Jacobs University School of Engineering and Science Pavel Tumarkin, Yauhen (Zhenya) Mikulich Spring Term 2009

Problem Set 8

Analysis II

Homework Problems

8.1. Show that function $f : \mathbb{R} \to \mathbb{R}$ defined by

$$f(t) = t + 2t^2 \sin \frac{1}{t}, \quad f(0) = 0$$

satisfies all the assumptions of the inverse function theorem except continuity of f', and the inverse function theorem fails for f.

- **8.2.** In which points the function $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(x, y) = (x^2 y^2, 2xy)$ is locally invertible? Is f globally invertible?
- **8.3.** Consider the function $f : \mathbb{R}^3 \to \mathbb{R}$, $f(x, y_1, y_2) = x^2 y_1 + e^x + y_2$. Show that there is an open neighborhood $U \subset \mathbb{R}^2$ of (1, -1) and a differentiable function $g : U \to \mathbb{R}$ such that g(1, -1) = 0 and $f(g(y_1, y_2), y_1, y_2) = 0$. Compute the derivative of g at (1, -1).
- **8.4.** Define function $f : \mathbb{R}^2 \to \mathbb{R}$,

$$f(x,y) = \frac{xy(x^2 - y^2)}{x^2 + y^2}, \qquad f(0,0) = 0$$

Show that

(a) f and its partial derivatives are continuous in \mathbb{R}^2 ;

(b) mixed second order derivatives exist at every point of \mathbb{R}^2 , continuous in $\mathbb{R}^2 \setminus \{(0,0)\}$, but do not coincide at (0,0).

8.5. Find local extrema of the following functions:

(a)
$$f(x,y) = 2x^3 - 3x^2 + 2y^3 + 3y^2;$$

(b) $f(x,y) = x^4 + y^4 - 2x^2.$

8.6. Let $f: E \to \mathbb{R}, E \subset \mathbb{R}^n, f \in \mathcal{C}^{(m)}(E)$. Suppose that $[x, x + h] \subset E$. Use Taylor series of function $\varphi(t) = f(x + th)$ to show that

$$f(x+h) = f(x) + \sum_{k=1}^{m-1} (h_1 D_1 + \dots + h_n D_n)^k f(x) + r(h), \qquad \lim_{h \to 0} \frac{r(h)}{|h|^{m-1}} = 0$$

8.7. (*) Let $a \in \mathbb{R}^n$, $f : \overline{N_{\varepsilon}(a)} \to \mathbb{R}$ be a continuous function, and suppose that f is differentiable in $N_{\varepsilon}(a)$. Suppose also that f vanishes on the boundary of $\overline{N_{\varepsilon}(a)}$. Show that there exists $b \in N_{\varepsilon}(a)$ such that $\nabla f(b) = 0$.

Due Date: Monday, April 20.