algorithms if we use numbers specified by

O(log T ) (or log q) bits briefly in 7.4.

We refer the readers to [16, Chapter 8] and [17] for more details about the real

number model of computation.

1.3 Outline of the thesis

A brief account of the notations used in this Thesis is given in chapter 2. We

will give a short description of the Schönhage and Odlyzko algorithm for rapid

multiple evaluations of ζ(s) in chapter 3. Our algorithms use a type of “geometric

approximate functional equations”. They are discussed in detail in chapter 4. In

chapters 5 and 6, we will give the proofs of theorems 1.1 and 1.2 respectively. In
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sections 8.3 and 8.5, we will prove the exact statements quantifying the “special

properties” of the horocycle flow and Hecke orbits. We will give a “sorting” and

“reduction” algorithm in chapter 7. In chapter 7, we will also discuss some com-

putational issues regarding the implementation of the algorithms. Issues regarding

integral representations for L- functions corresponding to Maass cusp forms will

be addressed in section 8.1.
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Chapter 2

Notation

2.1 General notation

Throughout, let Γ be a lattice in SL(2,Z), unless specified otherwise. 1

Throughout, let T be a positive real 2 and q be a positive integer. We will

denote the set of non negative integers by Z+ and the set of non-negative real

numbers by R+.

We will use the symbol ≪ as is standard in analytic number theory: namely,

A ≪ B means that there exists a constant c such that A ≤ cB. These constants

will always be independent of the choise of T and q.

We will use the following special matrices in SL(2,R) throughout the thesis:

n(t) =







1 t

0 1






, a(y) =







ey/2 0

0 e−y/2






, K(θ) =







cos θ sin θ

− sin θ cos θ






. (2.1.1)

1In section 6 however, Γ = SL(2,Z). In the proof theorem 5.1, Γ will denote a lattice in
SL(2,R).

2In section 5.1, however T will be a positive integer
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e(x) will be used to denote exp(2πix).

Given a cusp (Maass or holomorphic) form of weight k on Γ\H, 3 we will define

a lift f̃ of f to Γ\SL(2,R) by f̃ : Γ\SL(2,R)→ C such that

f̃(







a b

c d






) = (ci+ d)−kf(

ai+ b

ci+ d
). (2.1.2)

SL(2,R) acts as fractional linear transformation on H. Hence for X =







a b

c d







and z ∈ H, the notation Xz will be used to denote az+b
cz+d

.

Let x be any element of SL(2,R). We will frequently abuse the notaition to

treat x as an element of Γ\SL(2,R). i.e. we will often denote Γx simply by x.

2.2 Real analytic functions on Γ\SL(2,R)

Let x be an element of SL(2,R), let f be a function on Γ\SL(2,R), a priori f(x)

does not make sense but throughout we abuse the notation to define

f(x) = f(Γx).

i.e. f(x) simply denotes the value of f at the coset corresponding to x. Using the

same notation, we will treat f as a function on SL(2,R), satisfying f(γz) = f(z)

for all γ ∈ Γ.

3The weight corresponding to a Maass form will be 0.
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Let φ is a bijection (Iwasawa decomposition) given by

φ : (t, y, θ) ∈ R× R× (−π, π]→ n(t)a(y)K(θ).

Let

Definition 2.2.1. Given ǫ > 0, set Uǫ = ((−ǫ, ǫ) × (−ǫ, ǫ) × (−ǫ, ǫ)) and Uǫ =

φ(Uǫ) ⊂ SL(2,R).

Let us define the following notion of “derivatives” for smooth functions on

Γ\SL(2,R):

Definition 2.2.2. Let f be a function on SL(2,R) and x any point in SL(2,R).

We define (wherever R.H.S. makes sense)

∂

∂x1

f(x) =
∂

∂t
|t=0 f(xn(t));

∂

∂x2

f(x) =
∂

∂t
|t=0 f(xa(t));

∂

∂x3

f(x) =
∂

∂t
|t=0 f(xK(t)).

Sometimes, we will also use ∂i to denote ∂
∂xi

.

Given β = (β1, β2, β3), let us define ∂βg(x) by

∂βg(x) =
∂β1

∂xβ1

1

∂β2

∂xβ2

2

∂β3

∂xβ3

3

g(x). (2.2.1)

For β as above we will define

β! = β1!β2!β3!
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and

|β| = |β1|+ |β2|+ |β3|.

We now define the notion of real analyticity that we will use on Γ\SL(2,R) in the

following definition:

Definition 2.2.3. A function f on Γ\SL(2,R) is called real analytic, if given any

point g in Γ\SL(2,R), there exists a positive real number rg such that g has power

series expansion given by

f(gn(t)a(y)K(θ)) =
∑

β=(β1,β2,β3)∈Z3
+

∂βf(g)

β!
tβ1yβ2θβ3 (2.2.2)

for every (t, y, θ) ∈ Urg .

Let us use the following notation for the power series expansion.

Definition 2.2.4. Let y, x ∈ SL(2,R) and t, y, θ be such that y = xn(t)a(y)K(θ)

and (β1, β2, β3) = β ∈ Z
3
+ define

(y − x)β = tβ1yβ2θβ3 .

Hence we can rewrite the Equation (2.2.2) as

f(y) =
∑

β=(β1,β2,β3),β∈Z3
+

∂βf(x)

β!
(y − x)β.

In the thesis we will assume that given any modular(holomorphic or Maass)

cusp form f on Γ\H and g ∈ SL(2,R), all the derivatives of f̃ at g are bounded

by 1.4

4In general in claim 8.2.1, we will prove that given a cusp form f , there exists R such that
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Given any smooth function f on Γ\SL(2,R) and a compactly supported smooth

function h on SL(2,R), their convolution is defined by:

h ⋆ f(x) =

∫

SL(2,R)

f(z)h(z−1x)dz. (2.2.3)

2.3 Hecke orbits

Let Γ = SL(2,Z). Let L be any positive integer and x ∈ SL(2,R), let

T (L) = {(m, k) : m|L, 0 ≤ k < L/m}

and

A(L,m, k) =
1

L1/2







m k

0 L/m






.

The Lth Hecke orbit is given by {ΓA(L,m, k), (m, k) ∈ T (L)}. Similarly the Lth

Hecke orbit of x is given by {ΓA(L,m, k)x, (m, k) ∈ T (L)}, considered as a subset

of Γ\SL(2,R). 5

||∂β f̃ ||∞ ≪ R|β|. The case when R > 1 can be dealt with analogously. The assumption that all
derivates are bounded by 1, allows the proofs to be marginally simpler.

5The Hecke orbits generalize the notion of an “arithmetic progression” on SL(2,R).
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Chapter 3

Rapid computations of ζ (Odlyzko

and Schönhage algorithm)

3.1 Introduction

The Riemann zeta function is defined by

ζ(s) =
∞
∑

n=1

1

ns
, Re(s) > 1.

It can be analytically extended to a meromorphic function on C with a simple

pole at 1. The values of ζ(1/2 + iT ) are important in number theory for various

reasons. Understanding the statistical properties of the distribution of values of

zeta function on the critical line, verifying moment conjectures and the Riemann

hypothesis numerically are just some of many motivations behind the need to

compute ζ(1/2+ iT ) up to a “high” precision. In precise words, these motivations

led to consideration of the problem of computing L(1/2+ iT ) for “large” values of

T > 0 up to an absolute error bounded by O(T−γ) for any given γ > 0.
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We refer the readers to [12, Section 2] for some early examples of methods

for computing ζ(1/2 + iT ). A real breakthrough was achieved by Odlyzko and

Schönhage in [11]. Specifically their method permits evaluation of any single value

ζ(1/2+ iT + it) for t ∈ [0,
√
T ] up to polynomial precision in O(T o(1)) time given a

precomputation requiring O(T 1/2) time. This algorithm did not however improve

the computational time for a single value computation of the zeta value but it

is very useful for multiple evaluations of ζ(1/2 + it). The problem to reduce the

running time for a single evaluation of the zeta function has been tackled succesfully

by Schönhage [14], Heath Brown [6], and Hiary [7] et al.. The papers with different

methods for computing the zeta function include Odlyzko [10], Schönhage [14],

Berry and Keating [1], Heath Brown [6], Rubinstein [12] and Hiary [7].

The inspiration for our algorithms comes from [11]. Hence we discuss it in this

chapter in detail.

3.2 Odlyzko and Schönhage’s algorithm

In [11], the authors proposed new methods to compute the zeta function which are

much faster than the Riemann Siegel formula method when many values at closely

spaced points are needed. Their main result can be summarized as

Theorem 3.1. Given any positive constants δ, σ, and c1 there is an effectively

computable constant c2 = c2(δ, σ, c1) and an algorithm that for every T > 0 will

perform ≤ c2T
1/2+δ arithmetic operations on the numbers of ≤ c2 log T bits using ≤

c2T
1/2+δ bits of storage, and will then be capable of computing any value ζ(1/2+it) ,

T ≤ t ≤ T +T 1/2, to within ±T−c1 in ≤ c2T
δ operations using precomputed values.

Using (1.1.1), the problem of evaluating ζ(1/2 + it) becomes equivalent to the
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problem of evaluating sums of the form

g(t) =
M
∑

1

dnn
−it. (3.2.1)

Where |dn| ≤ n1/2 and M = O(T 1/2). Notice that

g(k)(t) = (−i)k
M
∑

0

dn(log n)
kn−it. (3.2.2)

Using explicit bound |g(k)(t)| ≪ T (log T )k, we get that if we know g and its

first O(c1/δ) derivatives at an “equispaced” grid (with spacing between points=

O(T−δ)) of O(T 1/2+δ) points in [T, T + T 1/2], we can compute g(t) for any t in

[T, T +T 1/2] up to O(T−c1) error. We can do it by using the power series expansion

for g(t) at the nearest grid point to evaluate g(t).

We next use fast Fourier transform to compute g at an equispaced grid “in

parallel”.

3.2.1 Use of FFT

In the last section we proved that the algorithm is equivalent to an algorithm to

computing sums of type
∑M

1 dnn
−it at an equispaced “grid” of points in [T, T+

√
T ]

(with spacing between points θ = O(T−δ)). Thus after suitable reparametrization,

the original problem reduces to the problem of computing g(kθ) for 0 < θ < 1 and

0 ≤ k ≤ H. Here

g(t) =
M
∑

0

dnn
−it. (3.2.3)
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for H = O(T 1/2+δ) and M = O(T 1/2). We can further make sure that H is an

integer power of 2. Let

ω = exp(2πi/H).

Let

h(j) =
H−1
∑

k=0

g(kθ)ωkj, 0 ≤ j ≤ H − 1, (3.2.4)

The inverse discrete Fourier transform yields

g(kθ) =
1

H

H−1
∑

j=0

h(j)ω−ij. (3.2.5)

Hence if we can compute all the required h(j)’s up to polynomial error, in O(H1+δ)

time, then we can use the fast Fourier Transform to compute g(kθ) for all desired

k’s.

Hence let us consider the computation of h(j). From 3.2.4 and 3.2.3 we have

h(j) =
M
∑

k=2

dkωk(j); (3.2.6)

where

ωk(j) =
H−1
∑

m=0

kimθωmj. (3.2.7)

If for some 2 ≤ k ≤ M , kiθ is “very close” to some ωj0 for some j0, then

such kiθ behaves essentially like an H th root of unity. This essentially tells us that

ωk(j0) ≈ H and that for every other j, ωk(j) ≈ 0.

For every other k, we use geometric sum formula in 3.2.7 to get

ωk(j) =
1− kiHθ

1− kiθωj
=

k−iθ(kiHθ − 1)

ωj − k−inθ
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Let

f(z) =
M
∑

k=2

ak
z − k−iθ

where ak for ak = k−iθ(kiHθ − 1) and ak = 0 if kiθ is “very close” to some ωj0 for

some j0.

The problem is now equivalent to computing f(ωj) for all 0 ≤ j ≤ H − 1 “in

parallel”. We deal with this problem in a little bit different fashion than Odlyzko

and schönhage. We will use the following physical interpretation of this problem

to give an intuitive algorithm:

Let H charges having charge ak each are placed at points k−iθ respectively.

Then the problem of computing f(ωj) can be interpreted as finding total “poten-

tial” at the points ωj due to these charges. Such problems are studied in detail by

physicists. We will give an outline of the fast multipole algorithm given in [5].

3.2.2 Use of the Fast Multipole Method

Let us consider the fast multipole method in one dimension. Consider M charges

with charge a1, ..., aM each be placed randomly on the unit circle at angles b1, ..., bM .

Suppose the potential at a point x due to charge ak is given by

fk(x) =
ak

exp(2πxi)− exp(2πbki)
. (3.2.8)

The main result of the FMM can be given as:

Theorem 3.2. Let M charges having charge a1, ..., aM each be placed randomly on

a unit circle at ‘angles’ b1, ..., bM . Let the potential function is defined by (3.2.8).

Given any positive constants δ, σ, and c1 there is an effectively computable constant
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c2 = c2(δ, σ, c1) and an algorithm that for every M > 0 will perform ≤ c2M
1+δ

arithmetic operations on the numbers of ≤ c2 logM bits using ≤ c2M
1+δ bits of

storage, and will then be capable of computing total potential at any point x such

that |x − bk| ≥ M−σ ∀1 ≤ k ≤ M , to within ±M−c1 in ≤ c2M
δ operations using

precomputed values.

Notice that the condition that x is not “too close” to any charges is equivalent

to the condition that kiθ is not “too close” to any ωj in 3.2.1. The main idea

behind the algorithm comes from the fact that if many charges are concentrated

in some part then at a faraway point, the charges “behave” like a single charge. In

particular, if our “source panel” is in the interval [t− h, t+ h] (a similar argument

goes through for a semi closed interval) for some positive constants t, h then for all

the points in [t−3h, t+3h]c the source panel behaves like a single charge. In other

words we can use a multipole power series expansion to get S[t−h,t+h] a polynomial

in (x− t) of degree O(logM) such that for any x ∈ [t− 3h, t+ 3h]c, the potential

due to all the charges in [t − h, t + h] is given by S[t−h,t+h](x). We can compute

and store the co-efficients of the polynomial in O(logM + Ct,h) steps. Where Ct,h

denotes the number of charges in [t− h, t+ h].

The algorithm is clear now. We start with bisecting the unit interval recursively.

At step one we have two intervals [0, 1/2), [1/2, 1]. We compute the corresponding

S[0,1/2) and S[1/2,1]. Notice that the total time needed to precompute and store the

coefficients for both the polynomials is bounded by O(M + logM). In the next

step we compute S[0,1/4), S[1/4,1/2), S[1/2,3/4), S[3/4,1]. The total time needed in this

step is also O(M+logM). We continue this process for log 3+σ logM
log 2

steps. We store

all the polynomials. The total time needed for this process is O(M1+δ).

Once we store these values, we can use a ‘binary expansion’ for x to compute
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the total potential at the point x in O(M δ) further steps. Notice that in order

to use the multipole expansion, S[a,b] at a point x, we need |x − a+b
2
| ≥ 3(b−a)

2
.

We illustrate the algorithm by showing first few steps to compute S(1/2) (total

potential at 1/2).

We use the binary expansion of 1/2, to get

S(1/2) = S[0,1/4)(1/2) + S[3/4,1](1/2) + S(1/4, 3/4).

Here S(a, b) denotes the total potential at 1/2 due to charges in [a, b). In the

second step we write

S(1/4, 3/4) = S[1/4,3/8)(1/2) + S[5/8,3/4)(1/2) + S(3/8, 5/8).

We do this recursively for O(logM) steps to compute S(1/2). The algorithm is

compute S(x) for any x follows similarly.

Proof of the theorem 3.2, completes the algorithm required for proving theorem

(3.1).
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Chapter 4

A ‘geometric’ approximate

functional equation

4.1 Introduction

Just like in the proof of theorem 3.1, most algorithms to compute a general L-

function start with an approximate functional equation. This is a generalization of

the Riemann- Siegel formula for a general L-function. We refer the readers to [12,

Section 3] for a detailed discussion of the approximate functional equation based

algorithms.

Both our algorithms start with a ‘geometric approximate functional equation’.

