Linear Algebra II, Homework 10

Due Date: Wednesday, May 12.

Problems marked (\star) are bonus ones.

10.1. Let $f \in \text{End}(L)$, $g \in \text{End}(M)$, and dimensions of L and M are n and m respectively. Define a linear operator $f \otimes g \in \text{End}(L \otimes M)$ on factorizable tensors by

$$(f \otimes g)(l \otimes m) = f(l) \otimes g(m)$$

for any $l \in L, m \in M$. Show that

- (a) $f \otimes g$ is well defined; (b) tr $f \otimes g = \text{tr } f$ tr g; (c)(\star) det $f \otimes g = (\det f)^m (\det g)^n$.
- **10.2.** Let $\{e_1, \ldots, e_n\}$ be a basis of L, and $\{e^1, \ldots, e^n\}$ be a dual basis of L^* . Compute the contraction of the tensor

(a)
$$T = e^{j} \otimes e_{i}$$
; (b) $T = \sum_{j=1}^{n} e^{j} \otimes e_{n-j}$; (c) $T = \sum_{i,j=1}^{n} (-1)^{i+j} e^{j} \otimes e_{i}$.

10.3. Let $\{e_1, \ldots, e_n\}$ be a basis of L. Show that symmetric tensors of the form

$$e_1^{a_1} \dots e_n^{a_n} \ (= S(\underbrace{e_1 \otimes \dots \otimes e_1}_{a_1} \otimes \underbrace{e_2 \otimes \dots \otimes e_2}_{a_2} \otimes \dots \otimes \underbrace{e_n \otimes \dots \otimes e_n}_{a_n})), \qquad a_1 + \dots + a_n = q$$

span the symmetric power $S^q(L)$.

10.4. (*) Let $f \in \text{End}(L)$, $\{e_1, \ldots, e_n\}$ is a basis of L. Define a symmetric square $S^2(f) \in \text{End}(S^2(L))$ by

$$(S^{2}(f))(e_{i}e_{j}) = S(f(e_{i}) \otimes f(e_{j}))$$

- (a) Show that $S^2(f)$ is well defined.
- (b) Show that tr $S^{2}(f) = \frac{1}{2}((\text{tr } f)^{2} + \text{tr } f^{2}).$

(c) Suppose that the characteristic polynomial of f has roots $\lambda_1, \ldots, \lambda_n$. Show that the characteristic polynomial of $S^2(f)$ has n(n+1)/2 roots $\lambda_i \lambda_j$, $1 \le i \le j \le n$.