School of Engineering and Science
Pavel Tumarkin, Yauhen (Zhenya) Mikulich

Problem Set 2

Analysis II

Homework Problems

2.1. Consider a motonic function $f: M \rightarrow \mathbb{R}$.
(a) Show that f has both one-sided limits at every point of M.
(b) Show that the number of discontonuity points of f is countable.

In the sequel $\alpha:[a, b] \rightarrow \mathbb{R}$ is an increasing function, $f:[a, b] \rightarrow \mathbb{R}$ is bounded.
For every partition P of $[a, b]$ choose points t_{1}, \ldots, t_{n} such that $x_{i-1} \leq t_{i} \leq x_{i}$, and define

$$
S(P, f, \alpha)=\sum_{i=1}^{n} f\left(t_{i}\right) \Delta \alpha_{i}
$$

Define also $\mu(P)=\max _{i \leq n} \Delta x_{i}$. We say that

$$
\lim _{\mu(P) \rightarrow 0} S(P, f, \alpha)=A
$$

if for any $\varepsilon>0$ there is $\delta>0$ such that $\mu(P)<\delta$ implies $|S(P, f, \alpha)-A|<\varepsilon$ for all admissible choices of t_{i}. In case of $\alpha(x)=x$ we denote $S(P, f, \alpha)=S(P, f)=\sum f\left(t_{i}\right) \Delta x_{i}$.
2.2. (a) Equivalent definition of Riemann integral

Show that the limit $\lim _{\mu(P) \rightarrow 0} S(P, f)=A$ exists if and only if $f \in \mathcal{R}$; prove that in this case $\int_{a}^{b} f(x) d x=A ;$
(b) show that if the limit $\lim _{\mu(P) \rightarrow 0} S(P, f, \alpha)=A$ exists then $f \in \mathcal{R}(\alpha)$, and $\int_{a}^{b} f d \alpha=A$;
(c) show that if f is continuous on $[a, b]$, then $\lim _{\mu(P) \rightarrow 0} S(P, f, \alpha)=\int_{a}^{b} f d \alpha$.
(\star) show that if α is continuous on $[a, b], f \in \mathcal{R}(\alpha)$ if and only if the limit $\lim _{\mu(P) \rightarrow 0} S(P, f, \alpha)$ exists.
2.3. Mean Value Theorem

Let f be continuous on $[a, b]$. Then there exists $c \in[a, b]$ such that $\int_{a}^{b} f d \alpha=f(c)(\alpha(b)-\alpha(a))$.
2.4. Construct a function $f \in \mathcal{R}$ on $[a, b]$ such that f has no antiderivative.
2.5. (\star) Construct a function $f \notin \mathcal{R}$ on $[a, b]$ such that f has antiderivative.

Due Date: Wednesday, February 25, at the beginning of class.