The ‘geometric approximate functional equation’ for L(f, s) is given (for holomor-

phic and Maass forms respectively) by (4.3.6) and (4.3.7). The corresponding

equation for L(s, f × χq) is given by (4.4.16) and (4.4.17).

Notice that equations (4.3.6) and (4.3.7) are integrals of ‘nice’ functions over

a curve of hyperbolic length O(T ). Hence given any γ, η > 0, using the method
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used in proposition 7.1.1, we can write integrals in (4.3.6) and (4.3.7) as a sums of

size O(T 1+η) up to an error O(T−γ). Similarly, the right hand side of (4.4.16) and

(4.4.17) consists of sums of q integrals. Each of these integrals is an integral of a

‘nice’ function on a geodesic of (hyperbolic) length O(log q). Hence using idea in

proposition 7.1.1, we can write each of this integrals (up to an error of O(q−γ)),

as a sum of size O(qη log q) terms. Adding all these sums together, the right hand

sides of (4.4.16) and (4.4.17) can be written (up to an error of O(q−γ)) a sum of size

O(q1+η). The constants involved in O are polynomial in γ/η and are independent

of q and T .

The derivation of the approximate functional equations used here have ge-

ometric motivation behind them. Hence we call these equations as “geometric

approximate functional equations”.

4.2 Preliminaries

Let Γ be a lattice of SL(2,Z) and let f be a modular (holomorphic or Maass)

cusp form of weight k. 1 In the Maass form case, let f be an eigenfunction of the

hyperbolic laplacian ∆ = −y2(∂2
x + ∂2

y) with eigenvalue 1/4 + r2 on Γ\H.

In this paper, for simplicity let us assume that f is either holomorphic or an

even Maass form. The algorithms will be analogous for the odd Maass cusp form

case. For an even Maass cusp form, we will use the following power series expansion

:

f(z) =
∑

n>0

f̂(n)W ′
r(nz). (4.2.1)

1In the case of Maass forms let us assume the weight is 0.
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Here W ′
r(x + iy) = 2

√
yKir(2πy) cos(2πx). The explicit Fourier expansion for the

holomorphic cusp forms is given by

f(z) =
∑

n>0

f̂(n)e(nz). (4.2.2)

Given an (even Maass or holomorphic) cusp form f of weight k and the correspond-

ing Fourier coefficients given by (4.2.1) or (4.2.2), let us define the L function by

Definition 4.2.1. L(s, f) =
∑∞

n=1
f̂(n)

ns+(k−1)/2 .

An integral representation for L(f, s) corresponding to a Maass form f and s

such that Re(s) > 1 is obtained by:

∫ ∞

0

f(iy)ys−3/2dy =
∑

n 6=0

f̂(n)

∫ ∞

0

W ′
r(iny)y

s−3/2dy

=
∑

n>0

f̂(n)
√
n

∫ ∞

0

2
√
yKir(2πny)y

s−3/2dy

= 2
∑

n>0

f̂(n)

ns−1/2

∫ ∞

0

Kir(2πy)y
s−1dy

= 2L(s, f)

∫ ∞

0

Kir(2πy)y
s−1dy

=
1

2
π−sL(f, s)Γ

(

s+ ir

2

)

Γ

(

s− ir

2

)

.

Hence using the analytic continuation, we get the integral representation for

L(f, s) (Re(s) ≥ 1/2) given by

∫ ∞

0

f(iy)ys−1dy =
1

2
π−sL(f, s)Γ

(

s+ ir

2

)

Γ

(

s− ir

2

)

. (4.2.3)

We will further assume that f is an eigenfunction of some Fricke involution, as

is the case for all the newforms. This will quantify the exponential decay at zero.
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This implies that there exists a positive constant C1 and a real constant C2 such

that:

f(−C1

z
) = C2z

kf(z). (4.2.4)

Using the condition (4.2.4) and the exponential decay of f at ∞, the integral on

the LHS of (4.2.3) converges for all s in H. Hence we can use (4.2.3) to compute

the values of the L functions on the critical line. The gamma factors on the right

hand side are decaying exponentially with T (here T = Im(s)), hence we need to

compute the integral to an high precision in order to get moderate accuracy in

the computations of the L-values. This problem has been tackled before in several

ways. A solution to this has been suggested in [9] and worked out by Rubinstein

in [13, Chapter 3].

We will proceed in a different fashion. We change the contour of integration

that will add an exponential factor which will take care of the exponential decay of

the gamma function. We will derive a ‘geometric approximate functional equation’

using this idea in the following section.

4.3 A geometric approximate functional equa-

tion for L(f, s)

Let s = s0 + iT , where s0 ≥ 1
2
and α = −1 + i

T
.

As stated before, we change the contour of integration in (4.2.3) so as to add

an exponential factor which will take care of the exponential decay of the gamma

function (refer figure 1.1). The case of holomorphic modular forms is easier to deal

with, hence we will consider it first.
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Holomorphic case : Let f be a holomorphic cusp form of weight k > 0.

∫ ∞

0

f(αy)ys+(k−1)/2−1dy (4.3.1)

=
∞
∑

n=1

f̂(n)

∫ ∞

0

exp(2πinαy)ys+(k−1)/2−1dy;

= (2π)−(s+ k−1
2

)

∞
∑

n=1

f̂(n)

ns+(k−1)/2

1

(−αi)s+(k−1)/2

∫

z=−iαR+

exp(−z)zs+(k−3)/2dz

= (2π)−(s+(k−1)/2)

∞
∑

n=0

f̂(n)

ns+(k−1)/2

1

(−αi)s+(k−1)/2)

∫

z=R+

exp(−z)zs+(k−3)/2dz

using holomorphy and suitable contour (ref. fig 4.1).

= (2π)−(s+(k−1)/2) L(f, s)

(−αi)s+(k−1)/2

∫ ∞

0

exp(−t)ts+(k−3)/2dt

= (2π)−(s+(k−1)/2) L(f, s)

(−αi)s+(k−1)/2
Γ(s+ (k − 1)/2).

Here, the branch cut for the logarithm is taken along the negative real axis.

Hence the argument of logarithm takes values between −π and π. With this

choice of the logarithm, the factor 1
(−αi)s+(k−1)/2 grows like O(eπT/2) as T →∞, to

compensate for the exponential decay of Γ(s+ (k − 1)/2).

Case of Maass forms : We use a similar idea for the non-holomorphic case. let

α1 = −1 +
i

T1

.

We will choose a suitable value for T1 later.
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x-axis

y-axis

Branch cut

z = (1/T + i)t

Figure 4.1: The contour of integration in (4.3.1). The branch cut for the logarithm
is chosen along the negative real axis. The line (1/T + i)t corresponds to the line
−iαt. We take the limit as the radius of the inner circle goes to zero and the radius
of the outer circle goes to infinity.

∫ ∞

0

f(α1y)y
s−3/2dy =

∑

n>0

f̂(n)

∫ ∞

0

W ′
r(nα1t)t

s−3/2dt;

=
∑

n>0

f̂(n)

ns−1/2

∫ ∞

0

W ′
r(α1t)t

s−3/2dt;

=
∑

n>0

f̂(n)

ns

∫ ∞

0

W ′
r((−1 +

i

T1

)t)ts−3/2dt;

= 2T
− 1

2
1

∑

n>0

f̂(n)

ns−1/2

∫ ∞

0

cos(2πt)Kir(2π
t

T1

)ts−1dt;

= c′
∑

n>0

f̂(n)

ns−1/2

∫ ∞

0

cos(T1t)Kir(t)t
s−1dt.
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Here c′ =
2T s

1

(2π)s
. We summarize the result as:

∫ ∞

0

f(α1y)y
s−3/2dy =

2T s
1

(2π)s
L(f, s)

∫ ∞

0

cos(T1t)Kir(t)t
iT−1/2dt. (4.3.2)

In proposition 4.3.1 we will show that we can choose T1 ≈ T such that the

integral on the right hand side of (4.3.2) is not too small.

Proposition 4.3.1. Let r be any fixed complex number such that |Im(r)| < 1/2

and T, T1 > 0,

∫ ∞

0

cos(T1t)Kir(t)t
iT−1/2dt = 2iT−3/2Γ(

ir + iT + 1
2

2
)Γ(
−ir + iT + 1

2

2
) (4.3.3)

F (
ir + iT + 1

2

2
,
−ir + iT + 1

2

2
,
1

2
,−T 2

1 ).

Here F denotes the hypergeometric function. Moreover there exists a computable

constant C ′ = O(1) depending on r such that for T1 = C ′T ,

Γ(
ir + iT + 1

2

2
)Γ(
−ir + iT + 1

2

2
)F (

ir + iT + 1
2

2
,
−ir + iT + 1

2

2
,
1

2
,−T 2

1 )

≫ T−4.

The implied constant is non zero and depends only on r.

We will prove the proposition 4.3.1 in section 8.1. Proposition 4.3.1 will allow

us to take T1 = C ′T for some C ′ = O(1). Hence for this choice of T1, once we

compute
∫∞

0
f(α1y)y

s−1dy up to an error of O(T−γ), we can compute L(f, s) up

to an error of O(T 4−γ).

We next use the exponential decay of f at 0 and at ∞ to get:
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Lemma 4.3.2. Given any cusp form f , a real number s0 and positive reals T, γ, if

α = −1+i/T and s = s0+iT then there exists a computable constant c = O(1+γ),

independent of T such that :

∫ ∞

0

f(αt)ts−1dt =

∫ Tc log T

1
cT log T

f(αt)ts−1dt+O(T−γ). (4.3.4)

Proof. Using the exponential decay at ∞, we get that for t ≥ 1,

|f(αt)| = |f(−t+ it/T )| ≪ exp(−at/T )

for some positive constant a. Hence for all t > T , we have

|f(αt)ts−1| ≤ ts0−1 exp(−at/T ).

Hence,

ts0−1 < exp(at/2T )⇔ (s0 − 1) log t < at/2T ⇔ 2T (s0 − 1) log t/a < t.

We can see that the condition above holds for T > e and

t > t0 = 20T log T (1 + |s0 − 1|)2(1 + a−1)2.

This implies that for t1 ≥ t0,

|
∫ ∞

t1

f(αt)ts−1dt| ≪
∫ ∞

t1

exp(−at/2T ) = (2T/a) exp(−at1/2T ). (4.3.5)
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Hence for any c1 ≤ t0(γ + 1)/(aT log T ), we get that

∫ ∞

c1T log T

f(αt)ts−1dt≪ O(T−γ).

Using (4.2.4) , we get that for t < 1 < T , we have

|f(αt)| = |f(−t+ it

T
)| = |α|

−k

|C2|
t−k|f(−C1/(−t+

it

T
))| ≪ t−k exp(−C1a/2Tt).

We deal with this case exactly as the previous case to get suitable c.

Applying Lemma 4.3.2 to (4.3.1) we get that given any T, γ > 0 there exists a

computable constant c such that

L(f, s) =
(2π)s+(k−1)/2(−αi)s+(k−1)/2

Γ(s+ (k − 1)/2)

∫ Tc log T

1
cT log T

f(αt)ts+(k−3)/2dt+O(T−γ). (4.3.6)

and similarly after applying Lemma 4.3.2 to (4.3.2) we get that given any T, γ > 0

there exist computable constants c and C ′ = O(1) such that if T1 = C ′T then

L(f, s) =
(2π)s+1/2

2T s
1C(T1)

∫ cT log T

1/cT log T

f(α1y)y
s−3/2dy +O(T−γ). (4.3.7)

Here, C(T1) =
∫∞

0
cos(T1t)Kir(t)t

s−1dt. Notice that the integrals on the right

hand side of (4.3.6) and (4.3.7) are over curves of hyperbolic length ≈ T . We call

(4.3.6) and (4.3.7) as geometric approximate functional equations for L- functions

corresponding to the holomorphic and the Maass forms respectively. We will see

later that the integrals on the right hand side of the equations (4.3.6) and (4.3.7)

can be computed directly in O(T 1+δ) time, given any δ > 0. Our algorithms for
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computing L(f, s) start with these “geometric approximate functional equations”.

4.4 A geometric approximate functional equa-

tion for L(s, f × χq)

Let f be a modular (holomorphic or Maass) form on Γ\H of weight k. Let us

assume that Γ = SL(2,Z). The algorithm will be similar in the case of a congruence

subgroup. We will again assume that f is an even Maass form or holomorphic.

The algorithm for the odd Maass form case is similar. Let f have a Fourier

expansion given by (4.2.1)/(4.2.2). Let q be a positive integer, s ∈ H such that

Re(s) > (k + 1)/2 and χq a Dirichlet character on (Z/qZ)∗. For a cusp form of

weight k, the corresponding twisted L- function is defined by:

Definition 4.4.1. L(s, f × χq) =
∑∞

n=1
f̂(n)χq(n)

ns+(k−1)/2 .

Holomorphic case :

q−1
∑

k=0

χq(k)f(k/q + iy) =

q−1
∑

k=0

χq(k)
∞
∑

n=1

f̂(n)e(nk/q)e(iny)

=
∞
∑

n=1

f̂(n)e(iny)
∞
∑

k=0

χq(k)e(nk/q)

= τ(χq)
∞
∑

n=1

f̂(n)χq(n)e(iny). (4.4.1)

Here, τ(χq) is the Gauss sum defined by

τ(χq) =

q−1
∑

k=0

χq(k)e(k/q). (4.4.2)
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After taking the Mellin transform of (4.4.1), we get

q−1
∑

k=0

χq(k)

∫ ∞

0

f(k/q + iy)ys+(k−3)/2; (4.4.3)

= τ(χq)
∞
∑

n=1

f̂(n)χq(n)

∫ ∞

0

e(iny)ys+(k−3)/2dy;

=
τ(χq)

(2π)s+(k−1)/2
L(s, f × χq)Γ(s+ (k − 1)/2). (4.4.4)

Even Maass form case :

q−1
∑

k=0

χ(k)f(k/q + iy)

= 2

q−1
∑

k=0

χq(k)
∞
∑

n=1

f̂(n)
√
ny cos(2πnk/q)Kir(2πny)

= 2
∞
∑

n=1

f̂(n)
√
nyKir(2πny)

q−1
∑

k=0

χq(k)
e(nk/q) + e(−nk/q)

2

= 2
τ(χq) + τ(χq)

2

∞
∑

n=1

f̂(n)χq(n)
√
nyKir(2πny)

= τ(χq)(1 + χq(−1))
∞
∑

n=1

f̂(n)χq(n)
√
nyKir(2πny). (4.4.5)

Here, τ(χq) is the Gauss sum defined by (4.4.2). Taking Mellin transform of (4.4.5),

we get
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q−1
∑

k=0

χ(k)

∫ ∞

0

f(k/q + iy)ys−3/2dy (4.4.6)

= 2τ(χq)
1 + χq(−1)

2

∞
∑

n=1

f̂(n)
√
nχq(n)

∫ ∞

0

Kir(2πny)y
s−1dy;

= τ(χq)
1 + χq(−1)

4(π)s
L(s, f × χq)Γ

(

s+ ir

2

)

Γ

(

s− ir

2

)

.

τ(χq) is a complex number with absolute value q
1
2 . This implies that we can

use (4.4.3) to compute L(s, f × χq) in the holomorphic case. But if χq(−1) = −1,

then for an even Maass cusp form f , the right hand side of (4.4.6) is zero. Hence

it can not be used to compute the L- values. This is however easily fixable. Recall

the Fourier expansion for f given by

f(z) =
∑

n>0

f̂(n)2
√
yKir(2πny) cos(2πnx).

