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Analysis II

Homework Problems

10.1. (a) Show that the set of points of [0, 1] containing no digit 1 in its decimal expansion has
measure zero.

(b) Find the Lebesgue measure of the set of point of [0, 1] containing all the digits 1, 2, . . . , 9.

10.2. Show that any closed subset of R of measure zero is nowhere dense.

10.3. Let f :A → R be measurable, and g :f(A) → R be continuous. Show that g◦f is measurable.

10.4. Let f : R
n → R satisfy the following condition: {x | f(x) = c} is measurable for any c. Does

this imply that f is measurable?

10.5. Let C be the Cantor set. Define the Cantor function ϕ : [0, 1] → [0, 1] as follows:
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∞
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with an = 0 or 2, then
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that is, if an is the nth ternary digit for x, then nth binary digit for ϕ(x) is an/2. Extend
ϕ(x) to [0, 1] by setting

ϕ(x) = sup{ϕ(y) | y ∈ C, y < x}

(a) Show that ϕ(C) = [0, 1] (in particular, the image of zero set has measure 1).

(b) Show that ϕ(x) is increasing and continuous on [0, 1], and ϕ′(x) = 0 almost everywhere
on [0, 1].

10.6. (⋆) Show that every subset of R of positive measure contains a non-measurable subset.

Due Date: Friday, May 15, at the beginning of the class.


