Problem Set 9

Analysis II

Homework Problems

A set $A \subset \mathbb{R}$ has (Lebesgue) measure zero (or is zero set) if for any positive ε there exists a countable set of intervals covering A such that sum of lengths of any finite subset does not exceed ε .

- **9.1.** Show that
 - (a) any subset of zero set is zero set;
 - (b) countable union of zero sets is zero set;
 - (c) Cantor set is zero set;
- **9.2.** (a) Is it true that zero set is nowhere dense?
 - (\star) Is it true that nowhere dense set is zero set?
- **9.3.** Show that a closed (or open) interval is not a zero set.
- **9.4.** Prove that topology in \mathbb{R}^n has *countable base*, i.e. there exist a countable number of open sets $\{U_i\}$, such that any open set $U \subset \mathbb{R}^n$ is a countable union of some subcollection of $\{U_i\}$.

In the sequel all the sets are subsets of a unit square in \mathbb{R}^2 .

- **9.5.** Show that
 - (a) any open set is measurable;
 - (b) any closed set is measurable;
 - (c) any set obtained by countable number of operations of intersection, union and taking complement from open sets is measurable. Such sets are called *Borel sets*.
- **9.6.** Let A be a measurable set. Then for any positive ε there exist open G and closed F, such that

$$F \subset A \subset G$$
, and $\mu(G \setminus F) < \varepsilon$

Due Date: Monday, May 4.