This implies that

∂xf(z) = −2π
∑

n>0

nf̂(n)2
√
yKir(2πny) sin(2πnx).
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We use a similar method as before to get:

q−1
∑

k=0

χ(k)∂xf(k/q + iy)

= −2π
q−1
∑

k=0

χq(k)
∞
∑

n=1

n
√
nyf̂(n) sin(2πnk/q)Kir(2πny)

= −2π
∞
∑

n=1

f̂(n)n3/2√yKir(2πny)

q−1
∑

k=0

χq(k)
e(nk/q)− e(−nk/q)

2i

= iπ(τ(χq)− τ(χq))
∞
∑

n=1

f̂(n)n3/2χq(n)
√
yKir(2πny)

= iπτ(χq)(1− χq(−1))
∞
∑

n=1

f̂(n)n3/2χq(n)
√
yKir(2πny). (4.4.7)

Taking Mellin transform of (4.4.7), we get

q−1
∑

k=0

χ(k)

∫ ∞

0

∂xf(k/q + iy)ys−1/2dy (4.4.8)

= iπτ(χq)(1− χq(−1))
∞
∑

n=1

f̂(n)χq(n)n
3/2

∫ ∞

0

Kir(2πny)y
sdy

= iπτ(χq)
1− χq(−1)
4(π)s+1

L(s, f × χq)Γ

(

s+ 1 + ir

2

)

Γ

(

s+ 1− ir

2

)

.

Notice that (4.4.8) is analogous to (4.4.6). The algorithm to compute
∑q−1

k=0 χ(k)
∫∞

0
∂xf(k/q + iy)ys−1/2dy is completely analogous to the algorithm to

compute
∑q−1

k=0 χ(k)
∫∞

0
f(k/q+ iy)ys−3/2dy. Hence throughout the rest of the pa-

per, we will assume that χq(1) = χq(−1) = 1. 2 Using the automorphy of f ,

we get the following lemma (analogous to the corresponding 4.3.2 of the previous

2Note that a similar treatment will give us the corresponding “geometric approximate func-
tional equations” for odd Maass forms.
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subsection).

Lemma 4.4.2. Given any cusp form f (of weight k) on Γ\SL(2,R), positive co-

prime integers n, q such that n < q, χq a character on (Z/qZ)∗, s ∈ H and

positive real γ, there exists a computable constant c = O(1 + γ), independent of

k, q such that:

∫ ∞

0

f(n/q + iy)ysdy =

∫ c log q

1
cq2 log q

f(n/q + iy)ysdy +O(q−γ). (4.4.9)

The constant involved in O is independent of k, q.

Proof. If we use the Fourier expansion (4.2.1) for a Maass cusp form f at z =

k/q + ic log q, we get

f(n/q + ic log q) =
∑

m>0

f̂(n)2
√

c log qKir(2πm log q) cos(2πn/q). (4.4.10)

Similarly, using the Fourier expansion (4.2.2) for a holomorphic cusp form f , we

get we get

f(n/q + ic log q) =
∑

m>0

f̂(n)2 exp(−2πcm log q)e(mn/q). (4.4.11)

We use the following quantification of the exponential decay of Bessel functions at

infinity :

Kν(y) =
π

(2y)
1
2

e−y(1 +O(
1 + |ν|2

y
)). (4.4.12)

We apply the bound |f̂(m)| ≪ mk/2 to the equation (4.4.11) and use the method

in lemma 4.3.2, to find a constant c1, independent of n, q such that for every
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y ≥ c1 log q , we have

|f(n/q + c log qi)| < q−|s|−γ−2y−2. (4.4.13)

Similarly, for a Maass form, we can use (4.4.12) to (4.4.10) and the bound |f̂(n)| ≪

1 to get the result.

Let n′, n′′ such that 0 ≤ n′ < q and nn′ − qn′′ = 1. The the action of g =






n′ −n′′

−q n






on H maps n/q to infinity. Using the automorphy of f with respect

to the action of g, we get

f(n/q + iy) = (−q(n/q + iy) + n))−kf(
n′(n/q + iy)− n′′)

−q(n/q + iy) + k
) (4.4.14)

= (−qiy)−kf(
1/q + in′y

−qyi )

= (−qiy)−kf(−n′/q +
i

q2y
).

We use the exponential decay of f at infinity and the method in lemma 4.3.2,

we get a constant c2, independent of n, q such that for every y ≤ 1
c2q2 log q

, we have

|y−kf(n/q + iy)| < q−γ−|s|−2. (4.4.15)

The equations (4.4.13) and (4.4.15) give us the result.

After applying Lemma 4.4.2 to (4.4.3), we get that given any q, γ > 0 we have

a computable constant C ′, independent of q, such that for any C ≥ C ′,
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τ(χq)

(2π)s+(k−1)/2
L(s, f × χq)Γ(s+ (k − 1)/2) (4.4.16)

=

q−1
∑

j=0

χ(j)

∫ C log q

1
Cq2 log q

f(j/q + iy)ys+(k−3)/2dy +O(q−γ).

and similarly we get that given any q, γ > 0 we have a computable constant C,

independent of q such that such that for any C ≥ C ′,

τ(χq)
1 + χq(−1)

4(π)s
L(s, f × χq)Γ

(

s+ ir

2

)

Γ

(

s− ir

2

)

(4.4.17)

=

q−1
∑

k=0

χ(k)

∫ C log q

1
Cq2 log q

f(k/q + iy)ys−1dy +O(T−γ).

Notice that the integrals on the RHS of (4.4.16) and (4.4.17) are over hyperbolic

curves of length ≈ log q, hence they can be computed in O(qo(1)) time. The equa-

tions (4.4.16) and (4.4.17) denote “geometric approximate functional equations”

to compute L(s, f × χq) in the holomorphic and Maass form case respectively.
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Chapter 5

Rapid algorithm in the ‘T’ aspect

Let Γ be a lattice in SL(2,Z). Let f be a (holomorphic or Maass) cusp form on

Γ\SL(2,R) of weight k. 1 The main goal in this section is to prove theorem 1.1.

We use a geometric method to get a rapid algorithm to compute L(f, 1/2+ iT ) in

section 5.2. Before giving this algorithm, we will consider the problem of computing

the large Fourier coefficients of f at a cusp. This algorithm is marginally simpler

than the desired algorithm and will serve as a “toy model”. The main theorem in

this case can be given as

Theorem 5.1. Given a lattice Γ 6 SL(2,R), a (holomorphic or Maass) cusp form

f on Γ\H, positive reals γ, η, and a positive integer T , the T th Fourier co-efficient

of f at any cusp can be computed up to an error of O(T−γ) in time O(T 7/8+η)

using numbers of O(log T ) bits. The constants involved in O are polynomials in γ
η

and are independent of T .

We will give the proof of theorem 5.1 in section 5.1.

1For a Maass cusp form, the weight k=0.
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5.1 Proof of theorem 5.1

Let Γ be a lattice in SL(2,R). Given real t, let

a(t) =







e
t
2 0

0 e−
t
2






,

and

n(t) =







1 t

0 1






.

Let f be a holomorphic cusp form on Γ\SL(2,R) of weight k. In this section we

will only discuss the holomorphic case. The algorithm in the case of a Maass form

f will be analogous. Recall the lift f̃ of f defined in (1.1.4): f̃ : Γ\SL(2,R) → C

is defined as:

f̃ : Γ







a b

c d






→ (ci+ d)−kf

(

ai+ b

ci+ d

)

.

In section 8.2, we will prove that f̃ is “well behaved”. In other words we can

assume that f̃ has bounded derivatives.2 Recall the Fourier expansion given by

(4.2.2):

f(z) =
∑

n>0

f̂(n)e(nz).

2We actually prove that there exist a constant c > 0, depending on f such that for any
x ∈ Γ\SL(2,R), |∂β f̃(x)| ≪ c|β| on Γ\SL(2,R). The algorithm can be adapted easily if c > 1.
To keep the algorithm cleaner, we assume that f̃ has bounded derivatives, i.e that c = 1.
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Using this we get for any positive integer T ,

e−2πf̂(T ) =

∫ 1

0

f(x+ i/T )e(−Tx)dx

=

∫ T

0

T k/2−1f̃(a(− log T )n(t))e(−t)dt. (5.1.1)

Notice that the integral on the RHS of (5.1.1) is integral of a well behaved

smooth function on a horocycle of length T . Hence a priori we can ‘compute’ it in

O(T 1+o(1)) time up to the error at most O(T−γ), for any given γ. This will denote

the corresponding (to (4.3.6) and (4.3.7)) “geometric functional equation” in this

case. We will now explain a method to compute the T th Fourier coefficient faster

than O(T ).

We will write the integral (5.1.1) as a sum of integrals over intervals of length

T ǫ each. For simplicity let’s assume T ǫ is an integer.

∫ T

0

f̃(x0n(t))e(t)dt =

⌊T 1−ǫ⌋−1
∑

j=0

∫ T ǫ

0

f̃(xon(jT
ǫ + t))e(−t)dt (5.1.2)

+

∫ T

(⌊T 1−ǫ⌋−1)T ǫ

f̃(xon(jT
ǫ + t))e(−t)dt.

Here x0 = a(− log T ). The second integral on the right hand side of (5.1.2) is

an integral of a smooth well behaved function on an interval of size ≤ T ǫ. Hence

given γ, η > 0, we can compute it up to an error of O(T−γ) in time O(T ǫ+η), using

proposition 7.1.1. ( In practice, γ and η will be fixed “small” real numbers and ǫ

will eventually be chosen to be 1/8.)

Let

M2 = T ǫ.
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Let us define Il(x, f̃) the following way

Definition 5.1.1. Given a cusp form f̃ on Γ\SL(2,R), x in Γ\SL(2,R) and l a

non negative integer we define

Il(x, f̃) =

∫ M2

0

tlf̃(xn(t))e(−t)dt. (5.1.3)

We use a geometric method to compute the inner integrals on the RHS of

(5.1.2) “in parallel”. We will use the following proposition which quantifies the

slow divergence of the Horocycle flow:

Proposition 5.1.2. Given any η > 0 and ǫ > 0, for any ǫ′ ≥ 2ǫ + η and for any

x,y such that x−1y ∈ U1/T ǫ′ we have a constant c, independent of ǫ and ǫ′ such that

yn(t) ∈ xn(t)UcT−η for all 0 ≤ t ≤ T ǫ.

Let η > 0 be any positive number. We take points {x0n(jM2), 0 ≤ j < T 1−ǫ}

and first we “reduce” the points to an approximate fundamental domain. Then

we “sort” the reduced points into sets S1, S2, ..., SM1 such that x, y ∈ Sj ⇒ x−1y ∈

UT−(2ǫ+η) . For each j let us choose a representative vj from each Sj. We give a

detailed accounting of the ‘reduction’ and ‘sorting’ algorithms in section (7).

If x ∈ Si, then we use the power series expansion around vin(t) to compute

values of f at xn(t). Here we use the following lemma:

Lemma 5.1.3. Given γ > 0, η > 0, any ǫ > 0, x, y ∈ Si for some i, then we have

constants cx,y,β,l and d such that

I0(y, f) =
∑

|β|<d,β∈Z3
+

d
∑

l=0

cx,y,β,lIl(x, ∂
β f̃) +O(M2(

γ

η
)5T−γ). (5.1.4)

Here, d = O(γ/η).
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Let us observe that the integrals involved on right hand side of (5.1.4) depend

only on x. This lemma will allow us to compute the sum I0(y, f) in parallel for

all the points y in Si in O(|Si| + M2) steps. Now, we will complete the proof of

theorem 5.1 using lemma 5.1.3.

Proof of theorem 1. Let us compute the time spent in this algorithm. In the section

7 we will prove that the whole initial sorting process takes O(T 1−ǫ) time.

Notice that the inner integrals on the right hand side of (5.1.4) are independent

of y. For each y ∈ Si, there are O((γ
η
)4) terms in the right hand side of equation

(5.1.4). We will show in the section 8.4 that for fixed y and vi we can compute

all the required cvi,y,β,l’s in O(d6) time. Hence we can precompute the constants

cvi,x,β,l, for each x in Si for all i in O((γ
η
)6T 1−ǫ) steps.

Recall that M2 = T ǫ. Computing Il(vi, ∂
βf) for |β|, l < d takes O(d5T ǫ+η)

operations for each vi (using that f̃ has bounded derivatives along with proposition

7.1.1). Hence, using Lemma (5.1.3), we need d4|Si| more operations to compute

I0(x, f) for all x ∈ Si. In the section 7.3, we will show that the maximum number

of sets S ′
is is O(T 6ǫ+3η log T ) where the constant only depends on Γ. Notice that

the log factor can be absorbed in the exponent η.

The second integral on the right hand side of (5.1.2), can be computed up

to an error of at most O(T−γ), using at most O(T ǫ+η) operations. Let us also

recall that d = O(γ/η). Hence the total number of operations needed to compute
∫ T

0
f̃(xon(t))e(t)dt up to an error of O(T−γ) is

O((
γ

η
)6(T ǫ+ηT 6ǫ+3η + T 1−ǫ)). (5.1.5)

The optimal value for ǫ is 1/8. This implies that given any η, γ > 0 and real
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s0, L(f, s0 + iT ) can be computed up to an error at most O(T−γ) using at most

O((γ
η
)6T 7/8+4η) operations. (Notice, we have used that d = O(γ/η)).

5.2 Proof of theorem 1.1

Proof of this theorem uses an idea very similar to the proof of theorem 5.1. Let

Γ be a lattice of SL(2,Z). Let f be a (holomorphic or Maass) cusp form on Γ\H.

Let α = −1+ i/T and c > 0 be the constant in (4.3.6) and (4.3.7). Let s = s0+ iT

and M1 = cT log T . We have

∫ ∞

M1

|f(αt)ts−1|dt+
∫ M1

0

|f(αt)ts−1|dt < O(T−γ) (5.2.1)

Let s0 be some fixed real. Using the “geometric approximate functional equations”

(4.3.6) and (4.3.7), it is enough to give an algorithm to compute

∫ M1

1
M1

f(αt)ts−1dt.

We proceed in the similar manner as in the last section, and write the above

integral as a sum of integrals over segments of hyperbolic length ≈ T ǫ. In order to

do so, let us first define the following quantities:

Definition 5.2.1.

x0 =
1

cT log T
(−1 + i/T ),

M = 1 + T−1+ǫ,

bj = M j,
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xj = bjx0.

Notice that there exists an integer M3 = O(T 1−ǫ log T ) such that,

M1 < (1 + T−1+ǫ)M3
1

cT log T
=

bM3

cT log T
.

Let

M4 =
bM3+1

cT log T
.

Recall that constant c is chosen such that it satisfies conditions in (5.2.1). Hence

we get that
∫M4

M1
|f(αt)ts−1|dt ≪ T−γ. Hence it is enough to give an algorithm to

compute
∫ M4

1/M1

f(αt)ts−1dt

up to an error at most O(T−γ).

∫ M4

1/M1

f(αt)ts−1dt =

M3
∑

j=0

∫ bj(M−1)

0

f(α(bj + t))(bj + t)s−1dt

=

M3
∑

j=0

bsj

∫ M−1

0

f(α(bj(1 + t))(1 + t)s−1dt. (5.2.2)

We next define:

κ(t) =







( t
T
)
1
2 −

√
Tt

0 ( t
T
)−

1
2






. (5.2.3)

Notice,

κ(bj)
−1κ(bj(1 + t)) =







(1 + t)1/2 T (−(1 + t)1/2 + (1 + t)−1/2)

0 (1 + t)−1/2






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and that it is independent of j. Let

ω(t) =







(1 + t)1/2 T (−(1 + t)1/2 + (1 + t)−1/2)

0 (1 + t)−1/2






. (5.2.4)

We rewrite equation (5.2.2) as

∫ M4

1/M1

f(αt)ts−1dt = T k/2

∫ M4

1/M1

ts−k/2−1f̃(κ(t))dt

= T k/2

M3
∑

j=0

(bj)
s−k/2J(f, xj) (5.2.5)

Here,

J(f, y) =

∫ M−1

0

f̃(yω(t))(1 + t)s−
k
2
−1dt

We make use of the fact that we are integrating on an “approximate horocycle”.

We quantify this result in the following proposition. This proposition is analogous

to proposition 5.1.2 .

Proposition 5.2.2. Given any ǫ > 0, η > 0, let x, y ∈ SL(2,R) such that x−1y ∈

UT−2ǫ−η , then we have a constant c′ such that

yω(t) ∈ xω(t)Uc′ 1
Tη

for all 0 ≤ t ≤ T−1+ǫ.

c′ can be chosen independent of ǫ and T .

The propositions 5.2.2 will be proved in section 8.3. Let’s ‘reduce and sort’ the
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points {xj} into N = O(T 6ǫ+3η) groups S1, ..., SN such that

x, y ∈ Si ⇒ x−1y ∈ U 1
T2ǫ+η

.

