Jacobs University School of Engineering and Science Pavel Tumarkin, Yauhen (Zhenya) Mikulich Spring Term 2009

Problem Set 5

Analysis II

Homework Problems

Throughout this assignment, all the sets are subsets of metric space.

- **5.1.** Which of the following properties of a map $f: X \to Y$ is equivalent to continuity?
 - (a) Image of open set is open.
 - (b) Image of closed set is closed.
 - (c) Preimage of closed set is closed.
 - (d) For any $E \subset X$ holds $f(\overline{E}) \subset \overline{f(E)}$.
- 5.2. Show that a composition of continuous maps is continuous.
- **5.3.** Let f be continuous. Show that
 - (a) image of connected set is connected;
 - (b) image of path-connected set is path-connected.
- **5.4.** Which of the following maps $\mathbb{R}^2 \to \mathbb{R}^2$ are continuous? Which are homeomorphisms?

(a)
$$(x, y) \to (x + x^5, x^2 + y + e^{\sin x \cos x});$$

- (b) $(x, y) \to (x^m + y^m, x^n + y^n), n, m \in \mathbb{N};$
- (c) $(x, y) \rightarrow (x + y + \sin x, x y + \cos y)$.
- **5.5.** Suppose that sequences of real-valued functions (f_n) and (g_n) on $E \subset \mathbb{R}$ converge uniformly to f and g respectively.
 - (a) Is it true that there exist a uniform limit of sequences $(f_n + g_n)$; $(f_n g_n)$?
 - (b) Does the answer change if f_n, g_n are bounded?
 - (c) Does the answer change if E is a closed interval?
- **5.6.** Two metrics ρ_1 and ρ_2 on X are called *equivalent* (notation: $\rho_1 \sim \rho_2$) if the identity map id : $X \to X$ is a homeomorphism.

(a) Show that $\rho_1 \sim \rho_2$ if and only if any open set in any of these metrics is open in the other one.

(b) Let $f : X \to Y$ be continuous. Show that f will remain continuous if we substitute metrics in X and Y by equivalent ones.

(c) Are the following metrics on \mathbb{R}^n equivalent?

$$\rho_1(x,y) = \max_{i \le n} |x_i - y_i|;$$
 $\rho_2(x,y) = \sqrt{\sum_{i=1}^n (x_i - y_i)^2}.$

Г

- **5.7.** (*) Let $A, B \subset X$ be disjoint closed sets. Show that there exists a continuous function $f: X \to \mathbb{R}$ such that $f^{-1}(0) = A$ and $f^{-1}(1) = B$.
- **5.8.** (\star) Show that $K \subset X$ is compact if and only if any of the following holds:
 - (a) every continuous function $f: K \to \mathbb{R}$ is bounded;
 - (b) for any continuous function $f: K \to \mathbb{R}$ the image of K contains $\sup_{x \in K} f(x)$.

Due Date: Friday, March 20, at the beginning of class.