School of Engineering and Science
Pavel Tumarkin, Yauhen (Zhenya) Mikulich

Problem Set 5

## Analysis II

## Homework Problems

Throughout this assignment, all the sets are subsets of metric space.
5.1. Which of the following properties of a map $f: X \rightarrow Y$ is equuivalent to continuity?
(a) Image of open set is open.
(b) Image of closed set is closed.
(c) Preimage of closed set is closed.
(d) For any $E \subset X$ holds $f(\bar{E}) \subset \overline{f(E)}$.
5.2. Show that a composition of continuous maps is continuous.
5.3. Let $f$ be continuous. Show that
(a) image of connected set is connected;
(b) image of path-connected set is path-connected.
5.4. Which of the following maps $\mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ are continuous? Which are homeomorphisms?
(a) $(x, y) \rightarrow\left(x+x^{5}, x^{2}+y+e^{\sin x \cos x}\right)$;
(b) $(x, y) \rightarrow\left(x^{m}+y^{m}, x^{n}+y^{n}\right), n, m \in \mathbb{N}$;
(c) $(x, y) \rightarrow(x+y+\sin x, x-y+\cos y)$.
5.5. Suppose that sequences of real-valued functions $\left(f_{n}\right)$ and $\left(g_{n}\right)$ on $E \subset \mathbb{R}$ converge uniformly to $f$ and $g$ respectively.
(a) Is it true that there exist a uniform limit of sequences $\left(f_{n}+g_{n}\right) ;\left(f_{n} g_{n}\right)$ ?
(b) Does the answer change if $f_{n}, g_{n}$ are bounded?
(c) Does the answer change if $E$ is a closed interval?
5.6. Two metrics $\rho_{1}$ and $\rho_{2}$ on $X$ are called equivalent (notation: $\rho_{1} \sim \rho_{2}$ ) if the identity map id : $X \rightarrow X$ is a homeomorphism.
(a) Show that $\rho_{1} \sim \rho_{2}$ if and only if any open set in any of these metrics is open in the other one.
(b) Let $f: X \rightarrow Y$ be continuous. Show that $f$ will remain continuous if we substitute metrics in $X$ and $Y$ by equivalent ones.
(c) Are the following metrics on $\mathbb{R}^{n}$ equivalent?

$$
\rho_{1}(x, y)=\max _{i \leq n}\left|x_{i}-y_{i}\right| ; \quad \quad \rho_{2}(x, y)=\sqrt{\sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2}} .
$$

5.7. ( $\star$ ) Let $A, B \subset X$ be disjoint closed sets. Show that there exists a continuous function $f: X \rightarrow \mathbb{R}$ such that $f^{-1}(0)=A$ and $f^{-1}(1)=B$.
5.8. ( $\star$ ) Show that $K \subset X$ is compact if and only if any of the following holds:
(a) every continuous function $f: K \rightarrow \mathbb{R}$ is bounded;
(b) for any continuous function $f: K \rightarrow \mathbb{R}$ the image of $K$ contains $\sup _{x \in K} f(x)$.

Due Date: Friday, March 20, at the beginning of class.