We will discuss these algorithms in sections 7.2 and 7.3. Let us also choose fixed

representatives vi from each Si. For each group Si, let us try to compute the inner

integral in (5.2.5) “in parallel” .

Let x, y ∈ Si, then we use power series expansion around points xω(t) to

compute f̃(yω(t)). Hence we get,

Lemma 5.2.3. Given any η > 0, γ > 0, ǫ > 0, and x, y ∈ Si for some integer i,

then there exist constants ex,y,β,l and d′, independent of T , such that we can write

J(f, y) =
∑

|β|<d′,β∈Z3
+

d′
∑

l=0

eβ,l,x,yLl(∂
β f̃ , x) +O(M2(d

′)4T−γ).

Where

Ll(g, x) =

∫ M−1

0

(Tt)lg(xω(t))(1 + t)s−k/2−1dt

and d′ = O(γ/η) The constants involved in O only depends on f , and are indepen-

dent of x, γ, η and T .

The lemma 5.2.3 converts our problem into the problem of computing Ll(∂
β f̃ , vi)

for each vi. Change the variable u = Tt to get

Ll(g, x) = T−1

∫ T ǫ

0

ulg(xω(u/T ))(1 + u/T )s−k/2−1du.

Notice that each integral Ll(∂
β f̃ , vi) is integral of ∂

β f̃ on a segment of hyperbolic

length ≈ T ǫ, hence we can compute it up to an error of O(T−γ) in time O(T ǫ).
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More rigorously, we prove:

Proposition 5.2.4. Given, non negative integer l and vector β ∈ Z
3
+, x ∈

Γ\SL(2,R) and given positive reals γ and η we can compute Ll(∂
β f̃ , x) up to an

error at most O(T−γ) in O((lT ǫ)1+η) time.

Proof. Let gl be the function defined by gl(u) = ul(1 + u/T )s−k/2−1. Then there

exists a constant C, independent of l such that for any

k ∈ N, |∂kgl| ≤ (lC)k. (5.2.6)

If we prove that for any k ∈ N, fixed β ∈ Z
3
+ and for any x ∈ Γ\SL(2,R), there

exists a constant D independent of x and l such that,

|∂k(gl∂
β f̃(xω(u/T ))| ≤ (lD)k

then using proposition 7.1.1, we get the result.

Recall that

ω(u/T ) =







(1 + u/T )1/2 T (−(1 + u/T )1/2 + (1 + u/T )−1/2)

0 (1 + u/T )−1/2







= n(−u)a(log(1 + u/T )). (5.2.7)

Notice that we have assumed that for any β in Z
3
+ and any x ∈ Γ\SL(2,R),

∂β f̃(x)≪ 1. Hence, for |u| ≤ 1, We can use the power series expansion for f̃ (ref

52



2.2.2) to get

∂β f̃(xω(u/T )) =
∞
∑

|β′|=0,β∈Z2
+×0

∂β′

∂β f̃(x)

β′!
(−u)β1(log(1 + u/T ))β2 .

Differentiate with respect to u and use the claim 8.2.1, to get

∣

∣

∣∂k|u=0∂
β f̃(xω(u/T ))

∣

∣

∣≪ 4k.

In general, for any 0 ≤ u0 ≤ T ǫ, we can use the power series expansion for ∂β f̃

around xω(u0) to compute ∂β f̃(xω(u0 + u)) for small u and use similar method as

before, along with bounds (5.2.6) to get the desired uniform bound D.

Proof. proof of theorem 1.1

Using Lemma 5.2.3, proposition 5.2.4 and following exactly similar steps as in

the proof of theorem 5.1, we get the result.
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Chapter 6

Rapid algorithm in the ‘q’ aspect

Let Γ = SL(2,Z) and f be a (holomorphic or Maass) form of weight k on Γ\H. Let

q = MN where M ≤ N , M = M1M2, where M1 = gcd(M,N) and (M2, N) = 1.

Let χq be a Dirichlet character on Z/qZ. Let γ, η be any given positive numbers.

The main goal of this chapter is to prove theorem 1.2.

Theorem 6.1 will prove that the algorithm to compute L(s, f ×χq) faster than

O(q) is equivalent to computing the Gauss sum τ(χq) and

q−1
∑

k=0

χq(k)∂
l
2f̃(n(k/q)a(t)) (6.0.1)

for approximately O(qo(1)) equispaced values of t ∈ [−3C log q, 3C log q] and for

0 ≤ l ≤ N ′, faster than O(q). Here ∂2 denotes ∂
∂x2

, N ′ = O(γ/η) and C is a

suitable constant, independent of q. Hence, in this section we will consider the

problem of computing the sum in (6.0.1) for any given t ∈ [−3C log q, 3C log q].

In the section 8.6, we will prove that given any positive γ, we can compute

τ(χq) up to error O(q−γ), using at most O(M2 + N) operations. The algorithm
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in section 8.6 is similar to the algorithm to compute (6.0.1). This algorithm is

simpler, and can be helpful in understanding the main algorithm in this section

better.

We will deal with computing (6.0.1) for the special cases where q = MN

where (M,N) = 1 and the case when M |N separately in the sections 6.1 and 6.2

respectively. We use these results to complete the proof of theorem 1.2 in section

6.3.

Let us start with the “geometric approximate functional equations”

(4.4.16)/ (4.4.17) for holomorphic/Maass case respectively. Notice that the con-

stant C in (4.4.16)/ (4.4.17) can be chosen to be greater than 1. We use the lift f̃

defined in (1.1.4) to get f̃(n(x)a(log y)) = yk/2f(x+ iy) to rewite (4.4.16) as:

τ(χq)

(2π)s+(k−1)/2
L(s, f × χq)Γ(s+ (k − 1)/2)

=

q−1
∑

j=0

χ(j)

∫ D log q

1
Dq2 log q

f̃(n(j/q)a(log y))ys−3/2dy +O(q−γ).

Notice that the above equation will be valid if the constant D is replaced by any

C ≥ D. We will choose a suitable C later. Substitute log y = t in the above

equation to get that for any C ≥ eD we have:

τ(χq)L(s, f × χq)Γ(s+ (k − 1)/2)

(2π)s+(k−1)/2
= C ′

q−1
∑

j=0

χq(j)

∫ 3C log q

−3C log q

gj(t)dt+O(q−γ).

(6.0.2)

Here C ′ = q|3CRe(s− 1
2
)| and

gj(t) =
1

C ′
f̃(n(j/q)a(t)) exp(t(s− 1/2)).
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Notice that d
dt
|t0 (f̃(n(j/q)a(t))) = ∂

∂x2
f̃(n(j/q)a(t0)). Here

∂
∂x2

denote the deriva-

tive of f̃ in the “geodesic direction” defined in definition 2.2.2. We have assumed

that f̃ has bounded derivatives (ref. chapter 2). Hence for a fixed s ∈ C and each

t in [−3C log q, 3C log q],

∂n

∂tn
gj(t0)≪f (|s− 1/2|+ 1)n.

The constant involved is independent of q. Hence for each t in [−3 log q, 3 log q], gj
is real analytic with radius of convergence at least 1/(|s− 1/2|+ 1). Hence, using

the method in the proof of theorem 7.1.1 (choosing a grid of O(qη) equispaced

points and using power series expansion at the nearest grid point on the left to

compute gk at any given point), given any γ, η > 0 we get

∫ 3C log q

−3C log q

f̃(n(j/q)a(t))exp(t(s− 1/2))dt

= C ′

3Cqη log q−1
∑

x=−3Cqη log q

N ′

∑

l=0

∫ q−η

0

∂l
2(gj(xq

−η))
tl

l!
dt+O(q−1−γ) (6.0.3)

Here N ′ = O((1 + γ)/η). Notice that the above equation is true for any C > eD.

Hence , given η, we can choose C such that {3Cqη log q} = 0. Multiplying (6.0.3)

by χq(k) and summing over k, we get

L(s, f × χq) = C ′′

3Cqη log q−1
∑

x=−3Cqη log q

N ′

∑

l=0

dl

q−1
∑

j=0

χq(j)∂
l(gj(xq

−η)) +O(q−γ) (6.0.4)

Here dl =
∫ q−η

0
tl

l!
dt and C ′′ = C′(2π)s+(k−1)/2

Γ(s+(k−1)/2)τ(χq)
.

(6.0.4), along with the definition of gj(t) implies that the problem of computing

L(s, f×χ) is equivalent to computing τ(χq) and
∑q−1

j=0 χ(j)∂
l
2f̃(n(j/q)a(t)) for any
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t ∈ [−3 log q, 3 log q] and for 0 ≤ l ≤ N ′ faster than O(q). Here ∂2 denotes ∂
∂x2

.

Exactly same method will work for the Maass forms as well. 1

We have thus proved

Theorem 6.1. Let f be a modular (holomorphic or Maass ) cusp form on Γ\H,

and χq be a Dirichlet character on Z/qZ, s be any complex number. Let γ, η

be any positive reals, then there exists a positive integer N ′ = O(γ/η) such that

if for any t ∈ [−3C log q, 3C log q] and for any 0 ≤ l ≤ N ′, we can compute
∑q−1

j=0 χ(j)∂
l
2f̃(n(j/q)a(t)) up to a maximum error O((η/γ)5q−γ) in time D(q),

then we can compute τ(χq)L(s, f × χq) using O(D(q)qη) operations.

In the following sections, we prove that D(q) = (M5+η +N)1+o(1). We use this

result, along with the algorithm in section 8.6, to finish the proof of theorem 1.2.

6.1 Case q = MN where (M,N) = 1

Let g be a real analytic function with bounded derivatives on Γ\SL(2,R). Let

q = MN where (M,N) = 1. Let t be a real number in [−3C log q, 3C log q],

t1 = t+ log q. Let

x0 = a(t1).

1For an even Maass form if χq(−1) = −1, then we need to compute sums of type
∑q−1

j=0 χ(j)
∫D log q

1

Dq2 log q

∂xf(j/q + iy)ys−1/2dy. Notice that f̃(n(x)a(log y)) = f(x + iy). Hence

for any x0 we have , ∂x|x0
f̃(n(x)a(log y)) = ∂xf(x0 + iy). But we have n(x)a(log y) =

a(log y)n(x/
√
y). This implies that ∂x|x0

f̃(n(x)a(log y)) = ∂x|x0
f̃((log y)n(x/y)). This implies

that ∂x|x0
f̃(n(x)a(log y)) = y−1∂1f̃((log y)n(x0/y)). Recall ∂1 is defined in section 2.2. This

implies that
∂xf(x0 + iy) = y−1∂1f̃(n(x0)a(log y)).

Using this equation, we can follow exactly the same method in this chapter, to get the required
algorithm.
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In this section, we will consider the problem of computing the sum

S =

q−1
∑

k=0

χq(k)g(n(k/q)a(t))

=

q−1
∑

k=0

χq(k)g(A(q, 1, k)a(t1))

=
N−1
∑

j=0

M−1
∑

k=0

χq(j +Nk)g(A(q, 1, j + kN)a(t1)). (6.1.1)

Computing the sum of this type is equivalent to computing the sum (6.0.1). Recall

that A(q, 1, k) is defined in section 2.3. Use, A(q, 1, j+kN) = A(M, 1, k)A(N, 1, j)

to rewrite (6.1.1) as

S =
N−1
∑

j=0

Sj. (6.1.2)

Here, Sj is defined as

Sj =
M−1
∑

k=0

χq(j + kN)g(A(M, 1, k)vj). (6.1.3)

Here

vj = A(N, 1, j)x0.

(Ref. figure 1.3 ). We now use χq = χMχN to get

Sj =
M−1
∑

k=0

χq(j + kN)g(A(M, 1, k)vj)

= χN(j)
M−1
∑

k=0

χM(j + kN)g(A(M, 1, k)vj). (6.1.4)

Let us “reduce” the points v1, ..., vn to an approximate fundamental domain
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using the algorithm in chapter 7. Hence we have matrices {γj, xj} such that

vj = γjxj and xj lies in the “approximate fundamental domain”.

Notice that χM is a character on Z/MZ. Given j let bj is defined by j ≡ bj(

mod M). Hence we rewrite (6.1.4) as

Sj = χN(j)
∑

m|M

M/m−1
∑

k=0

hbj(m, k)g(A(M,m, k)γjxj). (6.1.5)

Here for {0 ≤ j ≤ q − 1}, hj : T (M)→ C
× is defined as:

hj((m, k)) = δ1(m)χM(j + kN). (6.1.6)

Where, δ1 is the characteristic function of {1}. 2

The number of points in T (M) are at most M1+η ( using the fact that the

number of divisors of M are at most O(Mη)). We know that the right action by

a ∈ Γ permutes the T (M) in Γ\SL(2,R). In other words, given any element a of

Γ, there exists a permutation σa on T (M) such that for each (m, k) ∈ T (M), we

have an a′ ∈ Γ such that

A(M,m, k)a = a′A(M,σa(m, k)).

We prove in the section 8.5 that if a ≡ b mod M , then σa = σb. This implies

that the total number of permutations of T (M) due to the right action of Γ is at

2In particular, for a prime number M , the functions hj are given explicitly by: hj(1, k) =
χM (j + kN) and hj(M, 0) = 0
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most M3. Using this, we rewrite (6.1.5) as

Sj = χN(j)
∑

(m,k)∈T (M)

hbj(σγj(m, k))g(A(M,m, k)xj). (6.1.7)

Notice that the number of distinct functions hbjσγj is at most M4 (ref. section

8.5). Let us enumerate them as r1, ..., rL (say) , where L ≤M4.

Notice that if the Hecke orbits “preserve” the distance between the points.

In other words, for any positive integer M , and any x, y ∈ SL(2,R) such that

x ∈ yV for some open neighbourhood V of the identity. Then A(M,m, k)x lies in

A(M,m, k)yV , for all (m, k) ∈ T (M). Hence given any positive η, we “sort” the

points {xj} into sets K1, ..., KQ such that x, y ∈ Kk implies that x−1y ∈ Uq−η .

Here Q = O(q3η). We choose a representative wj from each Kj.

Let us focus on K1. Let us use a power series expansion around the point

A(M,m, k)w1 to compute g(A(M,m, k)x) for all x ∈ K1. We summarize the

result in the following lemma:

Lemma 6.1.1. Given any positive reals η, γ, positive integer M , x and y ∈ Ki

for some integer i. Let r be any complex valued function defined on the the set

T (M). Then there are explicitly computable constants cβ,x,y and d such that,

J(0, r, y) =
d

∑

|β|=0

cβ,x,yJ(β, r, x) +O(2M2q−γ). (6.1.8)

Here d = O(γ/η) and J(β, r, x) is defined by

J(β, r, x) =
∑

(m,k)∈T (M)

r((m, k))∂βg(A(M,m, k)x). (6.1.9)
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The constant in O is independent of M, q and is a polynomial in γ/η.

We will prove the lemma 6.1.1 in section 8.3. Notice that for fixed β, r and a

fixed x, we can compute J(β, r, x) in time O(M1+η). This gives us an exact idea

of the algorithm. The exact algorithm is given by:

6.1.1 Explicit algorithm

1. Compute and store the functions r1, ..., rL.

2. Reduction of points v1, ..., vN into points x1, ..., xN and sorting of the points

into sets K1, ..., KQ and choose a representative xni
from each Ki.

3. For each 0 ≤ l < N find jl such that hblσγl = rjl .

4. i← 1.

5. for all xl in Ki, and for all |β| ≤ d, compute and store cβ,xni ,xl
.

6. for all |β| ≤ d, and for all 0 ≤ t ≤ L− 1, compute and store J(β, rt, xni
).

7. for each xl in Ki, compute

Sl = χN(l)
d

∑

|β|=0

cβ,xni ,xl
J(β, rjl , xni

, ).

8. if i = Q compute S = S1 + ...+ SN else i← i+ 1 and go to step 5.

