Jacobs University School of Engineering and Science Pavel Tumarkin, Yauhen (Zhenya) Mikulich

Analysis II

Homework Problems

Throughout this assignment, all the sets are subsets of metric space.

- **6.1.** Let $f_n : [a, b] \to \mathbb{R}$ be a sequence of continuous functions. Suppose that $\{f_n\}$ converges uniformly on (a, b). Show that $\{f_n\}$ converges uniformly on [a, b].
- **6.2.** Let m be positive integer. Define function

$$f_m(x) = \lim_{n \to \infty} (\cos m! \pi x)^{2n}$$

Show that $\{f_m\}$ converges and find the limit. Is the convergence uniform on \mathbb{R} ? On [0,1]?

6.3. Let $\{f_n\}$ be a sequence of continuous functions converging uniformly to f on E, and let $\{x_n\}$ be a sequence of points of E converging to x. Show that

$$\lim_{n \to \infty} f_n(x_n) = f(x)$$

- **6.4.** Series of functions Let $f_n : X \to \mathbb{C}$ be a sequence of functions. A sum $\sum_{n=1}^{\infty} f_n(x)$ is called convergent on $E \subset X$ if the sequence $s_m(x) = \sum_{n=1}^{m} f_n(x)$ converges on E. $\sum_{n=1}^{\infty} f_n(x)$ is called uniformly convergent on E if $\{s_m\}$ converges on E uniformly.
 - (a) Cauchy criterion
 - A sum $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly if and only if

$$\forall \varepsilon > 0 \exists N \text{ such that } \forall k, m > N \left| \sum_{n=k}^{m} f_n(x) \right| < \varepsilon$$

(b) Weierstrass test

Suppose that $|f_n(x)| \leq M_n$ on E, and the sum $\sum_{n=1}^{\infty} M_n$ converges. Then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on E.

- (c) Suppose that $|f_n(x)| \leq g_n(x)$ on E, and the sum $\sum_{n=1}^{\infty} g_n(x)$ converges uniformly on E. Then $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on E.
- (d) Let $\sum_{n=1}^{\infty} f_n(x)$ converge uniformly on E. Then the sequence $\{f_n(x)\}$ converges uniformly to 0.
- (e) Let $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ be a series, $z, z_0 \in \mathbb{C}$. Show that if $\sum_{n=0}^{\infty} c_n (z-z_0)^n$ converges at point $\xi \neq z_0$, then it converges uniformly in any circle $\{z \in \mathbb{C} : |z-z_0| < q | \xi z_0 |\}, q < 1$.

Spring Term 2009

Problem Set 6

6.5. Abel-Dirichle test

A set of functions \mathcal{M} is called *uniformly bounded* on E if there exists M such that |f(x)| < M for any $f \in \mathcal{M}$ and $x \in E$.

(a) Abel transformation

Show that

$$\sum_{k=n}^{m} a_k b_k = A_m b_m - A_{n-1} b_n + \sum_{k=n}^{m-1} A_k (b_k - b_{k+1})$$

where $a_k = A_k - A_{k-1}$.

(b) Suppose that $\{b_n\}$ is monotonic. Show that

$$\sum_{k=n}^{m} a_k b_k \le 4 \max_{n-1 \le k \le m} |A_k| \max\{|b_n|, |b_m|\}$$

(c) Dirichle test for uniform convergence of series

Suppose that partial sums $s_m(x) = \sum_{n=1}^m f_n(x)$ of series $\sum_{n=1}^\infty f_n(x)$ are uniformly bounded on E, and sequence $\{g_n(x)\}$ is monotonic and uniformly converges to 0 on E. Then the series $\sum_{n=1}^\infty f_n(x)g_n(x)$ converges uniformly on E.

(d) Abel test for uniform convergence of series

Suppose that series $\sum_{n=1}^{\infty} f_n(x)$ converges uniformly on E, and sequence $\{g_n(x)\}$ is monotonic and uniformly bounded on E. Then the series $\sum_{n=1}^{\infty} f_n(x)g_n(x)$ converges uniformly on E.

6.6. Show that the following series converges on \mathbb{R} . Is the convergence uniform?

(a)
$$\sum_{n=1}^{\infty} \frac{x^2}{(1+x^2)^n}$$
 (b) $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}x^2}{(1+x^2)^n}$

6.7. (*) Does there exist a continuous function on \mathbb{R} which is not monotonic on any interval?

Due Date: Friday, March 27, at the beginning of class.