School of Engineering and Science
Pavel Tumarkin, Yauhen (Zhenya) Mikulich

Analysis II

Homework Problems

A set $A \subset \mathbb{R}$ has (Lebesgue) measure zero (or is zero set) if for any positive ε there exists a countable set of intervals covering A such that sum of lenghts of any finite subset does not exceed ε.
9.1. Show that
(a) any subset of zero set is zero set;
(b) countable union of zero sets is zero set;
(c) Cantor set is zero set;
9.2. (a) Is it true that zero set is nowhere dense?
(\star) Is it true that nowhere dense set is zero set?
9.3. Show that a closed (or open) interval is not a zero set.
9.4. Prove that topology in \mathbb{R}^{n} has countable base, i.e. there exist a countable number of open sets $\left\{U_{i}\right\}$, such that any open set $U \subset \mathbb{R}^{n}$ is a countable union of some subcollection of $\left\{U_{i}\right\}$.

In the sequel all the sets are subsets of a unit square in \mathbb{R}^{2}.
9.5. Show that
(a) any open set is measurable;
(b) any closed set is measurable;
(c) any set obtained by countable number of operations of intersection, union and taking complement from open sets is measurable. Such sets are called Borel sets.
9.6. Let A be a measurable set. Then for any positive ε there exist open G and closed F, such that

$$
F \subset A \subset G, \quad \text { and } \quad \mu(G \backslash F)<\varepsilon
$$

Due Date: Monday, May 4.