6.1.2 Time complexity

Let us compute the time complexity in the algorithm:
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Computing and storing ri for all i takes at most (roughly) O(LM1+η) time. But

recall that L ≤M4. Hence step 1 takes O(M5+η) time. The reduction and sorting

process in step 2 takes O(N) time. Step 3 also takes O(N) time. Notice that

for each xl, step 5 takes O(d3) steps. Hence for all l, step 5 takes O(d3N) steps.

Notice that for a fixed i, and fixed t, step 6 takes O(d3M1+η) time. Hence for fixed

i, and for all t, step 6 takes O(d3LM1+η) time. Recall that L ≤ M4 hence total

time spent for fixed i and all t is O(d3M5+η). Hence for all i, for all j and for all

t, the step 6 takes O(d3QM5+η) ≈ O(d3M5+4η) time. Recall here that Q ≈ M3η

and d = O(γ/η). Steps 7 and 8 take O(d3N) steps.

Hence the total time spent is O((γ/η)3(M5+7η +N)).

6.2 Case q = MN when M |N

Let q = MN where (M,N) = 1. Unless redefined in this section, we borrow the

notations from previous section.

We proceed as in previous section and rewrite (6.1.1) as

S =
N−1
∑

j=0

Sj. (6.2.1)

Here, Sj is defined as

Sj =
M−1
∑

k=0

χq(j + kN)g(A(M, 1, k)vj). (6.2.2)

vj as in the previous section. We now use the fact that there exists a constant b
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such that χq(1 + kN) = e(bk/M) (8.6.2). Using this we have

Sj = χq(j)
M−1
∑

k=0

e(bj−1k/M)g(A(M, 1, k)vj). (6.2.3)

Notice that j−1 denotes the multiplicative inverse of j mod m. Let bj be defined

by bj ≡ j−1 mod M , where 0 ≤ bj ≤ q − 1. We rewrite (6.2.3) as

Sj = χq(j)

M/m−1
∑

(m,k)∈T (M)

hbj((m, k))g(A(M,m, k)vj). (6.2.4)

Here hj : T (M)→ C
×

hj((m, k)) = δ1(m)e(bjk/M). (6.2.5)

Notice again that there are M distinct functions hbj . We can proceed exactly

similarly to get the required algorithm.

6.3 Proof of theorem 1.2

Let q = MN . Let M1 = (M,N) and M2 = M/M1 such that (M2, N) = 1. In

chapter 8 Appendix, we will give a O(M2) algorithm to compute τ(χq). Hence it

only remains to give an algorithm to compute (6.1.1).

We proceed as in previous sections and rewrite (6.1.1) as

S =
N−1
∑

j=0

Sj. (6.3.1)

Here, Sj is defined as
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Sj =
M−1
∑

k=0

χq(j + kN)g(A(M, 1, k)vj). (6.3.2)

vj as in the previous sections. Notice that χq = χM2χM1N and that there exists b

such that χM1N(1 + kN) = e(kb/M1). We rewrite (6.3.2) as

Sj =

M1−1
∑

k=0

M2−1
∑

l=0

χq(j + (k + lM1)N)g(A(M, 1, k + lM1)vj)

=

M1−1
∑

k=0

M2−1
∑

l=0

χq(j + kN + lM1N)g(A(M, 1, k + lM1)vj)

=

M1−1
∑

k=0

χM1N(j + kN)

M2−1
∑

l=0

χM2(j + kN + lM1N)g(A(M, 1, k + lM1)vj)

= χM1N(j)

M1−1
∑

k=0

e(
bj−1k

M1

)

M2−1
∑

l=0

χM2(j + kN + lM1N)g(A(M, 1, k + lM1)vj).

(6.3.3)

Notice that for fixed k and l, the quantity e(bj−1k/M1) is uniquely determined

for j mod M1 and χM2(j + kN + lM1N) is uniquely determined for j mod M2.

Hence if j1 ≡ j2 mod M then for all 0 ≤ k ≤M1− 1 and 0 ≤ l ≤M2− 1 we have

that,

e(
j−1
1 bk

M1

)χM2(j1 + kN + lM1N) = e(
j−1
2 bk

M1

)χM2(j2 + kN + lM1N).

Let bj be defined by bj ≡ j mod M , where 0 ≤ bj ≤ M − 1. We can rewrite

(6.3.3) as

Sj = χM1N(j)
∑

(m,k)∈T (M)

hbj((m, k))g(A(M,m, k)vj). (6.3.4)
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Here hbj : T (M)→ C
× is defined by:

hbj((m, k)) = δ1(m)e(bb−1
j k/M1)χM2(bj + k0N + l0M1N); (6.3.5)

where,

k = k0 + l0M1, 0 ≤ k0 ≤M1 − 1, 0 ≤ l0 ≤M2 − 1.

The inverse in (6.3.5) is mod M1. Notice again that there are only M distinct

functions hbj on T (M). Hence using the same algorithm as in the previous sections

along with theorem 6.1 we get the result.
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Chapter 7

Computational issues and

‘sorting’ algorithms

In this chapter, we will deal with the various issues regarding implementation of

the algorithms. In section 7.1 we will state and prove proposition 7.1.1, which is

used frequently in the thesis to compute inetgrals of “well behaved” functions on a

finite interval. In sections 7.2 and 7.3, we explicitly give the reduction and sorting

algorithm used in proving theorems 1.1, 1.2 and 5.1. Throughout the thesis we have

assumed the real number model of computation. The algorithms however work if

we work with numbers specified by O(log T ) (or O(log q)) digits. In section 7.4,

we deal with issues regarding the machine error in our algorithms due to working

with such finite precision numbers. We will also deal with issues regarding the

input of f , Γ and χq in section 7.4.
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7.1 Numerical integration for analytic functions

We have used the following theorem about numerical integration of a real analytic

function repeatedly in the paper. We will state and prove it in this section.

Proposition 7.1.1. Let f be a real analytic function on (a, b), a, b extended real

numbers. Let R be such that for any k ∈ N of |∂kf(x)| ≪ Rk for all x in (a, b).

Let [c, d] in (a, b) and let T ≥ 1 be any positive constant. If at any given point

in [c, d] and n ∈ N and any γ > 0, we can compute nth derivative of f up to an

error of O(T−γ) in polynomial (in n and γ ) time, then for any given ǫ,D > 0,

we can compute
∫ d

c
f(t)dt up to an error at most O(R|d − c|T−D), using at most

O(R|d− c|T ǫ) arithmetic operations. The constant involved is polynomial in D/ǫ.

Proof. Let us assume that f is defined on an interval of type [0, d− c]. The idea is

to use a fine grid of |c − d|T ǫR equispaced points and use power series expansion

around the nearest left grid point to compute f . In particular, let us split the

integral into integrals of size T−ǫ/R each.

Let us define

M = T−ǫ/R,M2 = ⌊|d− c|/M⌋ − 1.

Hence
∫ |d−c|

0

f(t)dt =

M2
∑

x=0

∫ M

0

f(xM + t)dt+

∫ |d−c|

M(M2+1)

f(t)dt. (7.1.1)

Let us use power series expansion around each xM to compute the value of f

at a nearby point. Hence we get

f(xM + t) =
∞
∑

l=0

∂l(f)(xM)
tl

l!
.

For |t| < M and any non negative integer N , we get
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|f(xM + t)−
N
∑

l=0

∂l(f)(x)
tl

l!
| ≤

∞
∑

l=N+1

T−ǫl

l!
≤ eT−ǫN . (7.1.2)

Substituting this in equation(7.1.1), we get

∫ d−c

0

f(t)dt =

M2
∑

x=0

N
∑

l=0

∫ M

0

∂l(f)(x)
tl

l!
dt

+
N
∑

l=0

∂lf(M(M2 + 1))

∫ d−c−MM2−M

0

tl

l!
+ E

=

M2
∑

x=0

N
∑

l=0

∂l(f)(x)

∫ M

0

tl

l!
dt

+
N
∑

l=0

∂lf(M(M2 + 1))

∫ d−c−MM2−M

0

tl

l!
+ E. (7.1.3)

Here,

|E| ≪ e(M2 + 1)T−Nǫ.

Notice that any ∂lf(x) can be computed at any x up to T−D−ǫ error in polynomial

in l and D+ ǫ time. Hence the total error in (7.1.3) due to the error in computing

∂l(f)(x) is at most O(R|d− c|T−D). The constant involved in O is polynomial in

D + ǫ and N . Notice that the total number of operations needed to compute the

sum on the RHS of (7.1.2) is O(M2N). We choose N = D
ǫ
to get the result.
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7.2 Sorting and Reduction

In this section, we will present an algorithm for ‘reducing’ a point z in H to an

approximate fundamental domain. Throughout the section, given A =







a b

c d







and z in H, let us denote

Az =
az + b

cz + d
.

Let us recall some properties of the Fuchsian groups of first kind that we will be

using.

Throughout this section we will use Gothic characters a, b, c, ... to denote the

cusps. Recall that a number a in R∪∞ is called a cusp for Γ if the stability group

of a in Γ is generated by an infinite cyclic group generated by a parabolic motion.

In particular,

Γa = {γ ∈ Γ : γa = a} =< γa > .

Moreover, there exists matrix σa such that

σa∞ = a, σ−1
a γaσa =







1 1

0 1






. (7.2.1)

We shall call σa scaling matrix for a. Notice that if a =∞ then corresponding

scaling matrix is the identity matrix. We will also use the following result [8,

Chapter 2]:

Result 7.2.1. Given any cusp a of Γ, let ca = min {|c| > 0 :







∗ ∗

c ∗






∈

σ−1
a Γσa}. Then ca is positive if Γ is a Fuchsian group of first kind.

We use the previous result to get:
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Claim 7.2.1. Given any cusp a of Γ and any z = x + iy in H such that y < 1

then, we have a constant da depending only on Γ and a such that Im(σ−1
a γz)≪ da

y

for any γ ∈ Γ.

Proof. Let us prove the claim for the case when a = ∞. For any other cusp, the

proof will follow very similarly. Let γ =







a b

c d






be any element of Γ then we

have

Im(γz) =
y

|cz + d|2 .

But

|cz + d| > |c|y ≥ c∞y

(using result (7.2.1)). Hence we get the result.

Let us assume we have a set {γi} of generators of Γ. Let a0 = ∞, a, a1, ..., ak

be the set of all the inequivalent cusps. Without loss of generality, let us assume

that all the cusps aj’s lie in the interval 0 ≤ x ≤ 1. Let us now define the regions

D∞,D1, ...,Dk by

D
t
∞ = {z : 0 ≤ x < 1, t ≤ y},Dj = σajD

1
∞ , j = 1, ..., k. (7.2.2)

Let

y0 = inf
0≤x≤1

inf
j
{σaj(x+ i)},

a = inf{y0, 1}.

Notice, using claim 7.2.1, we have that a 6= 0. Let

D0 = D
a
∞
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and

F =
⋃

j=0,...,k

Dj .

Notice that F is an approximate fundamental domain (a type of Siegel set) and

for every point x in H, there exists a γ ∈ Γ such that γx is in F . In particular,

when Γ = SL(2,Z), F = D
1
∞.

D2

D3

y = 2

D1

y = y0

0 1a1 a2

Figure 7.1: Example of an approximate fundamental domain. In this example, Γ
has three inequivalent cusps a0 = ∞, a1 and a2. The corresponding approximate
fundamental domain is enclosed by bold lines. D1 and D2 correspond to the cuspidal
regions and the compact regions respectively. D3 corresponds to the set which
consists of points with hyperbolic distance at most 3 from D2.

Given any point z0 = x + iy such that 0 ≤ x ≤ 1 we find γ in Γ such that

γz0 ∈ F . We will call this as the ‘reduction’ of z to F . We will use the following

proposition:
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Proposition 7.2.2. Given a finite set of generators {γi} of Γ and any compact

subset K of H, there exists a constant CK and a subset C(K) = {g1, ..., gCK
} of Γ

such that given any point x in K,there exists a g ∈ C(K) such that gx ∈ F .

Proof. Let us fix a fundamental domain F contained in F . We know that H is a

equal to
⋃

γ∈Γ γF. The proof follows easily from the observation that given any

compact set K, there are only finitely many Γ-translates of F that interset K.

7.2.1 Reduction Algorithm

Let us first divide F in cuspidal part and compact part, the following way:

Let

D1 = ∪j=0,...,kσajD
2
∞.

Let

D2 = F ∩Dc
1.

Here Dc
1 correspond to the compliment of D1. Let

D3 = {z ∈ H|d(z,D2) ≤ 3}

Here d( , ) denotes the hyperbolic distance on H. As D2 is compact, the distance

of a point from D2 makes sense. Let C(D3) be the set of ‘reductors’ of D3 as in

proposition 7.2.2.

Notice that if y > y0 then we are done. So without loss of generality let us

assume y < y0. Let γ =







a b

c d






, z = γ(x+ it).

Input: γi for i = 1, ..., k generators of Γ. a0, a1, ..., ak be the corresponding set
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of inequivalent cusps. Let a0 =∞. Any point z0 = x+ iy such that 0 ≤ x ≤ 1.

Output: γ in Γ such that γ(z0) ∈ F . Initial condition:

1. [initialize] t = 1, z ← x+ it,







a b

c d






←







1 0

0 1






.

2. [initialize j] set j ← 0.

3. [ check if we checked all the cusps] if j = k + 1 then go to step (8).

4. [ Check if in jth cusp ] If Im(σ−1
aj







a b

c d






z) > 2 then go to step (5).

Otherwise set j ← j + 1 and go to step (3).

5. [When in cusp]







p q

r s






← σ−1

aj







a b

c d






, t1 ← 1−

√
1−4r2(rx+s)2

2r2
. (Here

t1 < t is chosen such that , Im(







p q

r s






(x+ it1)) = 1 ).

6. [check if you have already passed z0] if t1 < y then

n← ⌊Re(







p q

r s






(x+ iy))⌋ − 1 ,







a b

c d






← σaj







1 −n

0 1






σ−1
aj







a b

c d






, output







a b

c d






and termi-

nate algorithm. Otherwise go to step (7).

7. n← ⌊Re(







p q

r s






(x+ it1))⌋ − 1 ,







a b

c d






← σaj







1 −n

0 1






σ−1
aj







a b

c d






, z ←







a b

c d






z. Go to step

(2).
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8. [ compact case] t1 ← t
e
.

9. if t1 > y then t = t1. Then find







p q

r s






in C(D3) such that







p q

r s













a b

c d






z lies in F . Set







a b

c d






←







p q

r s













a b

c d






,

z ←







a b

c d






z. Go to step (2). Otherwise go to step (10).

10. t ← y. Then find







p q

r s






in C(D3) such that







p q

r s













a b

c d






z lies

in F . Put






a b

c d






←







p q

r s













a b

c d






.

Output







a b

c d






. End algorithm.

We can see that at ith stage of the algorithm, |ti| ≪ (2
e
)i. Using proposition 7.2.2,

we can see that every step takes O(1) operations. Hence we get that the total

complexity for the running time of algorithm is O(| log y|).
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7.2.2 Reducing in SL(2,R)

Notice that the above algorithm works for reducing a point of H to F . For the

SL(2,R) case, let us define an approximate fundamental domain F ′ for Γ\SL(2,R)

by

F ′ = {n(t)a(y)K(θ) ∈ SL(2,R) : n(t)a(y)i ∈ F}. (7.2.3)

Given any g in SL(2,R), we can first reduce the point z = gi to F , using the

previous algorithm. Let a ∈ Γ be such that az is in F . then ag will denote the

reduction of g to F ′.

7.3 Sorting algorithm

Let F ′ be an approximate fundamental domain in (7.2.3). Let x1, ..., xN be points

of F ′. Let xj = n(tj)a(yj)K(θj) be the Iwasawa decomposition for each xj. This

implies that 0 ≤ tj ≤ 1 and −π < θj ≤ π for every j. Further let’s assume that

|yj| ≪ log T . Let δ < 1/60 be any fixed constant.

In this section, we will give an algorithm to sort the points xj’s in the sets

S1, ..., SL, such that x, y ∈ Sj implies that x−1y = n(t)a(y)K(θ) (where −δ ≤

t, y, θ ≤ δ), using O(N + log Tδ−3) operations. Moreover, L ≪ log Tδ−3. The

constants in O and ≪ are independent of choice of δ,N and T .

