Jacobs University School of Engineering and Science Pavel Tumarkin, Yauhen (Zhenya) Mikulich Spring Term 2009 Problem Set 1

Analysis II

Homework Problems

- **1.1.** Show that a uniformly continuous function $f: M \to \mathbb{R}$ is continuous on M.
- **1.2.** Suppose $f, g: M \to \mathbb{R}$ are uniformly continuous.
 - (a) Is it true that f + g, fg are uniformly continuous?
 - (b) Does the answer to (a) changes if f, g are bounded?
 - (c) Does the answer to (a) changes if M is a closed interval?

In the following problems $\alpha : [a, b] \to \mathbb{R}$ is an increasing function, $f : [a, b] \to \mathbb{R}$ is bounded.

- **1.3.** Let f be continuous and non-negative on [a, b], $f \in \mathcal{R}(\alpha)$. Show that if $\int_{a}^{b} f \, d\alpha = 0$ then f(x) = 0 for all $x \in [a, b]$.
- **1.4.** Suppose $f(x) = \alpha(x) = \operatorname{sgn}(x)$. Show that f is not integrable with respect to α on any interval [a, b] if a < 0 < b.
- **1.5.** Let f be continuous on [a, b], and a < c < b. Define $\alpha(x)$ by

$$\alpha(x) = \begin{cases} 0 & \text{if } x < c \\ 1 & \text{if } x \ge c \end{cases}$$

Show that $\int_{a}^{b} f \, d\alpha = f(c)$

1.6. Let α be continuous. Prove that

- (a) if the number of discontinuity points of f is finite then $f \in \mathcal{R}(\alpha)$.
- (b) if f is monotonic then $f \in \mathcal{R}(\alpha)$.

Due Date: Wednesday, February 18, at the beginning of class.