LMS Invited Lectures 2015: Michael Shapiro

Cluster algebras and integrable systems

Exercises - 1

- 1. List all clusters in the cluster structure associated with the homogeneous coordinate ring of $Gr_2(5)$.
- 2. Describe all elements of an additive basis of homogeneous polynomials in the Plücker coordinates x_{ij} of degree 2 in the homogeneous coordinate ring $\mathbb{C}[Gr_2(5)]$.
- 3. Check that the medial graph of triangulation of pentagon changes according to the mutation rule under flip.
- **Definition**. An integer $n \times n$ matrix *B* is *left (right) skew-symmetrizable* if there is an integer diagonal $n \times n$ matrix *D* such that *DB* (*BD*, correspondingly) is skew-symmetric.
- 4. Show that any left skew-symmetrizable matrix is also right skew-symmetrizable.
- 5. Check that the form $\omega = \sum_{ij} b_{ij} \frac{dx_i}{x_i} \wedge \frac{dx_j}{x_j}$ is closed, i.e. $d\omega = 0$. Show that distribution $Ker(\omega)$ is integrable, i.e. there is a submanifold S in \mathbb{A}^n of dimension dim $Ker(\omega)$ such that the tangent space $T_x(S)$ at each point $x \in S$ coincides with $Ker(\omega)|_x$.
- 6. Let rational functions $\{f_i(x_1, \ldots, x_n)\}_{1 \le i \le n}$ be generators of the field of rational functions $\mathbb{C}(x_1, \ldots, x_n)$, $(\omega_{ij})_{1 \le i,j \le n}$ be a skew-symmetric matrix. Then, $\{f_i, f_j\} = \omega_{ij}f_if_j$ determines a Poisson bracket on \mathbb{A}^n .
- 7. Check that diagram mutation is well defined.
- 8. Check that the mutation class of the following matrix

$$\begin{pmatrix} 0 & 2 & -4 \\ -1 & 0 & 2 \\ 1 & -1 & 0 \end{pmatrix}$$

is finite.

9. Let F^{\bullet}, G^{\bullet} be two transversal complete flags in \mathbb{R}^4 . Compute the number of connected components of the set of complete flags in \mathbb{R}^4 transversal to both F^{\bullet} and G^{\bullet} .