Let us define the sets F ′
j as

F ′
j = {n(t)a(y)K(θ) ∈ SL(2,R) : n(t)a(y)i ∈ Dj}. (7.3.1)

Clearly

F ′ =
⋃

F ′
j
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Let us write the set {x1, ..., xN} as ∪Pl where Pl’s are disjoint sets such that each

Pl is contained in F ′
l .

We will use the following lemma here.

Lemma 7.3.1. Let x be any element of F0. Let x = n(t0)a(y0)K(θ0) be the

Iwasawa decomposition for x where 0 ≤ t0 ≤ 1, 0 ≤ y0 ≤ ∞,−π < θ0 ≤ π. Given

any δ < 1
60
, let

F x
δ = {n(t)a(y)K(θ) : (t, y, θ) ∈ [t0 − δ, t0 + δ]× [y0 − δ, y0 + δ]× [θ0 − δ, θ0 + δ]}.

Then for any A,B in F δ
x , we have A

−1B ∈ U30δ. Recall Uδ is defined in (2.2.1).

Proof. Given any A,B in F x
δ , there exist (t1, y1, θ1), (t2, y2, θ2) in [t0 − δ, t0 + δ]×

[y0−δ, y0+δ]×[θ0−δ, θ0+δ] such that A = n(t1)a(y1)K(θ1) , B = n(t2)a(y2)K(θ2).

This implies that

A−1B = k(−θ1)a(−y1)n(−t1)n(t2)a(y2)K(θ2).

It is easy to see that ||A−1B − I||∞ ≤ 5δ. Hence using result (8.3.1), we get

the result if 5δ < 1
12
.

Given integers n1, n2, n3 let us define the sets Vn1,n2,n3 by

Vn1,n2,n3 = {n(t)a(y)K(θ) : ⌊30t/δ⌋ = n1, ⌊30y/δ⌋ = n2, ⌊30θ/δ⌋ = n3}

Let us define the sets Sj
n1,n2,n3

by

Sj
n1,n2,n3

= {A ∈ Pj : σ
−1
aj
A ∈ Vn1,n2,n3}.
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Lemma 7.2.1 along with the condition that |yj| ≪ log T for all j, gives us that

the total number of sets needed to sort the points in Pj are O(log Tδ−3). Here the

constant independent of δ.

This gives us the required algorithm. The ‘reduction and sorting’ algorithms

used in the proof of 1.1, 5.1 and 1.2 follow from the algorithms given in this section.

7.4 Computational issues

7.4.1 Machine error

Throughout the algorithm we have assumed that we work with a real number

model of computation. We have therefore assumed that the real numbers are

stored completely up to zero error and that the arithmetic operations are error

free. In reality as one can not fully specify a real number with finite amount of

data, in practice, the real numbers are stored as floating point number.

Let us assume that each number is stored by a floating point number of

O(δ log T ) bits1. We will assume that there exists a constant a auch that any

arithmetic operation (addition/ multiplication/ subtraction/ division /log /expo-

nential ) takes O((log T )a) time. As our algorithm has exponential (O(T 7/8+η))

complexity, the time involved in each operation is comparatively negligible and

can be absorbed in the T η term. Hence we will assume that each operation takes

a unit time instead. Let us now compute the possible rounding off errors.

Let us give examples of the different ways errors can arise due to fixed floating

point arithmetic. Suppose we store numbers as a string of 10 digits and an exponent

1This means a number is stored as a finite number string and an exponent. In our case
exponent will be stored with O(log T ) bits of data and the number string will have O(log T ) bits
of data.
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of 2 digits, a positive or negative sign for exponent and a positive or negative sign

for the number. Notice that the numbers 1010 and 1 can be represented exactly by

this system but the number 1010+1 which is equal to 1.0000000001×1010 will also

be saved as 1.000000000×1010. Hence the total error in this operation is 1, which is

quite large. Similarly the number 1.0000000011 can only be stored as 1.00000001×

100. Notice that this number is specified up to an error of O(10−10), which is very

small. But the product 1010 × 1.0000000011 differs from 1010 × 1.00000001 × 100

by .1, which is also a fairly large error. Hence one has to be careful about errors

arising due to working with very small or very large numbers. in the following

we will show that we can choose a suitable δ such that if we work with numbers

specified by O(δ log T ) digits, the total floating point error in our algorithm stays

small).

For every real number a, let a be stored as the floating point number c(a), where

c(a) is specified by O(log T ) amount of data. This implies that the total error

|a−c(a)| ≪ |a|T−δ. Hence notice that if we are dealing with numbers which are as

large as T δ, the total machine error will be significant. Similarly if we are adding

two numbers a and b, the total error |c(c(a)+c(b))−(a+b)| ≤ (2+ |a|+ |b|)T−δ and

the error for multiplication becomes |c(c(a)c(b))− ab| ≤ 2(1 + |ab|)T−δ. Similarly

for division, we have |c( c(a)
c(b)

)− a
b
| ≪ (1 + |a

b
|)T−δ

Let us analyze the proof of theorem 5.1 for the possible rounding off errors.

First let’s notice that at any stage of the algorithm, we do not multiply/divide

more than r1 = O(γ
η
) numbers together. Recall ǫ = 1

8
. As f̃ is assumed to have

bounded derivatives, it is clear that, except for the proof of proposition 4.3.1, there

exists a constant r = O(max{1 + η, r1}) such that all the numbers involved in our

calculation are O(T r) and also notice that at any step other than the proof of
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proposition 4.3.1, we do not divide by numbers which are smaller than T−r. As

the total number of operations needed for our algorithm is O(T
7
8 ) the total error

contributed because of multiplication/division is O(T
7
8
+2r2T−δ). This implies that

total error due to adding/subtracting these numbers is O(T
7
8
+o(1)T

7
8
+r2T−δ). This

implies that if we choose δ = 7
4
+ r2 + γ then we make sure that total machine

error involved is O(T−γ).

This takes care of all the calculation except using the equation (4.3.6) (or

(4.3.7)), where we divide numbers ≈ exp(−πT/2) . By using the error bound for

division, we get that we can work with numbers of O(δ log T ) bits to achieve the

desired precision in the computation.

Similar analysis can be done for the proofs of theorems 1.1 and 1.2 as well.

7.4.2 Input for the algorithm

As mentioned before, specifying Γ and f , a priori need an infinite amount of data.

Similarly, specifying a Dirichlet character χq need O(q) amount of data. Here, we

will specify what we mean by ‘given’ f,Γ and χq.

7.4.3 Input for χq

A priori, specifying χq might require O(q) amount of data. We will use an efficient

way of specifying χq, when q has large factors. As before, let us deal with the

following 3 cases separately:

7.4.3.1 Case: q = MN, (M,N) = 1.

In this case, we know that χq = χMχN . Our input in this case would be χM and

χN . Notice that it takes O(M + N) data to specify χM and χN . Once χM and
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χN are stored, χq(n) can be computed for any 0 ≤ n ≤ q − 1, in O(log q) more

operations.

7.4.3.2 Case: q = MN,M |N .

In this case, we know χq(j + kN) = χq(j)χq(1 + j−1kN). As noticed before,

there exists a such that χq(1 + kN) = e(ak/M). This implies that χq(1 + kN)

is specified completely by a. Hence χq can be specified completely if χq(j) for

j = 0, ..., N − 1 and a are specified. Notice that (Z/NZ)× is an abelian group.

Hence using Jordan decomposition, we can decompose it into a direct sum of cyclic

subgroups C1, ..., CL, (say). From each Cj, choose a generator cj. If dj denotes the

cardinality of Cj for each j, then we know that for each j, there exists a kj such

that c
dj
j = 1 + kjN . This implies that (χq(cj))

dj = χq(1 + kjN) = e(akj/M).

This implies that each χq(cj) is a dthj root of e(akj/M). Also notice that χq is

completely specified if the integer a and χq(cj) are specified for all j. Hence the

input for χq in this case will be integers a, cj , dj, kj and a dthj root of e(akj/M) for

j = 0, ..., L.

Notice that given N , the integers cj, dj , kj can be computed in O(N) operations.

Given χq(cj) and a, we can compute χq(n) for any integer 0 ≤ n ≤ q−1, in O(log q)

time. Hence total input size is O(N).

7.4.3.3 Case of a general q

Let q = M1M2N where M1|N and (M2, N) = 1. Notice that χq = χM2χM1N .

χq is specified completely if χM2 and χM1N are specified. But notice that as per

previous case, χM1N can be specified by O(N) data. Hence χq can be specified by

O(M +N) size input.
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7.4.4 Input for f

Throughout, we have assumed that given any point g of F ′
⋂

SL(2,R), and any β

in Z
3
+, we can compute ∂β f̃(g) up to an error of O(T−γ) in “unit” time. In reality

however, the time needed turns out to be polynomial in |β|, log T and the precision

level γ. We quantify the actual result as:

Theorem 7.1. Let F ′ be an “approximate fundamental domain” as defined by

definition 7.2.3. Let g′ be in F ′ and let g′ = x′ + iy′ be such that | log y′| ≪ log T .

Let γ be any given positive real. If we can compute ( up to an error O(T−γ))

the nth Fourier coefficient of a cusp form f of weight k at every cusp a of F ′ in

polynomial (in n) time, then given any β ∈ Z
3
+, we can compute ∂β f̃(g′) up to an

error of O(T−γ) using O((log T )2 + |β|5) operations. The constant involved in O

is independent of |β| and T .

Proof. Let g′ =







a b

c d






. Hence g′i = ai+b

ci+d
= x′+ iy′. We also know that x′+ iy′

lies in the approximate fundamental domain F ( because g′ lies in F ′).

Let us first give an algorithm to compute the derivatives of f at x′+ iy′. Let us

assume that x′+ iy′ lies in the cuspidal region corresponding to∞. 2 This implies

that y′ ≫ 1. First, let us assume that f is a Maass cusp form. Hence we have

|f(x′ + iy′)−
N
∑

n=1

f̂(n)W ′(n(x′ + iy′))|

= |f(x′ + iy′)−
N
∑

n=1

f̂(n)2
√

ny′ cos(2πnx′)Kir(2πny
′)| (7.4.1)

≪
∞
∑

n=N+1

nk/2+1/2 exp(−πy′n/2)≪ e−
πNy′

4 .

2A similar method will work in case of a general cusp.
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whenN ≫ k log k. Here we use the exponential decay of Bessel functions quantified

by:

Kν(y) = (π/2y)
1
2 e−y(1 +O(

1 + |ν|2
y

)). (7.4.2)

This implies that in order to compute f(x′ + iy′) up to an error of O(T−γ) we

need to compute the partial sum with N ≈ log T terms. We deal with the higher

derivatives of f , by using the recurrence relation

−2K ′
ν(z) = Kν+1(z) +Kν−1(z)

along with a similar technique to equation (7.4.1) to compute the derivatives of

∂β1
x ∂β2

y f(x′ + iy′) using at most O(log T + |β1 + β2|2) operations.

Notice that a similar method can be employed for a holomorphic cusp form of

weight k to get the algorithm to compute f(x′ + iy′) in the holomorphic case.

We now give an algorithm to compute the ∂β f̃(g′). Let g′ =







a b

c d






. Using

definition 1.1.4, we have

f̃(g′) = (ci+ d)−kf

(

ai+ b

ci+ d

)

.

From the argument we just gave before, we can see that we can compute f̃(g′) in

time O(log T ). The constant in O is absolute. It is easy to see that f̃(g′K(θ)) =

exp(kθ)f̃(g′). This implies that for any non negative integer n, we have

∂n
3 f̃(g

′) = knf̃(g′).
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Hence for any β = (β1, β2, β3) ∈ Z
3
+, we have

∂β f̃(g′) = kβ3∂(β1,β2,0)f̃(g′). (7.4.3)

Let us define

C(j, l, t) = (ci+ ct+ d)−j|ci+ ct+ d|−l. (7.4.4)

It is easy to see that for any β ∈ Z
3
+,we can write each ∂β f̃(g′) as a linear combi-

nation

∂β f̃(g′) = kβ3

∑

β′=(β′

1,β
′

2)∈Z
2
+,|β′

1+β′

2|≤β1+β2

3|β′|+k
∑

l,n=0

aβ,β′,n,lC(n, l, 0)∂β′

2
x ∂β′

3
y f(x′ + iy′).

Moreover, all the corresponding aβ,β′,n,l’s can be computed and stored using at

most O(|β|5) arithmetic operations.

Let us prove the above statement using induction. Result is clearly true for

β = (0, 0, 0) where aβ,(0,0),0,0 = 1. Suppose we can compute and store aβ,β′,n,l for

all β ∈ Z
3
+ such that |β| ≤ N0 using O(1 +N5

0 ) arithmetic operations. We have to

prove that for any β1 such that |β1| = N0 and for all 0 ≤ l, n ≤ k + 3|β| + 3, we

can compute 3 and store aβ1,β′,n,l for all β
′ ∈ Z

2
+ such that |β′| ≤ |β1

1 + β1
2 |, using

O(N3
0 ) operations. Let us define β = β1 − (1, 0, 0) if β1

1 > 0 and β = β1 − (0, 1, 0)

if β1
1 = 0 and β1

2 > 0.

Notice

g′n(t) =







a at+ b

c ct+ d






, (7.4.5)

3We define aβ,β′,n,l = 0 when n or l > 3|β|+ k and when n or l < k.
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g′a(y) =







ey/2a e−y/2b

ey/2c e−y/2d






. (7.4.6)

Then

∂β f̃(g′n(t))

= kβ3

∑

β′=(β′

1,β
′

2)∈Z
2
+,|β′|≤β1+β2

3|β|+k
∑

l,n=0

aβ,β′,n,lC(n, l, t)∂β′

2
x ∂β′

3
y f(

ai+ at+ b

ci+ ct+ d
)

= kβ3

∑

β′∈Z2
+,|β′|≤β1+β2

3|β|+k
∑

l,n=0

aβ,β′,n,lC(n, l, t)∂β′

2
x ∂β′

3
y f(

ac+ (at+ b)(ct+ d) + i

|ci+ ct+ d|2 ).

(7.4.7)

Differentiate this function with respect to t and evaluate at 0. We can see that for

β1 = β + (1, 0, 0) and for all n such that k ≤ n ≤ |β1 + β2| + k, we can compute

aβ1,β′,n for all |β′| ≤ |β1 + β2|, using at most O(N3
0 ) operations.

Similarly using (7.4.6), we can prove analogous result for ∂β1
f̃(g′) when β =

(0, β2, β3) and β1 = β + (0, 1, 0).

Hence, if we compute and store aβ,β′,n for all |β| ≤ N0, then computing and

storing aβ1,β′,n,l for each |β1| = N0 + 1 and for relevant β′, n and l takes O(N3
0 )

more operations. Hence, the total operations needed to compute and store aβ,β′,n,l

for all |β1| = N0 + 1 is at most O((N0 + 1)4).

We already proved that computing ∂β1
x ∂β2

y f takes O(log T + |β|2) more steps.

This implies that we can compute ∂β1
f̃(g′) in O(log T + |β|4) steps. The constant

involved is independent of |β|.

In the theorem 7.1, we have assumed that Fourier coefficient of f can be com-
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puted in polynomial time. The class of such cusp forms is large. For example let

us recall that the Ramanujan delta function is defined by

∆(z) = (2π)12e(z)
∞
∏

1

(1− e(nz))24.

Clearly, we can compute the nth Fourier coefficient exactly (up tp a factor of π12)

in polynomial time using numbers of O(log n) bits.

In the proof of theorem 7.1, we have also assumed that we can compute the

values of the Bessel functions up to an error of O(T−γ) in unit time. We refer the

readers to [2] for a detailed discussion about high precision computations of Fourier

coefficients of Maass forms as well as dealing with the computations involving K-

Bessel functions.

7.4.5 Input for Γ

We assume that Γ is given in terms of a finite set of generators and a set of all

inequivalent cusps {aj} and corresponding scaling matrices {σaj}. We can assume

that generators of Γ are given to us by matrices with numbers of O(δ log T ) bits.
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Chapter 8

Appendix

In this chapter, we prove various facts that we have repeatedly used in this thesis.

