Jacobs University School of Engineering and Science Pavel Tumarkin, Yauhen (Zhenya) Mikulich Spring Term 2009

Problem Set 2

Analysis II

Homework Problems

- **2.1.** Consider a motonic function $f: M \to \mathbb{R}$.
 - (a) Show that f has both one-sided limits at every point of M.
 - (b) Show that the number of discontonuity points of f is countable.

In the sequel $\alpha : [a, b] \to \mathbb{R}$ is an increasing function, $f : [a, b] \to \mathbb{R}$ is bounded. For every partition P of [a, b] choose points t_1, \ldots, t_n such that $x_{i-1} \leq t_i \leq x_i$, and define

$$S(P, f, \alpha) = \sum_{i=1}^{n} f(t_i) \Delta \alpha_i$$

Define also $\mu(P) = \max_{i \le n} \Delta x_i$. We say that

$$\lim_{\mu(P)\to 0} S(P, f, \alpha) = A$$

if for any $\varepsilon > 0$ there is $\delta > 0$ such that $\mu(P) < \delta$ implies $|S(P, f, \alpha) - A| < \varepsilon$ for all admissible choices of t_i . In case of $\alpha(x) = x$ we denote $S(P, f, \alpha) = S(P, f) = \sum f(t_i)\Delta x_i$.

2.2. (a) Equivalent definition of Riemann integral

Show that the limit $\lim_{\mu(P)\to 0} S(P, f) = A$ exists if and only if $f \in \mathcal{R}$; prove that in this case

$$\int_{a} f(x) \, dx = A;$$

(b) show that if the limit $\lim_{\mu(P)\to 0} S(P, f, \alpha) = A$ exists then $f \in \mathcal{R}(\alpha)$, and $\int_{a}^{b} f \, d\alpha = A$;

(c) show that if f is continuous on [a, b], then $\lim_{\mu(P)\to 0} S(P, f, \alpha) = \int_{a}^{b} f d\alpha$.

(*) show that if α is continuous on [a, b], $f \in \mathcal{R}(\alpha)$ if and only if the limit $\lim_{\mu(P)\to 0} S(P, f, \alpha)$ exists.

2.3. Mean Value Theorem

Let f be continuous on [a, b]. Then there exists $c \in [a, b]$ such that $\int_{a}^{b} f \, d\alpha = f(c)(\alpha(b) - \alpha(a))$.

- **2.4.** Construct a function $f \in \mathcal{R}$ on [a, b] such that f has no antiderivative.
- **2.5.** (*) Construct a function $f \notin \mathcal{R}$ on [a, b] such that f has antiderivative.
- Due Date: Wednesday, February 25, at the beginning of class.