Jacobs University School of Engineering and Science Pavel Tumarkin, Yauhen (Zhenya) Mikulich Spring Term 2009

Problem Set 7

Analysis II

Homework Problems

- **7.1.** Let $A \in \text{Hom}(\mathbb{R}^n, \mathbb{R}^m)$ be invertible, denote the norm of A by λ . What are the possible values of the norm of A^{-1} ?
- **7.2.** Let $f(x,y) = \frac{xy}{x^2+y^2}$ for $(x,y) \neq (0,0)$ and f(0,0) = 0. Prove that $(D_1f)(x,y), (D_2f)(x,y)$ exist at every point $(x,y) \in \mathbb{R}^2$, however f is not continuous at (0,0).
- **7.3.** Let $f : \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x, y) = \sqrt{|xy|}$. Show that f is not differentiable at the point (0, 0).
- **7.4.** Let $E \subset \mathbb{R}^n$ be a connected open set, and let $f, g: E \to \mathbb{R}$ be differentiable.
 - (a) Show that fg is differentiable, and (fg)'(x) = f(x)g'(x) + f'(x)g(x).
 - (b) Suppose that $g(x) \neq 0$ for some $x \in E$. Show that f/g is differentiable in x, and

$$\left(\frac{f}{g}\right)'(x) = \frac{1}{g^2(x)}(g(x)f'(x) - f(x)g'(x))$$

7.5. (a) Let $x, y \in \mathbb{R}^m$. Define a map $\gamma : [0,1] \to \mathbb{R}^m$, $\gamma(t) = (1-t)x + ty$. Show that γ is differentiable, and find its derivative.

(b) Let $E \subset \mathbb{R}^n$ be a connected open set, and let $f : E \to \mathbb{R}^m$ be differentiable. Show that if f'(x) = 0 for all $x \in E$ then f is constant.

Hint: Prove the statement for a ball, and then use the fact that a connected open set in \mathbb{R}^n is path-connected.

7.6. Suppose $E \subset \mathbb{R}^n$ is open, and let $f : E \to \mathbb{R}$ is differentiable and has a local maximum in $x \in E$. Show that gradient of f at x is zero.

Due Date: Monday, April 6.