Jacobs University
School of Engineering and Science
Pavel Tumarkin, Yauhen (Zhenya) Mikulich

Spring Term 2009
Problem Set 8

Analysis II

Homework Problems

8.1. Show that function $f: \mathbb{R} \rightarrow \mathbb{R}$ defined by

$$
f(t)=t+2 t^{2} \sin \frac{1}{t}, \quad f(0)=0
$$

satisfies all the assumptions of the inverse function theorem except continuity of f^{\prime}, and the inverse function theorem fails for f.
8.2. In which points the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}, f(x, y)=\left(x^{2}-y^{2}, 2 x y\right)$ is locally invertible? Is f globally invertible?
8.3. Consider the function $f: \mathbb{R}^{3} \rightarrow \mathbb{R}, f\left(x, y_{1}, y_{2}\right)=x^{2} y_{1}+e^{x}+y_{2}$. Show that there is an open neighborhood $U \subset \mathbb{R}^{2}$ of $(1,-1)$ and a differentiable function $g: U \rightarrow \mathbb{R}$ such that $g(1,-1)=0$ and $f\left(g\left(y_{1}, y_{2}\right), y_{1}, y_{2}\right)=0$. Compute the derivative of g at $(1,-1)$.
8.4. Define function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$,

$$
f(x, y)=\frac{x y\left(x^{2}-y^{2}\right)}{x^{2}+y^{2}}, \quad f(0,0)=0
$$

Show that
(a) f and its partial derivatives are continuous in \mathbb{R}^{2};
(b) mixed second order derivatives exist at every point of \mathbb{R}^{2}, continuous in $\mathbb{R}^{2} \backslash\{(0,0)\}$, but do not coincide at $(0,0)$.
8.5. Find local extrema of the following functions:
(a) $f(x, y)=2 x^{3}-3 x^{2}+2 y^{3}+3 y^{2}$;
(b) $f(x, y)=x^{4}+y^{4}-2 x^{2}$.
8.6. Let $f: E \rightarrow \mathbb{R}, E \subset \mathbb{R}^{n}, f \in \mathcal{C}^{(m)}(E)$. Suppose that $[x, x+h] \subset E$. Use Taylor series of function $\varphi(t)=f(x+t h)$ to show that

$$
f(x+h)=f(x)+\sum_{k=1}^{m-1}\left(h_{1} D_{1}+\cdots+h_{n} D_{n}\right)^{k} f(x)+r(h), \quad \lim _{h \rightarrow 0} \frac{r(h)}{|h|^{m-1}}=0
$$

8.7. (\star Let $a \in \mathbb{R}^{n}, f: \overline{N_{\varepsilon}(a)} \rightarrow \mathbb{R}$ be a continuous function, and suppose that f is differentiable in $N_{\varepsilon}(a)$. Suppose also that f vanishes on the boundary of $\overline{N_{\varepsilon}(a)}$. Show that there exists $b \in N_{\varepsilon}(a)$ such that $\nabla f(b)=0$.

Due Date: Monday, April 20.

