Analysis II

Homework Problems

1.1. Show that a uniformly continuous function $f: M \rightarrow \mathbb{R}$ is continuous on M.
1.2. Suppose $f, g: M \rightarrow \mathbb{R}$ are uniformly continuous.
(a) Is it true that $f+g, f g$ are uniformly continuous?
(b) Does the answer to (a) changes if f, g are bounded?
(c) Does the answer to (a) changes if M is a closed interval?

In the following problems $\alpha:[a, b] \rightarrow \mathbb{R}$ is an increasing function, $f:[a, b] \rightarrow \mathbb{R}$ is bounded.
1.3. Let f be continuous and non-negative on $[a, b], f \in \mathcal{R}(\alpha)$. Show that if $\int_{a}^{b} f d \alpha=0$ then $f(x)=0$ for all $x \in[a, b]$.
1.4. Suppose $f(x)=\alpha(x)=\operatorname{sgn}(x)$. Show that f is not integrable with respect to α on any interval $[a, b]$ if $a<0<b$.
1.5. Let f be continuous on $[a, b]$, and $a<c<b$. Define $\alpha(x)$ by

$$
\alpha(x)= \begin{cases}0 & \text { if } x<c \\ 1 & \text { if } x \geq c\end{cases}
$$

Show that $\int_{a}^{b} f d \alpha=f(c)$
1.6. Let α be continuous. Prove that
(a) if the number of discontinuity points of f is finite then $f \in \mathcal{R}(\alpha)$.
(b) if f is monotonic then $f \in \mathcal{R}(\alpha)$.

Due Date: Wednesday, February 18, at the beginning of class.