We deal with some special functions and give a proof of the proposition 4.3.1 in

section 8.1. We prove the bounds on the derivatives of the lift f̃ of a cusp form f in

section 8.2. In sections 8.3 and 8.5, we will prove the exact statements quantifying

the “special properties” of the horocycle flow and Hecke orbits. An algorithm to

compute the Gauss sum τ(χq) will be given in section 8.6.

8.1 Special functions

Let us recall the definitions and some properties of some special functions and

prove proposition 4.3.1.

Definition 8.1.1. Given, a, b, c any complex numbers and |z| < 1, we define the

hypergeometric function F (a, b, c, z) by

F (a, b, c, z) =
Γ(c)

Γ(a)Γ(b)

∞
∑

n=0

Γ(n+ a)Γ(n+ b)

Γ(n+ c)n!
zn. (8.1.1)
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There is an analytic continuation of this function to the whole complex plane

except a branch cut from 1 to infinity.

We will use the following well known property of the Hypergeometric functions

(ref. [15, 9.132]).

Lemma 8.1.2.

F (a, b, c, z) =
Γ(c)Γ(b− a)

Γ(b)Γ(c− a)
(1− z)−aF (a, c− b, 1 + a− b,

1

1− z
)

+
Γ(c)Γ(a− b)

Γ(a)Γ(c− b)
(1− z)−bF (b, c− a, 1 + b− a,

1

1− z
). (8.1.2)

provided c is non zero and a− b is not an integer.

We also need the following asymptotic expansion of the Gamma function ([15,

8.327]) given by

Γ(z) = zz−
1
2 e−z
√
2π(1 +O(1/|z|)). (8.1.3)

Hence for z = σ + it, σ fixed, we get,

Γ(σ + it) = ei
π(σ−

1
2 )

2 tσ−
1
2 e−

πt
2 (

t

e
)it
√
2π(1 +O(t−1)). (8.1.4)

Here, t is positive and the constant in O depends on σ. We use the following result

about the Bessel functions ([15, 6.699]):

Result 8.1.1. Let r be any fixed complex number such that |Im(r)| < 1
2
and T, T ′ >
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0, we have

∫ ∞

0

cos(T1t)Kir(t)t
iT−1/2dt = 2iT−3/2Γ(

ir + iT + 1
2

2
)Γ(
−ir + iT + 1

2

2
) (8.1.5)

F (
ir + iT + 1

2

2
,
−ir + iT + 1

2

2
,
1

2
,−T 2

1 ).

Let us use (8.1.2) to get

F (
ir + iT + 1

2

2
,
−ir + iT + 1

2

2
,
1

2
,−T 2

1 ) (8.1.6)

=
Γ(1

2
)Γ(−ir)(1 + T 2

1 )
−ir−iT−

1
2

2

Γ(
−ir+iT+ 1

2

2
)Γ(

1
2
−ir−iT

2
)

F (
ir + iT + 1

2

2
,
ir − iT + 1

2

2
, ir + 1,

1

1 + T 2
1

)

+
Γ(1

2
)Γ(ir)(1 + T 2

1 )
ir−iT−

1
2

2

Γ(
ir+iT+ 1

2

2
)Γ(

ir−iT+ 1
2

2
)

F (
iT − ir + 1

2

2
,
−ir − iT + 1

2

2
,−ir + 1,

1

1 + T 2
1

).

Let us use the definition of hypergeometric function given in equation (8.1.1)

to get

F (
ir + iT + 1

2

2
,
ir − iT + 1

2

2
, ir + 1,

1

1 + T 2
1

) = 1 (8.1.7)

+
∞
∑

n=2

(n− 1 +
ir+iT+ 1

2

2
)...(

ir+iT+ 1
2

2
)(n− 1 +

ir−iT+ 1
2

2
)...(

ir−iT+ 1
2

2
)

(n− 1 + ir + 1)...(ir + 1)(n− 1)...1

(

1

1 + T 2
1

)n

.

Observe that for any complex number ν such that |Re(ν)| < 1, we have n−1 <

|n+ ν| ≤ (2 + 2|ν|)|n|. Using these bounds to (8.1.7), we get that for T > 1, then

for T1 > 16(1 + |r|+ |r|2)T , we have,

F (
ir + iT + 1

2

2
,
ir − iT + 1

2

2
, ir + 1,

1

1 + T 2
1

) = 1 + r1. (8.1.8)
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Where |r1| ≤ 1
7
.

Similarly we get that when T > 1, then for T1 > 16(1 + |r|+ |r|2)T , we have,

F (
ir + iT + 1

2

2
,
ir − iT + 1

2

2
, ir + 1,

1

1 + T 2
1

) = 1 + r2. (8.1.9)

Where |r2| ≤ 1
7
.

Using (8.1.6),(8.1.8) and (8.1.9) to (8.1.5) we get

∫ ∞

0

cos(T1t)Kir(t)t
iT− 1

2dt = D(T )(1 + r1 + E(T1, T )(1 + r2)). (8.1.10)

Here

D(T ) =
2iT−1Γ(

ir+iT+ 1
2

2
)Γ(

−ir+iT+ 1
2

2
)Γ(1

2
)Γ(−ir)(1 + T 2

1 )
ir−iT−

1
2

2

Γ(
−ir+iT+ 1

2

2
)Γ(

−ir−iT+ 1
2

2
)

. (8.1.11)

and

E(T1, T ) =
Γ(ir)Γ(

−ir+iT+ 1
2

2
)Γ(

−ir−iT+ 1
2

2
)(1 + T 2

1 )
ir

Γ(
ir+iT+ 1

2

2
)Γ(

ir−iT+ 1
2

2
)

. (8.1.12)

Notice that for a fixed T and real r, the argument of
Γ(ir)Γ(

−ir+iT+1
2

2
)Γ(

−ir−iT+1
2

2
)

Γ(−ir)Γ(
ir+iT+1

2
2

)Γ(
ir−iT+1

2
2

)
is

fixed. On the other hand (1+T 2
1 )

ir is a rapidly oscillating function of T1. Hence we

can choose a suitable C ′ > 16(1+|r|+|r|2) such that |1+r1+E(C1T, T )(1+r2)| > 1
2
.

Similarly if ir were real, then using the asympotics of Γ function to (8.1.12), we

can see that the behaviour of absolute value of E(T1, T ) is dominated by (1+T 2
1 )

ir,

for T1 > T . In other words, we can choose a suitable C ′ > 16(1 + |r| + |r|2) such

that |1 + r1 + E(T1, T )(1 + r2)| > 1
2
.
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Notice that for a real r, C ′ needs to be chosen such that

C ′ > 16(1 + |r|+ |r|2)

and

| arg((1 + C ′T )ir)− arg(
Γ(ir)Γ(

−ir+iT+ 1
2

2
)Γ(

−ir−iT+ 1
2

2
)

Γ(
ir+iT+ 1

2

2
)Γ(

ir−iT+ 1
2

2
)

)| ≤ π/20

( roughly). Notice that the second term in the above equation is independent

of C ′ and (1 + C ′T )ir is highly oscillating function of C ′. Hence after comput-

ing arg(
Γ(ir)Γ(

−ir+iT+1
2

2
)Γ(

−ir−iT+1
2

2
)

Γ(
ir+iT+1

2
2

)Γ(
ir−iT+1

2
2

)
), in unit time we can compute C1 satisfying the

required property. Similarly we can deal with the case when r is purely imaginary.

Using the asymptotics of Γ function, we can see that D ≫ T−4. The constant

only depends on r. We have thus proved proposition 4.3.1.

8.2 Real analytic functions on Γ\SL(2,R)

Throughout, let Γ be a lattice of SL(2,R). In this section we continue using the

notations defined in section 2.2.

Let f be a (holomorphic or Maass) cusp form on Γ\H. We recall the definition

of f̃ given in (1.1.4) again. f̃ : Γ\SL(2,R)→ C is defined as:

f̃ : Γ







a b

c d






→ (ci+ d)−kf

(

ai+ b

ci+ d

)

.

Result 8.2.1. There exists a compactly supported function h on Γ\SL(2,R) such

that f̃(g) = cf̃ ⋆ h(g) for some non zero constant c depending only on h and λ.

Proof. Let k = 0. Recall that f is an eigenfunction of the hyperbolic Lapla-
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cian with eigenvalue λ = 1
4
+ r2. We know that f̃ belongs to a subspace Vλ of

L2(Γ\SL(2,R)), which is isomorphic to a principal or complementary series rep-

resentation under the right action of SL(2,R). Moreover, the Casimir operator Ω

acts as a scalar λ on Vλ.

Let h be a compactly supported function on SL(2,R). We use the fact that

the convolution by h is a compact operator on Γ\SL(2,R) ([3, Chapter 2]) along

with the fact that the convolution operator commutes with the Casimir operator

on L2(Γ\SL(2,R)), to get that for any f ′ in Vλ,

Ω(h ⋆ f ′) = h ⋆ Ω(f ′) = λh ⋆ f ′.

This implies that the subspace Vλ stays invariant under the convolution by h.

Notice that f̃(gK(θ)) = e(kθ)f̃(g) for all g ∈ SL(2,R). We use the fact that f̃ is

unique (up to scalar) such function in Vλ. In other words, given any f ′ in Vλ such

that for all g ∈ SL(2,R), f ′(gK(θ)) = e(kθ)f ′(g) then f ′ = cf̃ for some scalar c.

Recall that

h ⋆ f̃(g) =

∫

SL(2,R)

f̃(z)h(z−1g)dz =

∫

SL(2,R)

h(z)f̃(z−1g)dz.

It is clear from the definition of h ⋆ f̃ that h ⋆ f̃(gK(θ)) = e(kθ)h ⋆ f̃(g) for all

g ∈ SL(2,R). This implies that given any compactly supported function h on

SL(2,R), there exists a constant ch such that h ⋆ f̃ = chf . We need to find a

function h such that ch 6= 0.

Let f̃ be non zero cusp form. Let us assume that f̃(Id) 6= 0 (the proof will be

similar in other cases). Let us choose h such that for all g ∈ SL(2,R), h(K(θ)g) =
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e(kθ)h(g). Notice that

h ⋆ f̃(Id) =

∫

SL(2,R)

h(z−1)f̃(z)dz

=

∫

SL(2,R)

h(K(−θ)a(−y)n(−t))f̃(n(t)a(y)K(θ))dz

=

∫

SL(2,R)

e(−kθ)h(a(−y)n(−t))e(kθ)f̃(n(t)a(y))dz

=

∫

SL(2,R)

h(a(−y)n(−t))f̃(n(t)a(y))dz. (8.2.1)

Notice that f̃(Id) 6= 0 hence we can choose a suitable smooth positive real valued

function h such that the right hand side integral of (8.2.1) is non zero.

The case when k > 0 can be solved analogously. Notice that using a SL(2,R)

analogue of proposition 7.1.1, (using a grid of O(T 3η) equispaced points and using

real analyticity of f̃) we can compute h ⋆ f̃(Id) up to an error of at most O(T−γ)

using O(T 3η) operations.

We refer the readers to [8, Chapter 1] for explicit computation for the case of

Maass forms. We now use the result 8.2.1 to bound the derivatives of f̃ .

Claim 8.2.1. For a cusp form f , there exists constant R > 0 such that for any

g ∈ SL(2,R) and β ∈ Z
3
+ ,

|∂β f̃(g)| ≪ R|β|

The implied constant is independent of g or |β|. Here |β| = β1 + β2 + β3.

Proof. Using the real analyticity of f , it can easily be shown that f̃ is a real

analytic function on Γ\SL(2,R).. We can see from the definition that f̃ is function

on Γ\SL(2,R). Using the exponential decay of f at cusps, we get that f̃ is a
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bounded function. Using the result 8.2.1 and the definition 2.2.2, we have

∂β f̃(g) = cf̃ ⋆ ∂βh(g).

As h is a test function, we have a constant R such that |∂βh(g)| ≪ R|β|. This

together with the fact that f̃ is bounded, we get the result.

8.3 Lemmas 5.1.3, 5.2.3 and 6.1.1 and computing

cx,y,β,l

Propositions 5.1.2 and 5.2.2 are analogous. Similarly lemmas 5.1.3,5.2.3 and 6.1.1

are analogous. Our main goal is to prove them in this section.

Let x, y be any two arbitrary points in Γ\SL(2,R) and let y = xA where A =






p q

r s






. Let Uǫ be the ǫ neighborhood ball around identity defined by definition

(2.2.1). Let A ∈ Uǫ. Let κ(t) =







√

t
T
−
√
Tt

0
√

t
T

−1






, n(t) =







1 t

0 1






.

We will use the following result to prove the propositions 5.1.2 and 5.2.2:

Result 8.3.1. Given any 0 < ǫ < 1
12
, and any A in SL(2,R) such that ||A−I||∞ <

ǫ, then A ∈ U6ǫ

Proof. We use the Iwasawa decomposition to write A = n(t)a(y)K(θ). We have

to prove that |t|, |y|, |θ| ≤ 6ǫ. The Iwasawa decomposition implies that

A =







ey/2 cos θ − te−y/2 sin θ ey/2 sin θ + te−y/2 cos θ

−e−y/2 sin θ e−y/2 cos θ






.

93



From the given condition, we have | tan θ| ≤ 2ǫ. This implies that |θ| ≤ 2ǫ. We

also have 1+ǫ ≥ e−y/2 cos θ ≥ 1−ǫ. The bound on θ implies that for 0 ≤ ǫ ≤ 1/12,

| cos θ| ≥
√
1− 4ǫ2. This implies that

1− ǫ ≤ e−y/2 ≤ 1 + ǫ√
1− 4ǫ2

≤ 1 + ǫ

1− ǫ
.

This implies that −y/2 ≤ log(1 + ǫ)− log(1− ǫ) ≤ 3ǫ and using the other side of

the inequality, we have −y ≥ −4ǫ. Hence we have |y| ≤ 6ǫ.

Similarly, using the previous bounds and the bound |ey/2 sin θ + te−y/2| ≤ ǫ we

get

|t| ≤ (ǫ+ |e−y/2 sin θ|)ey/2 ≤ 3ǫe6ǫ.

We next use the naive bound e6ǫ ≤ e1/2 for |ǫ| ≤ 1/12, to get

|t| ≤ 3e1/2ǫ.

Hence for 0 ≤ ǫ ≤ 1/12, we have

|t| ≤ 5ǫ.

Proof. Proof of proposition 5.1.2

The proposition is equivalent to proving that (n(−t)An(t)) ∈ UcT−η for some

c. Using result (8.3.1), it is enough to prove that ||n(−t)An(t) − I||∞ ≪ T−η for

all 0 < t < T ǫ where ||X||∞ denotes the usual infinity norm. But if we carry out
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the calculation, we see that

n(−t)An(t) =







p− tr (p− s)t− t2r + q

r tr + s






. (8.3.1)

Using (8.3.1) it is easy to see that if ||A−I||∞ < T−2ǫ−η then ||n(−t)An(t)−I||∞ ≪

T−η for all 0 < t < T ǫ.

If we look at the the equation (8.3.1) and compute the N,A,K coordinates for

n(−t)An(t), we get the following immediate corollary

Corollary 8.3.1. Using the same notation as in the proof of proposition 5.1.2,

given any β in Z2
+ × 0 and any k ∈ Z+, we have constants cx,y,β,k such that

|cx,y,β,k| ≪ 2kk3β!T−k(ǫ+ η
2
)

and

(yn(t)− xn(t))β =
∑

k∈Z+

cx,y,β,kt
k.

This also implies that given any γ, η > 0, we have a constant M = O(γ/η) such

that for all 0 ≤ t ≤ T ǫ,

(yn(t)− xn(t))β

β!
=

1

β!

M
∑

k=0

cx,y,β,kt
k +O(T−γ). (8.3.2)

The O constant is absolute.

