Analysis II

Homework Problems

7.1. Let $A \in \operatorname{Hom}\left(\mathbb{R}^{n}, \mathbb{R}^{m}\right)$ be invertible, denote the norm of A by λ. What are the possible values of the norm of A^{-1} ?
7.2. Let $f(x, y)=\frac{x y}{x^{2}+y^{2}}$ for $(x, y) \neq(0,0)$ and $f(0,0)=0$. Prove that $\left(D_{1} f\right)(x, y),\left(D_{2} f\right)(x, y)$ exist at every point $(x, y) \in \mathbb{R}^{2}$, however f is not continuous at $(0,0)$.
7.3. Let $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ be defined by $f(x, y)=\sqrt{|x y|}$. Show that f is not differentiable at the point $(0,0)$.
7.4. Let $E \subset \mathbb{R}^{n}$ be a connected open set, and let $f, g: E \rightarrow \mathbb{R}$ be differentiable.
(a) Show that $f g$ is differentiable, and $(f g)^{\prime}(x)=f(x) g^{\prime}(x)+f^{\prime}(x) g(x)$.
(b) Suppose that $g(x) \neq 0$ for some $x \in E$. Show that f / g is differentiable in x, and

$$
\left(\frac{f}{g}\right)^{\prime}(x)=\frac{1}{g^{2}(x)}\left(g(x) f^{\prime}(x)-f(x) g^{\prime}(x)\right)
$$

7.5. (a) Let $x, y \in \mathbb{R}^{m}$. Define a map $\gamma:[0,1] \rightarrow \mathbb{R}^{m}, \gamma(t)=(1-t) x+t y$. Show that γ is differentiable, and find its derivative.
(b) Let $E \subset \mathbb{R}^{n}$ be a connected open set, and let $f: E \rightarrow \mathbb{R}^{m}$ be differentiable. Show that if $f^{\prime}(x)=0$ for all $x \in E$ then f is constant.
Hint: Prove the statement for a ball, and then use the fact that a connected open set in \mathbb{R}^{n} is path-connected.
7.6. Suppose $E \subset \mathbb{R}^{n}$ is open, and let $f: E \rightarrow \mathbb{R}$ is differentiable and has a local maximum in $x \in E$. Show that gradient of f at x is zero.

Due Date: Monday, April 6.

