Analysis II

Homework Problems

Throughout this assignment, all the sets are subsets of metric space.
4.1. Open and closed sets
(a) Let $M \subset \mathbb{R}$ be an open set. Show that either $M=\mathbb{R}$ or M is a union of a countable (or finite) set of mutually disjoint open intervals and rays.
(b) Prove that closure $\bar{M}=M \cup M^{\prime}$ of M is closed, and every closed set containing M contains \bar{M}.
(\star) Let X be a complete metric space, and $\left(B_{n}\right)$ be a sequence of closed balls, $B_{n} \subset B_{n-1}$. Is it true that $\bigcap_{n=1}^{\infty} B_{n} \neq \emptyset$?
4.2. Perfect sets

A subset $M \subset M_{1}$ is called dense in M_{1} if $M_{1} \subset M^{\prime}$. In particular, M is called dense-it-itself if any point of M is a limit point. (A point of M which is not a limit point is called isolated point. So, a set is dense-in-itself iff it contains no isolated points). A set M is called perfect if $M=M^{\prime}$.
(a) Show that M is perfect if and only if M is closed and dense-in-itself.
(\star) Show that any perfect $M \subset \mathbb{R}$ is uncountable.

4.3. Contractions

Let X be a metric space. A map $f: X \rightarrow X$ is called a contraction if there exists a positive $c<1$ such that $|f(x)-f(y)| \leq c|x-y|$ for any $x, y \in X$.
(a) Show that any contraction is continuous.
(b) Show that if X is complete, then any contraction has a unique fixed point in X.
(c) Will the statement of (b) remain true if $f(x)$ is not a contraction, but satisfies assumption $|f(x)-f(y)|<|x-y|$ for all $x \neq y$?
4.4. Compact sets

Let X, Y be metric spaces, $f: X \rightarrow Y$ is continuous and $K \subset X$ is compact.
(a) Show that $f(K)$ is compact.
(b) Show that if restriction of f on K is injective then it is a homeomorphism.

4.5. Cantor set

Consider a sequence of sets

$$
I_{1}=[0,1], \quad I_{n+1}=\left\{x \in \mathbb{R} \mid 3 x \in I_{n} \text { or } 3 x-2 \in I_{n}\right\}, n \geq 1 .
$$

The set $C=\bigcap_{n \in \mathbb{N}} I_{n}$ is called Cantor set.
(a) Show that $I_{n+1} \subset I_{n}$ for any n.
(b) Give a description of C in terms of 3 -base numeral system.
(c) Show that C is not countable.
(d) Which of the numbers $0, \frac{1}{3}, \frac{1}{2}, \frac{\sqrt{2}}{2}, \frac{3}{4}$ belong to C ?
(e) Is C open? closed? dense-in-itself? perfect?
4.6. Nowhere dense sets

A point x of $E \subset X$ is called interior point of E if E contains some open neighborhood of x. A set E is called nowhere dense if \bar{E} has no interior points.
(a) Show that any subset of nowhere dense set is nowhere dense.
(b) Show that a union of finite number of nowhere dense sets is nowhere dense.
(c) Which of the following sets are nowhere dense: \emptyset; finite set; $\mathbb{Z} ; \mathbb{Q} ;[a, b] ;(a, b) ; \mathbb{R}$.
(d) Is it true that a union of countable number of nowhere dense sets is nowhere dense?
(e) Is Cantor set nowhere dense?
(\star) Is it possible to cover a closed interval by a countable number of nowhere dense sets?

Due Date: Friday, March 13, at the beginning of class.