Proof. We will use the following result here.
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Result 8.3.2. Given any







p q

r s






in SL(2,R), we have







p q

r s






= n(

pr + qs

r2 + s2
)a(− log(r2 + s2))K(tan−1(−r

s
)). (8.3.3)

Using result (8.3.2) and equation (8.3.1), we get

n(−t)An(t) =n(
r(p− tr) + (tr + s)((p− s)t− t2r + q)

r2 + (tr + s)2
)

a(− log(r2 + (tr + s)2))K(tan−1(− r

tr + s
)). (8.3.4)

Let h1,β1,x,y(t) = ( r(p−tr)+(tr+s)((p−s)t−t2r+q)
r2+(tr+s)2

)β1 . As ||A − I||∞ ≪ T−(2ǫ+η), we have

that |r|, |p− s| ≪ T−(2ǫ+η). Using these bounds, it is clear that

h
(n)
1,β1,x,y

(0)≪ β1!n!2
nT−(ǫ+η/2)n. (8.3.5)

Similar result will hold for h2,β2,x,y = (− log(r2 + (tr + s)2))β2 and h3,β3,x,y =

(tan−1(− r
tr+s

))β3 . Using the Taylor series for h1,β2,x,y and h2,β2,x,y, we get that

cx,y,β,l =
∑

β′∈Z3
+,|β′|=l

h
(β′

1)
1,β1,x,y

(0)h
(β′

2)
2,β2,x,y

(0)h
(β′

3)
3,β3,x,y

(0)

β′!
. (8.3.6)

This gives us an algorithm to compute cx,y,β,k. Using bound (8.3.5), we can see

that

cx,y,β,l ≪ 2ll3β!T−(ǫ+η/2)n.

Using this bound for cx,y,β,l we can prove that the radius of convergence for the
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power series
∑

k∈Z+
cx,y,β,kt

k is at least T η+ǫ/2. Hence using the real analyticity of

hj,β1,x,y for j = 1, 2, 3, we get that for all 0 ≤ t ≤ T ǫ+η/2, we have

(yn(t)− xn(t))β =
∑

l∈Z+

cx,y,β,lt
l.

Using this equation and the bounds on cx,y,β,l, we get (8.3.2).

Proof. Proof of proposition 5.2.2

Recall

ω(t) =







(1 + t)1/2 T (−(1 + t)1/2 + (1 + t)−1/2)

0 (1 + t)−1/2







and M − 1 = T−1+ǫ. Notice that

ω(t) = n(−Tt) + Err.

Where ||Err||∞ ≪ T−1+2ǫ for all 0 < t < T−1+ǫ and

ω−1(t) = n(Tt) + Err2.

where ||Err2||∞ ≪ T−1+2ǫ for all 0 < t < T−1+ǫ. Using result 8.3.1, the proposition

is equivalent to proving that

||ω−1(t)Aω(t)||∞ ≪ T−η

for all 0 < t < T−1+ǫ.

Hence by using above estimates and using same technique as in the proof of

proposition 5.1.2, we get the result.
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Again, if we compute the NAK co ordinates of ω−1(t)Aω(t), we get following

corollary for any β ∈ Z
3
+

Corollary 8.3.2. Using the same notation as in the proof of proposition 5.2.2,

given any β in Z3
+, we have constants ex,y,β,k such that

|ex,y,β,k| ≪ 2kk3β!T−k(ǫ+ η
2
)

and

(yω(t)− xω(t))β =
∑

k∈Z+

ex,y,β,k(Tt)
k.

This also implies that given any γ, η > 0, we have a constant M = O(γ/η) such

that for all 0 < t < T−1+ǫ,

(yω(t)− xω(t))β

β!
=

1

β!

M
∑

k=0

ex,y,β,k(Tt)
k +O(T−γ).

The constant involved is absolute.

Proof. proof of lemma 5.1.3

Let y = xA as defined at the beginning of this section, we use power series

expansion for f around points xn(t) to compute the value of f̃ at points yn(t).

Using claim 8.2.1 and proposition 5.1.2, For all 0 < t < T ǫ, we have a constant

d = O(γ/η) such that

f̃(yn(t)) =
d

∑

|β|=0

∂β f̃(xn(t))

β!
(yn(t)− x(n(t))β +O(T−γ),
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the constant involved in O only depends on f . We use corollary (8.3.1) to get that

f̃(yn(t)) =
d

∑

|β|=0

∂β f̃(xn(t))(
1

β!

d
∑

l=0

cx,y,β,lt
l +O(T−γ)) +O(T−γ).

Hence we have constants cx,y,β,l such that

f̃(yn(t)) =
∑

|β|<d,β∈Z3
+

d
∑

l=0

cx,y,β,lt
l∂

β f̃(xn(t))

β!
+O(d4T−γ).

Here the O constant only depends on f . Now integrating, we get the result.

Proof. Proof of lemma 5.2.3

By using exactly the same proof as in the proof of lemma 5.1.3 we get that we

have constants ex,y,β,l and d′ = O(γ/η) such that

f̃(yω(t)) =
∑

|β|<d′,β∈Z3
+

d′
∑

l=0

ex,y,β,l(Tt)
l∂β f̃(xω(t)) +O((d′)4T−γ).

Integrating on both sides, we get the result.

Proof. Proof of lemma 6.1.1:

Let x, y ∈ Ki for some integer i and let r be a function on the set T (M). This

implies that x−1y ∈ Uq−η . This implies that

(A(M,m, k)x)−1A(M,m, k)y = x−1y ∈ Uq−η

for all (m, k) ∈ T (M). Let

x−1y = n(t0)a(y0)K(θ0).
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Here |θ0| ≤ π. As g is a real analytic function on Γ\SL(2,R), we can use the power

series expansion 2.2.2 for g at points A(M,m, k)x to compute g(A(M,m, k)y) to

get

g(A(M,m, k)y) =
∑

β=(β1,β2,β3)∈Z3
+

∂βg((A(M,m, k)x)

β!
tβ1

0 yβ2

0 θβ3

0 . (8.3.7)

As n(t0)a(y0)K(θ0) ∈ Uq−η , we get that there exists a constant d = O(γ/η) such

that

g(A(M,m, k)y) =
∑

|β|≤d

∂βg((A(M,m, k)x)

β!
tβ1

0 yβ2

0 θβ3

0 +O(q−γ). (8.3.8)

Substituting in (6.1.7), we get

J(0, r, y) =
d

∑

|β|=0

cβ,x,yJ(β, r, x) +O(2M2q−γ). (8.3.9)

Here cβ,x,y = tβ1

0 yβ2

0 θβ3

0 /β!. Notice that each cβ,l,n can be computed in unit time.

8.4 Computing cx,y,β,l and ex,y,β,l

Recall that d = O(γ/η) and we need to compute cx,y,β,l for all |β|, l ≤ d. Recall

that using (8.3.6), we have

cx,y,β,l =
∑

β′∈Z3
+,|β′|=l

h
(β′

1)
1,β1,x,y

(0)h
(β′

2)
2,β2,x,y

(0)h
(β′

3)
3,β3,x,y

(0)

β′!
.
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Here

h1,β1,x,y(t) = (
r(p− tr) + (tr + s)((p− s)t− t2r + q)

r2 + (tr + s)2
)β1 ,

h2,β2,x,y = (−1

2
log(r2 + (tr + s)2))β2 ,

and

h3,β3,x,y = (tan−1(− r

tr + s
))β3 .

Notice that

h1,β1,x,y(t) = (r(p− tr) + (tr + s)((p− s)t− t2r + q))β1(r2 + (tr + s)2)−β1 .

We can use the formal power series expansion for (1 + x)α given by
∑∞

n=0

(

α
n

)

xn

to compute h
(j)
1,β1,x,y

(0) for all j ≪ d, using O(d4) operations. Similarly it is easy

to prove that we can compute h
(j)
l,β1,x,y

(0) for all l = 1, 2, 3 and for all j ≤ d

can be computed and stored in O(d4) time. After computing {h(j)
n,β1,x,y

(0) : n =

1, 2, 3 and j ≤ d}, we can use (8.3.6), to compute cβ,x,y,l for any |β|, l ≤ d using

O(d2) more operations. We thus proved that each required all the cx,y,β,l can be

computed using at most O(d6) operations.

A similar proof will go through for computing ex,y,β,l.

8.5 Hecke orbits

Let Γ = SL(2,Z). Recall from subsection 2.3, for a positive integer L and a point

x in SL(2,R), the Lth Hecke orbit of the point x is indexed by the set

T (L) = {(m, k) : m|L, 0 ≤ k < L/m}.
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The Lth Hecke orbit of x is explicitly given by the set of cosets

{ΓA(L,m, k)x : (m, k) ∈ T (L)}.

Here,

A(L,m, k) =
1

L1/2







m k

0 L/m






.

It is well known that the right action of any element a in SL(2,Z) permutes the

cosets {ΓA(L,m, k), (m, k) ∈ T (L)}. This means that

{ΓA(L,m, k), (m, k) ∈ T (L)} = {ΓA(L,m, k)a, (m, k) ∈ T (L)}

for any a ∈ SL(2,Z). However, the right action by a permutes the Hecke orbit. This

means that there exists a permutation (one to one and onto map) σa : T (L)→ T (L)

such that ΓA(L,m, k)a = ΓA(L, σa(m, k)) as the elemets of Γ\SL(2,R).

Given any η > 0, it is known that the cardinality of T (M) is at most O(M1+η).

1 Hence a priori there are M1+η! possible permutations on T (L). However, Let us

prove the following lemma:

Lemma 8.5.1. Let a1 and a2 are matrices in SL(2,Z) such that a1 = a2 +Lb, for

some b in M2(Z) ( 2 × 2 matrices with integer entries). Then the corresponding

permutations σa1 and σa2 are equal. In other words, for every (m, k) ∈ T (L),

σa1(m, k) = σa2(m, k).

Proof. Let (m, k) be a any element of T (L). Let σa1(m, k) = (m1, n1). This

implies that ΓA(L,m, k)a1 = ΓA(L,m1, k1). This implies that there exist a matrix

1We just use the fact that the number of divisors of M are at most O(Mη).
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c ∈ SL(2,Z) such that

cA(L,m, k)a1 = A(L,m1, k1). (8.5.1)

The lemma is equivalent is proving that there exists a matrix d in SL(2,Z), such

that

dA(L,m, k)a2 = A(L,m1, k1) (8.5.2)

( this would imply that σa2(m, k) = σa1(m, k)).

We use (8.5.1) to get

cA(L,m, k)a2

= cA(L,m, k)(a1 + Lb)

= cA(L,m, k)a1 + cA(L,m, k)Lb

= A(L,m1, k1) + cA(L,m, k)Lb

= A(L,m1, k1) + cA(L,m, k)LbA(L,m1, k1)
−1A(L,m1, k1)

= (I + cA(L,m, k)LbA(L,m1, k1)
−1)A(L,m1, k1)

= (I + cL− 1
2







m k

0 L/m






LbL− 1

2







L/m1 −k1
0 L/m1






)A(L,m1, k1)

= (I + c







m k

0 L/m






b







L/m1 −k1
0 L/m1






)A(L,m1, k1). (8.5.3)

(8.5.3) implies that d = c(I + c







m k

0 L/m






b







L/m1 −k1
0 L/m1






)−1 will be in

SL(2,Z) and will satisfy condition in equation (8.5.2). (m, k) was any arbitrary
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element of T (L). This implies that σa1 = σa2 .

Lemma 8.5.1, implies that the number of possible permutations of the Hecke

orbit {ΓA(L,m, k)|(m, k) ∈ T (L)} due to right action of SL(2,Z) are at most

|SL(2,Z/LZ)| ≤ L3.

8.6 Computing τ (χq)

Recall the Gauss sum τ(χq) defined in (4.4.2)

τ(χq) =

q−1
∑

k=0

χq(k)e(k/q).

Let q = MN . In this section we will give an algorithm to compute τ(χq) up to any

given error O(q−γ) using a most O(M2 + N) operations. We deal with the case

when q = MN , (M.N) = 1 and the case when q = MN , M |N separately. Recall

that the input for χq is defined in section 7.4.3.

8.6.1 Computing Gauss sum when q = MN

Let q = MN , where (M,N) = 1. We then have χq = χMχN where χM is a

character modulo M and χN is a character modulo N . Notice

τ(χq) =

q−1
∑

k=0

χq(k)e(k/q).
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We cut this into a sum of N arithmetic progressions of size M each as:

τ(χq) =
N−1
∑

j=0

M−1
∑

k=0

χq(j + kN)e((j + kN)/q)

=
N−1
∑

j=0

χq(j)e(j/q)Sbj . (8.6.1)

Here given j, bj is defined by j ≡ bj mod M , where 0 ≤ bj ≤ M − 1 and for any

integer 0 ≤ l ≤M − 1, Sl is defined by:

Sl =
M−1
∑

k=0

χM(1 + kl−1N)e(k/M).

l−1 denotes the inverse of l mod M . Notice that {Sl : 0 ≤ l ≤ M − 1} can be

computed in O(M2) steps, since each Sl takes O(M) time. After this calculation

the computation of τ(χq) takes further O(N) steps. Hence we got an algorithm to

compute τ(χq) in O(M2 +N) steps.

8.6.2 Computing Gauss sum when q = MN , M |N

Let q = MN where, M |N . We start as in previous case and write

τ(χq) =
N−1
∑

j=0

M−1
∑

k=0

χ(j + kN)e((j + kN)/q)

=
N−1
∑

j=0

χq(j)
M−1
∑

k=0

χq(1 + j−1kN)e((j + kN)/q). (8.6.2)
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The j−1 here denotes the multiplicative inverse 2 of j modulo M . Even though χq

does not split here as in the previous case, notice that for any k, k′,

χq(1 + kN)χq(1 + k′N) = χq((1 + kN)(1 + kN)) = χq(1 + (k + k′)N). (8.6.3)

This implies that the function

χ′
q(k) = χq(1 + kN) (8.6.4)

defines a additive character on Z/MZ. This implies that there exists a positive

integer a such that χ′
q(k) = e(ak/M). This applied to (8.6.2), we get that

τ(χq) =
N−1
∑

j=0

M−1
∑

k=0

χ(j + kN)e((j + kN)/q)

=
N−1
∑

j=0

χq(j)
M−1
∑

k=0

e(aj−1k/M)e((j + kN)/q)

=
N−1
∑

j=0

χq(j)e(j/q)Sbj . (8.6.5)

Here j ≡ bj mod M , j−1 denotes inverse of j mod M and

Sl

M−1
∑

k=0

e(al−1k/M + kN/q).

Notice that the inner sum in (8.6.5) depends only on bj. We can compute {Sl :

0 ≤ l ≤ M − 1} in O(M2) steps. Once we compute these sums, we need O(N)

more steps to compute τ(χq). hence we have an algorithm to compute τ(χq) in

2Notice that χq(j) = 0 if (M, j) 6= 1. Hence the sum is actually over (j,N) = 1, hence taking
‘inverse’ modulo M is justified.
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O(M2 +N) steps.

8.6.3 Computing Gauss sum in general case

Let q = M1M2N where M1|N and (M2, N) = 1. Let M = M1M2. We have

χq = χM2χM1N . Notice M1|N , hence let a be such that χM1N(1+kN) = e(ak/M1).

We use (8.6.5) to get,

τ(χq) =
N−1
∑

j=0

M−1
∑

k=0

χq(j + kM)e((j + kM)/q)

=
N−1
∑

j=0

M2−1
∑

l=0

M1−1
∑

k=0

χq(j + kM2N + lN)e(j/q + k/M1 + l/M)

=
N−1
∑

j=0

e(j/q)

M2−1
∑

l=0

M2−1
∑

k=0

χM2(j + lN)χM1N(j + (l + kM2)N)e(k/M1 + l/M)

=
N−1
∑

j=0

χM1N(j)e(j/q)b(j). (8.6.6)

Where j−1 denotes the inverse of j mod M1. and

b(j) =

M2−1
∑

l=0

M1−1
∑

k=0

χM2(j + lN)e(aj−1(l + kM2)/M1)e(k/M1 + l/M).

Notice that b(j) = b(j′) if j ≡ j′ mod M . Hence there are only M distinct sums

b(j). We can compute {b(j) : 0 ≤ b(j) ≤ M − 1} in O(M2) time. Given χ as in

section 7.4.3, we can compute the sum of (8.6.6) in O(M2 +N) time.

Hence, we thus have an algorithm to compute τ(χq) in O(M2+N) time. Notice

that the time required to compute τ(χq) is much less than the time complexity in

theorem 1.2.
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